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In this study, the effects of chitosan hydrochloride (CTSCL), lysozyme (LZM) and cationic polyacrylamide
(CPAM) as conditioners on the dewatering performance of activated sludge were comparatively
investigated in terms of the capillary suction time (CST), specific resistance to filtration (SRF) and water
content after conditioning and subsequent dewatering. CTSCL showed nearly the same capacity to
improve the sludge dewaterability as CPAM, with CTSCL and CPAM conditioning resulting in the SRF of
sludge decreasing by 95.82% and 96.15%, CST decreasing by 78.22% and 84.88%, and water content of
the dewatered sludge decreasing by 10.84% and 8.5%, respectively. However, LZM conditioning
exhibited the best improvement in the dewatering extent, which could decrease the water content of
dewatered sludge by 19.84%. In addition, the evolution of the physical properties, extracellular polymeric
substance content and composition, and the sludge floc morphology were analyzed to explain the
sludge conditioning mechanism. Both CTSCL and CPAM could extrude sludge surface bound water into
free water, produce sludge flocs with a larger size and more surface pores and finally improve the sludge
filterability. In comparison with chemical flocculants, the conditioning mechanism of LZM was distinctly
different, which effectively decomposed cell walls, released the internal bound water beneficial for

Received 17th December 2018
Accepted 21st February 2019

DOI: 10.1039/c8ral0349f improving the sludge dewatering extent, while the released organic substances clogged the floc surface,

Open Access Article. Published on 28 February 2019. Downloaded on 2/9/2026 10:45:44 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

rsc.li/rsc-advances

1. Introduction

With the rapid rise of sewage amounts and treatment rates,
subsequent sludge treatment and disposal problems are
becoming increasingly apparent. The high water content of over
95%, huge volume, and difficulties in transportation accom-
panied with sludge would bring about serious secondary
pollution to the environment if not appropriately dealt with.
Therefore, it is necessary to carry out sludge dewatering prior to
sludge treatment and disposal.>*

Sludge is a heterogeneous colloidal system containing
microorganisms, refractory organics and some heavy metals that
form a stable suspension in water.> The microorganisms are
embedded in a matrix of extracellular polymeric substances (EPS)
that consists of miscellaneous organic substances such as
proteins (PN), polysaccharides (PS) and humic acid.** Both EPS
and water within the EPS structure account for approximately
80% of the total sludge mass,*” which is a major obstacle
hindering the volume reduction of sludge. In addition, the EPS
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and the high proportion of fine particles in the flocs resulted in poorer filtration.

usually occur as highly hydrated capsules surrounding cell walls
and contain many hydrophilic functional groups, such as -COOH
and -OH, which can change the surface characteristics of sludge
particles.*® Consequently, the presence of negative charge carried
by EPS have the sludge particles to be negatively charged, thus
forming a stable and electrically exclusive colloid system in which
the hydrated sludge structure is maintained, and the release of
water and other components such as PN, PS and heavy metals is
effectively prevented.'® As a result, the separation of solid liquid
in activated sludge is particularly difficult.

The rate of sludge dewatering could be improved efficiently if
the sludge was regulated before dewatering. The addition of
organic polymers and inorganic coagulants, such as cationic
polyacrylamide (CPAM), polyferric chloride and lime, could
agglomerate the fine sludge colloids into large flocs through
electrical neutralization and bridging action, which was easily
separated from the water.""* At present, the sludge utilization
means of activated sludge are combustion to generate electricity,
dunghill for soil and making building materials, so nonbiode-
gradable conventional conditioners may result in pollution issues,
such as biological toxicity, and thereby limit the subsequent
utilization of the sludge. Thus, it is imperative to explore efficient
and environmentally friendly conditioners for sludge dewatering.

Green conditioners, such as natural organic polymer floccu-
lants and enzymes, is concerned gradually in sludge dewatering

This journal is © The Royal Society of Chemistry 2019
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owing to their superiority, nontoxicity and biodegradability.*®
Zemmouri et al.** reported that natural chitosan showed the
same efficiency in the field of sludge conditioning as synthetic
polymer (SedCF802). However, there remains the issue of the
poor solubility of chitosan in water, which is inconvenient for
practical applications. Then, Huang et al.*® tried to synthesize
a new hydrophobic cationic chitosan flocculant with better water
solubility in comparison with chitosan; however, the synthetic
process is so complicated that the new chitosan flocculant is not
suitable for large-scale applications. Until recently, chitosan
hydrochloride (CTSCL) was known as a cationic chitosan deriv-
ative without complex synthesis process, which was easily dis-
solved in water and possessed the advantages of chitosan.®
Currently, the flocculation performance of CTSCL has been used
in the removal of humic acids from water, and its effectiveness
could approach 95-100%."” However, there are few reports on the
application of CTSCL as a sludge conditioner.

Chemical conditioners commonly accelerate the removal rate
of water but hardly influence the destruction of the structure of
EPS," which was thought to play a critical role in the sludge
filtering performance. Consequently, researchers have recently
paid more attention to the various enzymes responsible for
releasing the bound water from sludge flocs by the degradation of
EPS and the lysis of biological cells.”** Chen et al.** found that
the application of compound enzymes (protease and a-amylase)
disrupted EPS structure and got the dewatered sludge with
higher solid content, while the reaction time of was 4 h, not
convenient for practical application. Compared with the protease
and amylase, lysozyme (LZM), could effectively and quickly
destroy the B-1,4-glucoside bond, which connects N-acetylmur-
amic acid and N-acetylglucosamine in the cytoderm, and then
decompose the insoluble mucopolysaccharide into a soluble
peptide. These would lead to the lysis of bacteria, and finally
disrupt the EPS structure.® He et al' have found that LZM
destroyed the microbial cell wall to result in the release of
intracellular soluble substances, which had a strong potential to
disintegrate activated sludge. However, sludge dewatering prop-
erties of the pulp and paper mill were investigated by Bonilla
et al.,** who found that both active and inactive LZM exhibited
similar reinforcement of the sludge dewaterability, and the
conclusion insisted on there was little difference between the
conditioning mechanisms of LZM and chemical flocculants. Our
new experimental discoveries about the performance of LZM
during sludge conditioning contradict the latter point.

To investigate the feasibility of improving the activated
sludge dewaterability on the basis of green conditioning, this
paper compared the conditioning effect of CTSCL and LZM with
that of CPAM using activated sludge (activated sludge collected
from the secondary sedimentation tank) as the research object.
In addition, the relevant conditioning mechanism in improving
the sludge dewatering performance is expected to be elucidated.

2. Materials and methods
2.1 Materials

2.1.1 Sludge sample. Sludge samples were collected from
the secondary sedimentation tank of Lijiao wastewater
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treatment plant in Guangzhou, China, and stored at 4 °C. The
main characteristics of the sludge are listed in ESI, Table S17.

2.1.2 Chemical reagents. CPAM with a molecular weight of
approximately 10-12 million was purchased from SNF Floerger.
LZM was purchased from Amresco. CTSCL with a molecular weight
of approximately 200 thousand was produced by Cool Chemistry of
China. The reaction buffer (catalog number L9295) and micro-
coccus lysodeikticus cell suspension (catalog number M3770) were
purchased from Sigma. Naz;PO, and NaCl were purchased from
Guangzhou Chemical Reagent Factory of China. NaH,PO, was
purchased from Sinopharm Chemical Reagent Co., Ltd (China).
KCl was obtained from Damao Chemical Reagent Factory of China.
All the chemical reagents used were analytical grade.

2.2. Methods

2.2.1 Sludge conditioning. One hundred milliliters of the
sludge sample was poured into a 250 mL beaker, and the dis-
solved conditioners were added using a scalar pipette. Then, the
mixture was stirred at 150 rpm for 30 s and subsequently at
50 rpm for 2 min. After that, the conditioned sludge remained in
the beaker for 10 min. All the tests were performed in triplicate.
The dosage of different conditioners is shown in ESI, Table S2t.

2.2.2  Activity assay of LZM. The cell suspension used in the
study has an absorbance at 450 nm (4,5,) between 0.6-0.7 versus
the reaction buffer blank. Immediately before use, a solution
was prepared containing 200-400 units per mL of LZM in a cold
reaction buffer (catalog number L9295). First, 800 pL of the
micrococcus cell suspension was pipetted into a cuvette as
a blank one as a control, and one for each sample. Then, the
cuvettes were equilibrated to 25 °C, and 4,5, was monitored
until constant. Afterwards, 30 uL of reaction buffer was added to
the blank cuvette, 30 uL of the LZM solution was added to the
control cuvette, and 30 pL of the test sample was added to the
remaining cuvettes. The mixtures were immediately mixed by
inversion and the decrease in A,s5, was recorded for 5 min.
Finally, the maximum linear rate (AA,5,/min) was obtained for
each of the test samples and the blank.*

The enzyme activity (units per mL) was calculated as follows:

. (AA450/minlest - AA450/minhlank)df
- 0.001 x 0.03

where d; is the dilution factor, 0.001 is the AA,s, as per unit defi-
nition, and 0.03 is the volume (in milliliters) of the enzyme solution.

2.2.3 Determination of the sludge dewaterability. The
determination of the specific resistance to filtration (SRF)'* was
conducted in a Buchner funnel using a qualitative filter paper.
The device used for measuring the SRF was shown in ESI,
Fig. S17, and the operation process was presented in ESI, Text
S1.%

The capillary suction time (CST) was measured using a CST
instrument (304 M, Triton Electronics Ltd., Dunmow, UK).

As shown in Fig. S27, a lab-scale pressure filtration system,
featured a hydraulic drive piston which could move up and
down in an enclosed space, was used for sludge dewatering. The
detailed operation process of the sludge deep dewatering was
introduced in ESI, Text S2.7
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The bound water content was analyzed according to a modi-
fied thermal analytical approach.> The sludge sample of 10 mg
was first cooled from 25 °C to —25 °C at a rate of —2 °C min™~ " and
the released heat (mJ) was recorded, assuming that all the free
water was frozen at —25 °C except bound water. The sludge
sample was then heated from —25 °C to 25 °C at a heating rate of
+2 °C min~'. And the heat uptake during phase transition of
bound water (W) can be calculated with the following equation:

WB = WT - AH/AHO

where Wy is the bound water content, Wy is the total water
content, AH is the heat absorbed in melting process and AH, is
the water heat of fusion (334 mJ mg ™).

2.2.4 EPS characterization

2.2.4.1 EPS extraction. The soluble EPS (S-EPS), loosely
bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) from the
sludge were separated using a series of methods that comprised
centrifugation, ultrasonication, and thermal extraction.*® The
specific process was shown in ESI, Text S3.t

2.2.4.2 EPS analysis. The PN concentration in the extracted
EPS was measured by the Coomassie brilliant blue method with
bovine serum albumin (BSA) as a standard.”® The PS concen-
tration of the EPS was determined using the anthrone method
with a glucose standard.”” The DNA content in the S-EPS was
analyzed using the modified diphenylamine method with calf
thymus DNA sodium as the standard.*® Then the PN, PS and
DNA were analyzed using a UV/VIS spectrophotometer (TU-
1080, Beijing Purkinje General Instrument, China). The accu-
racy of the standard curve for the three parameters reached
99.60% and pure water was used to “zero” the spectrophotom-
eter. Also a blank test with only LZM was used to exclude the
effect of LZM on PN concentration.

2.2.4.3 Three-dimensional excitation emission matrix (3D-
EEM). A fluorescence spectrophotometer (F-7000, Hitachi, Japan)
was used to analyze the organic matter in each layer of the EPS.
The excitation (Ex) wavelengths ranged from 200 to 400 nm, and
the emission (Em) wavelengths varied from 200 to 500 nm. The
sampling intervals were all at 5 nm. And the scanning speed was
12 000 nm min !, with 5 nm of excitation and emission slit
bandwidths.® The spectrum of deionized water was regarded as
the blank before the determination of all the samples, which
were then deducted from all data used for plotting. Specially, the
spectrum of LZM solution was regarded as another blank before
the determination of the LZM-conditioned samples.

2.2.5 Floc morphology. A particle size analyzer (MS3000,
Malvern, UK) was employed to measure the median diameter (D,
[50]) of the sludge particle size. The sludge samples were prepared
by freeze-drying, and the sludge morphology was studied with
a scanning electron microscope (SEM) (EVO 18, ZEISS, Germany).

2.2.6 Zeta potential. A laser diffraction instrument (Zeta-
sizer Nano ZS90, Malvern, UK) was used to measure the zeta
potential of the sludge supernatant.

2.3 Statistical analysis

Statistical analysis was carried out using the software Origin Pro
9.0 64 bit (Origin Pro Lab Corp., Northampton, MA, USA).
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3. Results and discussion

3.1 Effects of the different conditioners on sludge
dewatering performance

For a long time, both SRF and CST, which are measures of the
difficulty level of filtration, were commonly used to evaluate the
sludge dewaterability in sewage treatment plants or research labs.*®
Generally, lower SRF and CST mean better filtration performance.

The change of the indexes with the increasing dosage of the
different conditioners is shown in Fig. 1a-c. SRF, CST and water
content simultaneously reached the minimum at the level 5
with the dosage of 2.5 mg g " dry solid (DS) CPAM, 15 mg g "
DS CTSCL and 4.8 x 10° U g~ ' DS LZM with the activity of 1.6 x
10* U mg™ ", respectively. CTSCL showed nearly the same
capacity to improve the sludge dewatering performance as
CPAM, with CTSCL and CPAM conditioning resulting in the
sludge SRF decreasing by 95.82% and 96.15%, CST decreasing
by 78.22% and 84.88%, and water content of the dewatered
sludge decreasing by 10.84% and 8.5%, respectively. In
contrast, as shown in Fig. 1a-c, although both SRF and CST of
the sludge conditioned with LZM were evidently higher than
those of the others, the resulting water content of the dewatered
sludge reached the lowest value of 58.54%, which could be
ascribed to the destruction of microbial cell walls and the
release of intracellular water into free water.”* The reason why
the filtration performance was unsatisfactory after LZM condi-
tioning is still unclear and needs further investigation.

As a synthetic flocculant based on natural polymers, CTSCL
showed considerable potency to condition the sludge as well as
CPAM. In combination with its biodegradability, CTSCL is ex-
pected to be a promising substitute for conventional chemical
flocculants if its cost can be reduced in future. In addition, LZM
also exhibited unique superiority in improving the degree of
sludge dewatering that could not be achieved with traditional
chemical flocculants.

3.2 Effects of the different conditioners on particle size and
zeta potential of sludge

As shown in Fig. 2a, both organic macromolecular flocculants,
CPAM and CTSCL, displayed similar D, [50] variation of the
conditioned sludge particles when the conditioner dosage was
increased, with maximum values of 227.81 um and 105 pm,
respectively. Because of the strong bridging effect of high
molecular weight polymer, CPAM with a molecular weight of
approximately 10-12 million was more beneficial for the
formation of large flocs.> In comparison, CTSCL with a molec-
ular weight of approximately 200 thousand resulted in the
weaker bridging effect, thereby producing relatively small
particle size of sludge. In contrast, the D, [50] remained
approximately constant with increasing LZM dosage, far
smaller than that of the sludge conditioned with polymeric
flocculants. It was inferred that the poor filterability of the
sludge conditioned with LZM was related to the high proportion
of fine particle retention in the flocs, accompanied by the larger
total specific surface area and more surface bound water,
consistent with research by Raynaud et al.*®

This journal is © The Royal Society of Chemistry 2019
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Fig. 1 Effects of the different conditioners on sludge dewatering performance (a) SRF; (b) CST; (c) water content of the dewatered sludge.

Generally, activated sludge colloidal particles are negatively the sludge flocs would be in a position to aggregate, settle down
charged due to anionic functional groups, such as carboxyl, rapidly, and be dewatered more readily. As shown in Fig. 2b,
hydroxyl and phosphate groups.>® According to the traditional there was a upward trend of the zeta potential value from
Derjaguin-Landau-Verwey-Overbeek (DLVO) theory,*® with the —14.3 mV to —10.5 mV after conditioning by CPAM and to

loss of negative surface charge and increase in zeta potential, —8.6 mV by CTSCL, respectively. Notably, these observations
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Fig. 2 Effects of CPAM, CTSCL and LZM dosage on (a) D, [50] and (b) zeta potential of sludge.
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were inconsistent with the results of particle size, which might
be ascribed to the higher dosage of CTSCL (6-fold of that of
CPAM), and the higher density of positive charge after CTSCL
conditioning than that of CPAM conditioning, thus slightly

6940 | RSC Adv., 2019, 9, 6936-6945

enhancing the electrostatic neutralization effect.® The above
results also confirmed these organic polymer flocculants
conditioned sludge and gave rise to aggregate mainly by means
of the bridging action, using long chain-like molecular

This journal is © The Royal Society of Chemistry 2019
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structure to form larger flocs, combined with a small contri-
bution from electrostatic neutralization.

In sharp contrast, a significant shift in the zeta potential
from —14.3 mV to 0.37 mV was observed along with the increase
dosage of LZM from 0 to 8 x 10° U g ' DS. A possible expla-
nation was after the destruction of cell walls and EPS structure
by LZM conditioning, the cationic amino group contained in
the PN molecule neutralized parts of the negative charges on
the sludge surface, thus leading to the aggregation of sludge
particles and the increase of zeta potential.*> However, the
destruction of EPS structure also weakened the aggregation of
sludge particles, consequently the D, [50] was far smaller than
that of the sludge conditioned with polymeric flocculants as
shown in Fig. 2a. In combination with the optimum dewater-
ability in Fig. 1a-c was obtained at the dosage of 4.8 x 10°Ug™"
DS, corresponding to the zeta potential of —0.08 mV, and the
result was in agreement with the literature, which discovered
the best dewatering performance of activated sludge occurred at
the zeta potential close to 0 mV (—0.4 £ 0.1 mV) after Fe(u)-
S,04>~ ozonation under 80 °C.>® Therefore, the contribution of
electric neutralization could not be ignored with regards to LZM
in improving the sludge dewaterability.

3.3 Effects of the different conditioners on chemical
characteristics and sludge morphologies

3.3.1 EPS analysis. The chemical composition and spatial
distribution of the EPS had a dominant effect on the bio-
flocculation, and even on the settling and dewatering perfor-
mance of activated sludge.*® Typically, the release of EPS and
intracellular materials was beneficial for reducing the water
content and enhancing sludge dewaterability as the conversion
of bound water into free water.** As exhibited in Fig. 3a and b,
the concentrations of PN and PS remained stable when treated
with different dosages of CPAM and CTSCL. In combination
with the results of Section 3.1 that the water content of dewa-
tered sludge decreased slightly after separate CPAM and CTSCL
conditioning, there was no evidence that the polymeric floccu-
lants had any influence on the biochemical properties of the
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sludge, with the changes in the biopolymer concentration was
within 1 mg g~ ' DS.>®

By comparison, the PN concentration rose quickly to
51.64 mg g ' DS from 1.15 mg g~ ' DS after LZM conditioning as
shown in Fig. 3¢, and the PS concentration boosted to 37.22 mg
¢ ' DS from 1.84 mg g " DS in the S-EPS. From Fig. 4, it can be
noticed that the DNA content increased and the bound water
content decreased. All the experimental data confirmed that the
cell walls were indeed destroyed after LZM conditioning, fol-
lowed by the release of the substances inside the cells. On the
one hand, amino acids with positive charge in the PN contained
aliphatic and aromatic side chains including alanine, phenyl-
alanine and tryptophan, which played a critical role in the
hydrophobicity of the sludge surface.*® On the other hand, the
PS contained negatively charged hydrophilic groups like
carboxyl groups, which exerted an adverse influence on the
dewatering performance of sludge. As the concentration of PN
was more than that of PS,*” the dewaterability of the sludge after
LZM conditioning was accordingly improved.

3.3.2 3D-EEM analysis. 3D-EEM method is an extremely
impressive and alternative tool that has been widely used to
represent natural organic matter.** As CPAM and CTSCL had no
influence on the amounts of PN and PS, further research on the
distributions of protein-like substances in the different fractions
of EPS was conducted by the 3D-EEM method aimed at the
sludge conditioned by LZM; the results were compared with
those when CTSCL conditioning was used. Fig. 5 shows that two
main fluorescent peaks occurred in the different fractions of EPS,
including peak A (Ex/Em = 280/335), tryptophan-like proteins,
and peak B (Ex/Em = 225/340), aromatic proteins.*”

As shown in Table 1, with the rising dosage of CTSCL, the
intensities of tryptophan-like and aromatic proteins in the EPS had
few clear changes, corresponding to the almost constant level of
the PN concentration in EPS. The intensity of tryptophan-like
proteins in S-EPS dramatically rose to 3935.45 from 199.3 after
LZM conditioning in Table 2, in comparison to that in LB-EPS and
TB-EPS which ascended from 93.05 to 844.25 and 661.9 to 2236.45,
respectively. It was noted that the fluorescence intensity of
tryptophan-like proteins in the TB-EPS after LZM conditioning was
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Fig. 4 Effects of LZM dosage on sludge (a) DNA and (b) bound water content.
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much higher than that after CTSCL conditioning in Fig. 5, while
the PN concentration in the TB-EPS were between those of sludge
conditioned by LZM and CTSCL in Fig. 3. This is because EPS
contained various kinds of PN with the luminophores and non-
luminophores, while 3D-EEM can only detect the fluorescent
functional groups in EPS and cannot quantitatively analyze and
compare them with the total PN concentration.
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After a comprehensive analysis of Fig. 3c and Table 2, it
could be inferred that the breakdown of cell walls after LZM
conditioning not only released the bound water, which was
beneficial for improving the dewatering performance, but
also released organic substances. That is why both the SRF
and CST of the sludge conditioned with LZM were higher
than those of the sludge conditioned with chemical
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Fig. 5 Influence of the different conditioners on EEM profiles of the different fractions of EPS: (a) raw sludge; (b) 15 mg g% DS CTSCL; (c) 4.8 x
10° U g1 DS LZM (with S-EPS, LB-EPS and TB-EPS samples diluted by 20 times).

Table 1 Influence of CTSCL conditioning on the intensities of the fluorescent peaks in the different fractions of EPS
S-EPS LB-EPS TB-EPS
Dosage (mg Tryptophan Tryptophan Tryptophan
¢ ' DS) protein Aromatic protein protein Aromatic protein protein Aromatic protein
0 199.30 136.00 93.05 64.19 661.90 404.50
2.5 211.70 176.00 68.35 44.86 613.30 395.40
15 251.20 169.7 60.29 23.33 707.60 414.90
30 260.70 176.00 72.08 38.87 790.00 484.20
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Table 2 Influence of LZM conditioning on the intensities of the fluorescent peaks in the different fractions of EPS

S-EPS LB-EPS TB-EPS
Dosage level (x10° Tryptophan Aromatic Tryptophan Tryptophan Aromatic
Ug ' DS) protein protein protein Aromatic protein protein protein
0 199.30 176.00 93.05 64.19 661.90 404.50
1.6 208.64 166.83 91.56 58.77 1703.76 479.23
4.8 3279.26 203.31 675.56 55.41 2201.45 507.11
8 3935.45 225.71 844.25 62.65 2236.45 539.21
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Fig.6 SEMimages of the sludge treated in various ways: (a) raw sludge; (b) sludge conditioned with 2.5 mg g~ DS CPAM; (c) sludge conditioned
with 15 mg g~! DS CTSCL; (d) sludge conditioned with 4.8 x 106 U g~ DS LZM.
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conditioners, while the water content of the sludge cake
reached the lowest value.

3.3.3 SEM analysis. SEM analysis was used to further probe
into the surface micromorphology and structure of the sludge
treated by different conditioners as shown in Fig. 6. Since the floc
structure of the raw sludge was loosely packed, there was little
support force after it was freeze-dried. In contrast, the raw sludge
without conditioning in Fig. 6a was arranged in a lamellar struc-
ture, with a relatively smooth surface and non-porous structure.
When comparing Fig. 6b with Fig. 6¢, it can be noticed that the
sludge conditioned with CPAM and CTSCL had much in common,
and both exhibited a pronounced sense of three-dimensional
structures and exposed more surface pores, which provided
more channels to release water and thus improved the sludge
filtration performance.* Also, the resulting structures were in
compliance with the fact that the sludge conditioning with organic
flocculants was mainly achieved through bridging with adjacent
colloids. As depicted in Fig. 6d, the three-dimensional sense of the
sludge structure after being conditioned with LZM was not as
notable compared with the others, the structure was even a bit too
flat. Furthermore, it seemed that some of the outflow of intracel-
lular material clogged the pores on the floc surface as a conse-
quence of the cell rupture, thus resulting in the poor drainage, and
that might be another reason why the filtering performance got
worse after LZM conditioning.

4. Conclusions

CTSCL showed a similar effect on the sludge dewatering
performance as CPAM, with CTSCL and CPAM decreasing the
water content by 10.84% and 8.5%, respectively, which was
mostly due to the bridging mechanism that resulted in the
increase of the particle size of the sludge flocs, thus enhancing
the filterability and dewaterability. Also, CTSCL demonstrated
its potential application in sludge conditioning and could be
considered as an ideal substitute for CPAM. LZM exhibited its
unique superiority in improving the degree of sludge dewater-
ing that could not be achieved with traditional chemical floc-
culants, which led to a 19.84% decrease in the water content of
dewatered sludge. Unlike the conditioning mechanism of
chemical flocculants, LZM conditioning effectively broke down
cell walls of the microbial bacteria, and released the bound
water beneficial for improving the dewatering performance,
while the released organic substances clogged the floc surface
and the high proportion of fine particles in the flocs resulted in
poorer filtration. All the above results were confirmed by the
comparison of the sludge microstructure and microtopography
before and after the conditioning.
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