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electrochemical studies of
electrospun phosphorus doped porous carbon
nanofibers

Chao Liu,a Gaofeng Shi,*a Guoying Wang,a Puranjan Mishra,b Shiming Jia, a

Xia Jiang,a Peng Zhang,a Yucan Donga and Zhao Wanga

An ultra-facile fabrication process for the preparation of phosphorus doped porous carbon nanofibers (P-

PCNFs) through the electrospinning and heat treatment method has been studied. The materials were

characterized by X-ray diffraction, scanning electron microscopy, and X-ray photoelectron

spectroscopy. Studies showed that fabricated P-PCNFs have unique porous fibers structures, large

specific surface area (462.83 cm2 g�1), and abundant microporous and mesoporous structures. X-ray

photoelectron spectroscopy analyses revealed that the contents of phosphorus and electrochemical

properties in a series of P-PCNF samples can be tuned by controlling the polyphosphoric acid

concentration. The electrochemical properties of the materials were evaluated using cyclic voltammetry,

galvanostatic charge–discharge, and electrochemical impedance spectroscopy. Studies showed that the

specific capacitance of the fabricated P-PCNFs using the ultra-facile process reached up to 228.7 F g�1

at 0.5 A g�1 in 1 M H2SO4. Over 84.37% of the initial capacitance remains as the current density increases

from 0.5 to 10 A g�1. Meanwhile, at a current density of 2 A g�1, no capacitance loss was observed in

5000 charge/discharge cycles. The highest voltage windows of sample P-PCNFs-1.0 in 1 M H2SO4

aqueous electrolyte can reach 1.4 V. These properties suggest that the fabricated P-PCNFs exhibit

excellent electrochemical properties. Conclusively, the surface of carbon nanofibers can be modified by

heteroatom doping or surface activation which can improve the electrochemical performance of the

materials.
Introduction

In recent years, although mankind has made remarkable
achievements in energy issues, a serious energy crisis is still
likely. Methods to increase the use of renewable energy sources
and the development of new environmentally friendly energy
conversion and storage devices are particularly important.
Supercapacitors are a new type of energy storage device, which
are widely used in electric vehicles, portable electronic devices,
aerospace, and military applications, and many other areas.
Commonly used as electrodes for supercapacitor vessels are
carbon-based materials (such as activated carbon, carbon
nanotubes, carbon nanobers, etc.), metal–organic frame-
works1–3 and so on. Among these materials, carbon nanobers
have been widely considered as ideal functional materials for
the synthesis of supercapacitor electrodes due to such excellent
properties as hardness, electrical conductivity, optical proper-
ties, heat resistance, electrical insulation, and surface and
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interface properties.4–7 Traditional methods for preparing
carbon nanobers include chemical vapor deposition,8 the
template method,9 the emulsion method,10 and so on. However,
these traditional methods have disadvantages of complicated
preparation processes, high cost, and uncontrollable process
parameters. Compared with the traditional preparation
method, the electrospinning method has attracted much
attention due to its advantages such as simple equipment, and
economic and convenient operation.11–13

The carbon nanobers prepared by the electrospinning
method also have the advantages of large specic surface area,
large length to diameter ratio, small number of defects, and
compact structure. However, pure carbon nanobers as an
electrode materials still has disadvantages such as poor
hydrophilicity, low specic surface area utilization, and low
energy density. Fortunately, we have found that by modifying
the surface of the carbon bers (such as heteroatom doping) or
surface activation, the above disadvantages can be eliminated.

Chemical doping with atoms is an effective approach to
modify the properties of the carbon materials intrinsically.
Recently, heteroatoms doping is mainly concentrated on non-
metallic elements similar to the atomic radius of element C,
such as B, N, P, S doping. Doping N atoms can change the
This journal is © The Royal Society of Chemistry 2019
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inherent electrical properties and hydrophilicity of carbon,
which is benecial to improve the electrochemical properties of
power characteristics. Feng14 et al. reported a nitrogen-doped
graphene nanosheets (N-GNSs) synthesized by a facile sol-
vothermal method. As an electro-active materials, the N-GNSs
exhibited superior capacitive behavior with a high specic
capacitance of 181.3 F g�1 in 2 M KOH electrolyte at the current
density of 0.5 A g�1. Anthuvan15 et al. reported the open-ended
N-doped CNTs have been obtained by pyrolysis of C2H2/NH3

mixture over lanthanum nickel LaNi5 alloy catalyst and subse-
quent acid treatment. The resultant open-ended N-doped CNTs
tested as a supercapacitor electrode material by cyclic voltam-
metry and exhibited high specic capacitance of 146 F g�1.
Simultaneously, the study revealed that the higher capacitance
of open-ended N-doped CNTs attributed to the positive charge
on the both graphitic or quaternary N as well as pyridine-N-
oxide groups can advance the electron conductance through
carbon network and lead to the increased capacitance. Doping B
element can change the electron distribution of carbon mate-
rials, improve the interface capacitance and quantum capaci-
tance of the materials, at the same time, it also can improve the
hydrophilicity of the materials, improve the wettability of the
materials, and form the electric double layer capacitor easily.
Guo16 et al. prepared boron-doped porous carbon by a simple
one-step synthesis method. Studies have shown that B-doping
can enhance the wettability between the electrolyte and the
electrode material and can also lead to the pseudocapacitive
effect. Niu17 et al. prepared boron-doped graphene (BG) through
pyrolysis of graphene oxide (GO) with boric acid (H3BO3) in an
argon atmosphere at 900 �C. The research indicated that the
enhanced electrochemical properties of BG can be attributed to
the incorporation of boron atoms and the high percentage of
oxygen atoms aer boron-doping. Doping P atoms can stabilize
oxygen functional groups during electrochemical charging,
resulting in pseudocapacitance which improves capacitance
performance. At the same time, the doping of P atoms can also
make the electrode material to stand a higher voltage range in
the aqueous electrolyte, which can increase the energy density
of the supercapacitor.18–23 In addition to the above-mentioned
single-atom and diatomic doping, the doping of three-atom
heteroatoms has become a hot spot of current research. Wu24

et al. successfully prepared N, F, P ternary heteroatom doped
carbon ber materials (NFPC) by electrospinning and anneal-
ing. When used as electrocatalysts for ORR and OER, NFPC
exhibits considerable bifunctional activities due to the large
specic surface area with porous architecture and the syner-
gistic effect of heteroatoms. Wang25 et al. synthesized N, B, F
ternary doped carbon bers materials (TD-CFs) by electro-
spinning and annealing techniques. When used as electro-
catalysts for ORR and OER, this material has a higher catalytic
activity than monoatomic doping. At the same time, as a zinc–
air battery material. When compared to batteries with Pt/C +
RuO2 and Vulcan XC-72 carbon black catalysts, the TD-CFs
catalyzed batteries exhibit remarkable battery reversibility and
stability over long charging/discharging cycles.

Commonly, surface activation methods include chemical
activation, physical activation, and microwave radiation
This journal is © The Royal Society of Chemistry 2019
activation and so on.26–30 The research group used KOH activa-
tion method to prepare biomass-based carbon nanobers with
large specic surface area, and its electrochemical performance
improved greatly. Although the KOH activation method can
increase the specic surface area of the bers, the amount of
hetero atom functional groups on the surface of the bers is
largely reduced due to the strong corrosiveness of KOH. This is
harmful to heteroatom doping. How to achieve simultaneous
heteroatom doping and surface activation on the carbon
nanobers surface is particularly important. As a pore-making
agent, polyethylene glycol (PEG) has attracted attention
because of low price, good solubility, and no inuence on
spinning. Using this pore-making agent can not only increases
the specic surface area of the bers, optimizes the pore
structure, but also has no effect on heteroatom doping.

In the present study, we have successfully prepared
phosphorus-doped porous carbon nanobers with excellent
capacitance properties by electrospinning, using polyethylene
glycol as pore-making agent and polyphosphoric acid as phos-
phorus source. The inuence of the doping amount of poly-
phosphoric acid on the chemical composition and structure of
the prepared carbon ber is investigated. The prepared material
is used as a supercapacitor electrode material to study its elec-
trochemical performance, the specic capacitance of the fabri-
cated P-PCNFs using the ultra-facile process reaches up to 228.7
F g�1 at 0.5 A g�1 in 1 M H2SO4. At current density of 2 A g�1,
there is no loss in 5000 charge/discharge cycle capacitance. The
highest voltage windows of the sample P-PCNFs-1.0 in the 1 M
H2SO4 aqueous electrolyte can reach 1.4 V.
Experimental
Spinning dope preparation

The drugs used in the experiments were purchased commer-
cially and used without further purication. First, 1.0 g of
polyacrylonitrile (PAN) and 1.0 g of polyethylene glycol (PEG)
were accurately weighed and dissolved in 15 mL of N,N-dime-
thylformamide (DMF) solution. Magnetic stirring was carried
out for 6 hours at room temperature to obtain a colorless
viscous liquid. Then, a certain amount of polyphosphoric acid
(0.0, 0.3, 0.5, 1.0, 1.5 g) was weighed and added to the above
viscous liquid, and ultrasonically dispersed for 1 hour to nally
obtain a spinning solution.
Electrospinning

The electrospinning process was performed on a conventional
electrospinning device (Yongkang Leye, Beijing). A plastic
syringe with a 20-gauge stainless steel needle was lled with
the precursor solution and then connected to the high-voltage
anode. No syringe pump was used in the spinning process. A
tin foil-coated cylinder was used as a nanobers collector. The
conditions for electrospinning were: the distance from the
spinneret to the collector was 20 cm; the advancing speed was
0.12 mm min�1; the negative high pressure was �2 kV; the
positive high pressure was 15 kV; and the ambient tempera-
ture was 25 �C.
RSC Adv., 2019, 9, 6898–6906 | 6899
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Heat treatment of bers

The nanobers membrane prepared by the above electro-
spinning was xed on a porcelain boat, and pre-oxidized a in
a programmed temperature-controlled muffle furnace at 250 �C
for 1 h, with a heating rate of 1 �Cmin�1. Then, the pre-oxidized
bers were mounted in a tube furnace, ramped to 800 �C at the
heating rate of 2 �Cmin�1 under nitrogen atmosphere, and kept
at 800 �C for 1 h. The corresponding samples were named P-
PCNFs, P-PCNFs-0.3, P-PCNFs-0.5, P-PCNFs-1.0, and P-PCNFs-
1.5 (the numbers represent the doping amount of poly-
phosphoric acid in the spinning solution). The entire prepara-
tion process is shown in Fig. 1.
Structure characterization

The surface structure of the bers was observed by using a JSM-
6701 F cold eld emission scanning electron microscope (SEM,
Japan Electron Optics Corporation) and JEOL JEM-2010 trans-
mission electron microscopy (TEM, Japan). The specic surface
area and pore size distribution of the sample were tested by N2

adsorption and desorption at 77.3 K using a volumetric sorption
analyser (micromeritics ASAP 2020). Powder X-ray diffraction
(XRD) measurements were conducted on a MSAL-XD2 type
diffractometer in the 2q range of 5 to 80�. X-ray photoelectron
spectra (XPS) was collected on an Escalab 250Xi spectrometer
(Thermo Scientic, USA), using amono-chromatized Al Ka X-ray
source.
Electrochemical characterization

In order to prepare a working electrode, the resulting material,
acetylene black and polytetrauoroethylene (PTFE) were
uniformly mixed at a mass ratio of 80% : 15% : 5% using
anhydrous ethanol as the solvent.31 The paste was applied to
a 2 cm � 1 cm stainless steel mesh with a coating area of 1 cm
� 1 cm.32 The coated stainless-steel mesh was placed in an
oven, dried at 80 �C for 12 hours, and then pressed into a sheet
at a pressure of 3 MPa. In the electrochemical workstation
(CHI660E, Shanghai Chenhua Instrument Co., Ltd.), we used
cyclic voltammetry (CV), galvanostatic charge–discharge
(GCD) and electrochemical impedance spectroscopy (EIS)
methods to test the working electrode and evaluate electro-
chemical properties of materials. Among them, a platinum foil
was used as a counter electrode with a saturated calomel
electrode (SCE) as a reference electrode.
Fig. 1 Preparation process of phosphorus doped porous carbon nanofi

6900 | RSC Adv., 2019, 9, 6898–6906
Results and discussion
Structural characterization

The morphology was demonstrated by the scanning electron
microscopy (SEM) and transmission electron microscopy (TEM)
images in Fig. 2, where the as-synthesized P-PCNFs series
samples exhibited long brous morphology with uniform
diameters ranging from 200 to 250 nm. It can be seen from the
transmission electron microscopy (Fig. 2(f)) that many shadows
appear inside the P-PCNFs-1.0 sample material, and the surface
roughness of the sample increases. It is indicated that the
carbon ber prepared at high temperature is not a graphite
structure, and it may be that the phosphorus element is
successfully embedded on the surface of the carbonmaterial. In
addition, comparing the SEM images (Fig. 2(a–e)) of all
samples, we found that with the increase of polyphosphoric
acid, the spinnability of the spinning solution is not affected,
and all the samples exhibit bers morphology. However, as the
polyphosphoric acid content continues to increase, the bers
fusion phenomenon of the prepared samples becomes more
and more serious. This shows that the addition of poly-
phosphoric acid greatly affects the chemical composition of the
spinning solution, leading to oxidative crosslinking between
adjacent molecules inside the bers and cyclization between
cyano groups, thereby reducing the bers rigidity and tensile
strength.

To further examine the structures of all the samples, XRD
characterization was performed. The results are shown in
Fig. 3. Two broad characteristic peaks appeared at 23.5� and
43� for the all samples, corresponding to the (002) crystal
plane and the amorphous carbon (100) crystal plane,
respectively, of the graphite layer,33,34 indicating that the
materials prepared belongs to an amorphous graphite
structure. On the other hand, we noticed that as the amount
of phosphorus doping increases, the intensity of the
diffraction peak of the carbon materials decreases, resulting
in a decrease in the degree of graphitization of the materials
and an increase in amorphousness. This may be because the
doping of phosphorus hinders the formation of the ordered
graphite layer, reduces the crystallite size and number of
graphite, and makes the surface defects of the material more
obvious.

In order to study the effect of polyethylene glycol (PEG) on
the microstructure of materials, the porous properties of the as-
prepared phosphorus doped porous carbon nanobers (P-
PCNFs-1.0) were investigated by evaluating the nitrogen
bers.

This journal is © The Royal Society of Chemistry 2019
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Fig. 3 XRD patterns of the phosphorus doped porous carbon
nanofibers.

Fig. 4 (a) Nitrogen adsorption/desorption isotherms of PAN and P-
PCNFs-1.0; (b) pore size distributions of the samples calculated by BJH
method.

Fig. 2 Scanning electronmicroscopy images of carbon nanofibers with
different phosphorus contents: (a) P-PCNFs; (b) P-PCNFs-0.3; (c) P-
PCNFs-0.5; (d) P-PCNFs-1.0; (e) P-PCNFs-1.5; ratio size: (a–e): 1 mm. (f)
Transmission electron microscopy (TEM) images of P-PCNFs-1.0.
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adsorption–desorption isotherms measured at 77.3 K. At the
same time, pure PAN-based carbon nanobers (PAN) were used
as a control for comparison. Fig. 4(a) shows the nitrogen
Table 1 BET specific surface areas and porosities of the samplesa

Sample ID Dav/nm SBET/m
2 g�1 Vt/m

P-PCNFs-1.0 2.16 462.83 0.25
PAN 1.91 298.34 0.14

a Dav: average pore diameter; Vt: total pore volume; Vme: mesoporous volu

This journal is © The Royal Society of Chemistry 2019
adsorption and desorption isotherm and pore size distribution
of the sample. According to the BDDT classication, the
adsorption–desorption curve of the prepared sample belongs to
the type IV nitrogen adsorption isotherm, indicating that using
pore-making agent of polyethylene glycol, the prepared samples
are mainly formed microporous structure on the surface.35,36

Hysteresis was observed upon desorption for the prepared
carbon nanobers (P-PCNFs-1.0), which is consistent with
elastic deformation or swelling as a result of gas sorption.
According to calculations, the prepared P-PCNFs-1.0 sample
had a specic surface area of 462.83 cm2 g�1, which was 35%
higher than pure PAN carbon nanobers (298.34 cm2 g�1).
Fig. 4(b) shows the pore size distribution (PSD) curves for the
samples calculated by using Barrett–Joyner–Halenda (BJH)
method. The prepared carbon nanobers exhibited abundant
micropore and mesopores structures, and the majority of which
were distributed approximately 2.16 nm. Table 1, listed the BET
specic surface areas, specic volumes of the micropores, and
average pore sizes of the samples.

In order to determine the elemental composition and
bonding of the sample, we performed X-ray photoelectron
spectroscopy (XPS) analysis on all the samples. Fig. 5, shows
the full spectrum of the samples and the high-resolution
spectra of C1s, N1s, O1s, and P2p for each sample, which
provides favorable evidence for analyzing the chemical
composition of the surface of the carbon lattice. From the full
spectrum, we can see that the surface of the ve samples
mainly contains four elements of C, O, N and P. The relative
contents of each element are shown in Table 2. From the data
in the table, as the amount of polyphosphoric acid increases,
the content of phosphorus increases from 0.06% to 1.69%,
indicating that phosphorus is successfully doped onto the
bers surface. In addition, we noticed that the oxygen content
on the surface of carbon bers increases with the increase of
phosphorus doping amount, indicating that the phosphorus
element on the surface of the materials exists in the form of
bound oxygen. The presence of these oxygen-containing
functional groups not only increases the surface hydrophi-
licity of the material, but also increases the pseudocapacitive
of the materials.18,37

In case of C1s orbit, the high-resolution spectra of C1s orbit
for all samples exhibits four individual component peaks
around 284.6, 285.5, 286.5 and 289.3 eV, which are attributed
to graphitic structure (C–Csp2), carbon–oxygen single bonds,
carbon–oxygen–phosphorus single bonds (C–O–P) and
carbon–oxygen double bonds (O–C]O), respectively.28,38,39 In
general, the bonding form is mainly composed of graphitic
structure (C–Csp2) at 284.6 eV. In addition, as the amount of
3 g�1 Vme/m
3 g�1 Vmi/m

3 g�1 Vmi/Vt

0.10 0.15 0.60
0.03 0.11 0.786

me; Vmi: microporous volume.

RSC Adv., 2019, 9, 6898–6906 | 6901
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Fig. 5 High-resolution XPS spectra of P2p, O1s, N1s and C1s orbits for
the fabricated samples.

Table 2 Surface element content of porous carbon nanofibers with
different phosphorus doping amount

Sample C (%) N (%) O (%) P (%)

P-PCNFs 87.87 4.42 7.65 0.06
P-PCNFs-0.3 92.77 2.65 4.26 0.32
P-PCNFs-0.5 87.16 4.50 7.83 0.51
P-PCNFs-1.0 84.68 4.04 10.91 0.37
P-PCNFs-1.5 80.84 3.98 13.50 1.69
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phosphorus doping increases, the C–O bond gradually
increases, indicating that phosphorus doping facilitates the
formation of C–O bonds.
Table 3 Summary of XPS peak analysis on the fabricated samples

Samples P-PCNFs P-PCNFs-0

C1s Content/at% 87.87 92.77
284.5 eV 55.42 55.29
285.4 eV 25.67 26.05
286.5 eV 14.49 16.88
289.3 eV 4.4 1.77

O1s Content/at% 7.65 4.26
531.6 eV 39.59 36.85
532.7 eV 29.19 29.45
533.7 eV 30.65 33.69

N1s Content/at% 4.42 2.65
398.5 eV 30.31 35.28
400.1 eV 32.42 24.58
401.1 eV 24.92 31.49
403.5 eV 12.34 8.63

P2p Content/at% 0.06 0.32
132.2 eV — 68.61
133.1 eV 37.44 17.15
134.6 eV 62.56 14.22

6902 | RSC Adv., 2019, 9, 6898–6906
The N1s spectrum can be deconvoluted into four different
components: the peaks at 398.5, 400.1, 401.1 and 403.5 eV are
ascribed to pyridinic nitrogen (N-6), which is, a structure in
which one carbon atom on the hexagonal ring of the graphite
edge is replaced by a nitrogen atom; pyrrole nitrogen (N-5),
which is a structural form in which one carbon atom on
a ve-membered heterocyclic ring in graphite is replaced by
nitrogen atom; graphite nitrogen (N-Q) or P–N bond and
pyridine-N-oxide (N–O).39–41 With the increasing amount of
phosphorus doping, the content of graphite nitrogen (NQ) on
the surface of the material increases gradually, which indicates
that the doping of phosphorus hinders the formation of ordered
graphite layer and reduces the crystallite size and number of
graphite. This is consistent with the conclusions obtained by
XRD characterization.

For O1s orbit, three peaks centered at 531.6, 532.7, and
533.7 eV can be recognized for all samples. The peak at 531.6 eV
corresponds to oxygen double bonded to carbon (C]O) in
quinone type groups or phosphorus (P]O) in the phosphate
group, while the peak at 532.7 eV refers to singly bonded oxygen
(–O–) in C–O and C–O–P groups, the peak at 533.7 eV is attrib-
uted to O]C–O in carboxyl type groups.42 Compared with P-
PCNFs, the oxygen content of other samples at 531.6 eV and
532.7 eV increased, indicating that phosphorus element is
introduced into the surface of carbon bers by reacting with
oxygen-containing functional groups on the surface of carbon
material.

For the P2p XPS spectrum, these spectra have been
deconvoluted into three components according to previous
studies, which are assigned to the presence of C3–P type
groups (132.2 eV); C–PO3 and C2–PO2 type groups (133.1 eV);
(CO)3PO, P–O bond in the (CO)2PO2 or (CO)PO3 group (134.6
eV).43,44 The P2p high-resolution spectral analysis again
proved that the phosphorus atom was successfully incorpo-
rated into the surface of the material. Table 3 lists the specic
content of the bonding forms of the various elements of
.3 P-PCNFs-0.5 P-PCNFs-1.0 P-PCNFs-1.5

87.16 84.68 80.84
57.49 47.45 45.22
21.85 27.06 33.84
17.31 22.17 17.84
3.35 3.31 3.09
7.83 10.91 13.50

40.55 34.32 35.5
37.49 42.42 29.75
21.96 23.26 34.74
4.50 4.04 3.98

28.46 20.4 27.39
25.02 28.03 28.17
34.29 45.39 37.00
12.22 6.17 7.43
0.51 0.37 1.69

26.45 14.31 22.16
57.06 21.64 3.60
16.48 21.81 72.23

This journal is © The Royal Society of Chemistry 2019
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Fig. 6 Electrochemical performance of the samples measured in
a three-electrode system using a 1 M H2SO4 aqueous solution as an
electrolyte. (A) CV curves for all the samples at a scan rate of 20mV s�1;
(B) CV curves for P-PCNFs-1.0 at scan rates ranging from 5 to 100 mV
s�1; (C) galvanostatic charge–discharge curves of all the samples at the
current density of 0.5 A g�1; (D) galvanostatic charge–discharge curves
of P-PCNFs-1.0 at different current densities; (E) specific capacitance
of the samples versus various current densities from 0.5 to 10 A g�1; (F)
EIS spectra of all the samples.
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different phosphorus doping porous carbon nanobers
materials.
Electrochemical characterization

Fig. 6(A), shows a voltammogram of the P-PCNFs series samples
in a three-electrode system with a voltage range of �0.1 to 0.9 V
and a scan rate of 20 mV s�1 using 1 M H2SO4 solution as the
electrolyte. As shown in the picture, the resulting CV curve
presents a rectangular-like shape, and no signicant redox peak
was observed, indicating that the electrode capacity still
exhibited an electric double layer capacitance. At the same time,
we observed that a potential hump can be observed in the CV
curve of the doped phosphorus samples, and the integrated
Table 4 The capacitance values of the four samples at a current densit

Sample P-PCNFs P-PCNFs-0.3

Specic capacitance (F g�1) 120.4 174.45

This journal is © The Royal Society of Chemistry 2019
area of the CV curve is much larger than that of P-PCNFs (no
phosphorus doping). These phenomena indicate that the
doping of phosphorus can increase the interfacial capacitance
and pseudocapacitive effect of the material. In addition, we
found that the P-PCNFs-1.0 sample had the largest CV curve
area in all samples, indicating that the polyphosphoric acid
addition amount was not the more the better, and should be
controlled at 1.0 g as the optimum doping amount. Fig. 6(B)
shows the cyclic voltammogram of the P-PCNFs-1.0 sample at
different sweep speeds. The integral area of the CV curve of the
P-PCNFs series samples becomes larger as the sweep speed
increases, and the shape of the curve gradually deviates from
the rectangle, indicating that its capacitance performance is
declining. This is mainly due to the dispersion capacitance
effect and drop in the ohmic voltage, and it took time for the
current to reach a steady state. Fig. 6(C) shows the constant
current charge–discharge data of each sample in a 1 M H2SO4

electrolyte solution at a current density of 0.5 A g�1. As seen
from the gure, the length of discharge time is P-PCNFs-1.0 > P-
PCNFs-0.5 > P-PCNFs-0.3 > P-PCNFs-1.5 > PCNFs. The specic
capacitance values of the individual samples were calculated
using according to the eqn (1) and shown in Table 4.

C ¼ IDt

mDV
(1)

where I, denotes charge–discharge current (A), DV is the voltage
change during discharge (V), Dt is the discharge time (s), and m
is the mass of phosphorus doped porous carbon nanobers
material on the working electrode (g).

From the data in the Table 4, the sample P-PCNFs-1.0 has the
best capacitance performance, which is consistent with the
results of the CV test. Fig. 6(D) shows the galvanostatic charge–
discharge curves of the P-PCNFs-1.0 sample at different current
densities. When the current density increases from 0.5 A g�1 to
10 A g�1, the charge–discharge curve has the linear and
symmetric characteristics of the electric double layer capacitor.
At the same time, when the current density is 0.5 A g�1, the
specic capacitance reaches up to 228.7 F g�1. When the current
density is increased to 10 A g�1, the specic capacitance can still
be retained at 183 F g�1. These results indicate that the
prepared sample has excellent electrochemical performance.
Fig. 6(E) shows the comparison of the rate performances of the
all samples. When the current density increases from 1 A g�1 to
10 A g�1, the specic capacitance retention rate is 65.01% for
PCNFs, 76.39% for P-PCNFs-0.3, 80.72% for P-PCNFs-0.5,
84.37% for P-PCNFs-1.0 and 85.44% for P-PCNFs-1.5. It can be
seen that the phosphorus doping has a certain promoting effect
on the capacitance rate performance of the samples. This is
because the doped phosphorus atom easily reacts with the
oxygen-containing functional group on the surface of the
y of 0.5 A g�1

P-PCNFs-0.5 P-PCNFs-1.0 P-PCNFs-1.5

205.4 228.7 165.6

RSC Adv., 2019, 9, 6898–6906 | 6903
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Fig. 7 (A) Cycle characteristics of P-PCNFs-1.0 at 2 A g�1 current
density; (B) comparison of magnification performance of sample P-
PCNFs-1.0 before and after 5000 cycles.

Fig. 8 CV curves of P-PCNFs-1.0 measured in a two-electrode
system at 20 mV s�1.
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carbon material to form a more stable phosphorus–oxygen
compound, thereby being embedded on the surface of the
carbonmaterials. During the charging and discharging process,
the consumption of oxygen-containing functional groups on the
surface of the carbon material is reduced, and the stability of
the carbon material is increased. Fig. 6(F) shows an EIS spec-
trum of the four samples in a three-electrode system. It can be
seen from the gure that a small semi-circular Faraday
impedance arc is generated in the high-frequency region. In the
low-frequency region, an approximately vertical Weber diffu-
sion curve was observed.34,45 It can be explained with two
aspects: addition of the pore-enlarging agent polyethylene
glycol, a suitable pore structure is obtained; and the phos-
phorus doping can change the polarity of the carbon skeleton
surface and improve the wettability of the materials. Combined
with the double action of surface pore-making and element
doping, it is benecial to the rapid diffusion and transport of
the electrolyte solution, thereby improving the electrochemical
performance of the materials.

The long-term stability of P-PCNFs-1.0 was studied using
galvanostatic charge/discharge measurement at 2 A g�1. The
result is shown in Fig. 7(A). It can be seen from the gure that
aer 5000 cycles of charge and discharge, the specic capaci-
tance of P-PCNFs-1.0 is not attenuated, indicating that the
sample has excellent cycle stability. It is further explained that
by surface pore-making and phosphorus doping, the pore size
distribution of the material can be optimized, the surface
wettability and the surface utilization can be enhanced. The
rapid transfer of electrolyte ions in the pores of the surface of
the material is ensured and material stability is improved. At
Table 5 Comparison of electrochemical properties of some nanofibers

Electrode materials Specic capa

Nitrogen-doped porous carbon nanobers 202 F g�1 (1
Porous nitrogen and phosphorus co-doped carbon
nanober

280 F g�1 (1

Coal-based activated carbon nanobers 230 F g�1 (1
Biomass-based carbon nanobers 211.4 F g�1 (
Phosphorus doped porous carbon nanobers 216.9 F g�1 (

6904 | RSC Adv., 2019, 9, 6898–6906
the same time, we compared the rate performance of the
samples before and aer the cycle. As shown in Fig. 7(B), it can
be clearly seen from the gure that aer 5000 cycles, the specic
capacitance of the sample is not only greatly increased, but also
the rate performance is correspondingly improved, which
proves that the wettability of the sample material and mass
transfer rate of electrolyte is improved aer 5000 cycles. This is
consistent with the conclusion we can reach.

To evaluate applicability and practicability of the prepared
supercapacitor, Table 5 lists our results compared to previously
published carbon nanober electrode materials prepared by
electrospinning.

Compared with above results, our material showed equal, or
even better capacitive property. When the current density is 1 A
g�1, its specic capacitance reaches 216.9 F g�1. And aer 5000
charge and discharge at a current density of 2 A g�1, the specic
capacitance is not attenuated. Therefore, the prepared electrode
material has broad application prospects in practical
applications.

In addition, in order to study the effect of phosphorus
doping on the voltage window, we used a two-electrode system
to detect the voltage window of P-PCNFs-1.0 sample by cyclic
voltammetry in 1 M H2SO4 electrolyte. The result is shown in
Fig. 8, it is well known that the electrolysis voltage of water is
close to 1.23 V, so the test voltage of the carbon material elec-
trode in the aqueous electrolyte cannot exceed 1.2 V.50,51

However, it can be seen from the test results in Fig. 8 that as the
voltage range increases from 1.0 V to 1.6 V, there is still no
electrodes

citance (current density)
Specic capacitance retention
(cyclic times) References

A g�1) 97% (3000) 46
A g�1) 98% (10 000) 47

A g�1) 97% (3000) 48
1 A g�1) 96.4% (1000) 49
1 A g�1) No attenuation (5000) This work

This journal is © The Royal Society of Chemistry 2019
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obvious characteristic peak of water electrolysis under the
voltage window of 1.4 V. It is shown that the highest voltage
windows of the sample P-PCNFs-1.0 in the 1 M H2SO4 aqueous
electrolyte can reach 1.4 V, which is much higher than the
theoretical voltage (1.23 V) the water decomposition. The
broadening of the potential window is attributed to the fact that
the phosphorus-containing groups on the surface of the mate-
rial block unstable electrochemically active oxidation sites (e.g.,
quinone groups), minimizing the process of deterioration of the
capacitance associated with free oxygen atoms.
Conclusion

Phosphorus-doped porous carbon nanobers were successfully
prepared by electrospinning a precursor liquid containing PAN,
PEG and PPA, and subsequent heat treatment. By controlling
the amount of polyphosphoric acid, the sample P-PCNFs-1.0
with the best electrochemical performance was obtained. In
the sample three-electrode system, when the current density is
0.5 A g�1, the specic capacitance reaches 228.7 F g�1. When the
current density is 10 A g�1, the specic capacitance is 183 F g�1,
and the capacitance retention rate reaches 84.37%. Aer 5000
cycles of charging, the capacitance remains unchanged. At the
same time, in the two-electrode system, the material can with-
stand higher voltage intervals in the aqueous electrolyte,
increasing the power density and energy density of the material.
The excellent electrochemical properties of the material are
attributed to the proper pore structure and doping of phos-
phorus. They not only optimize the mass transfer rate of ions in
the electrolyte, but also greatly improve the surface wettability
and pseudocapacitive capacitance of the materials.
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