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A new copper(i) complex, [Cu(LC)(Ibu-phen)(H,0),](ClO,4), (LC: lidocaine, Ibu-phen: ibuprofen amide-
phenanthroline), was synthesized and characterized. The antioxidant activities of the free ligands and the
copper(i) complex were evaluated by in vitro experiments and theoretical calculations using density
functional theory (DFT). Structures of the ligand Ibu-phen and the complex were identified by *H and *C
NMR, FT-IR spectroscopies, mass spectrometry, thermogravimetric analysis and elemental analysis. The
antioxidant potentials of LC and lbu-phen ligands as well as copper(i) complex were also evaluated by
DPPH", ABTS'*, HO" essays and EPR spectroscopy. The experimental results show that the radical
scavenging activity (RSA) at various concentrations is decreased in the following order: copper(i)
complex > ascorbic acid > LC > lbu-phen. Structural and electronic properties of the studied
compounds were also analyzed by DFT approach at the M05-2X/6-311++g(2df,2p)//M05-2X/LanL2DZ
level of theory. ESP maps and NPA charge distributions show that the highly negative charge regions
found on the N and O heteroatoms make these sites more favorable to bind with the central copper ion.
Frontier orbital distributions of copper(i) complex indicate that HOMOs are mainly localized at Ibu-phen,
while its LUMOs are distributed at LC. Based on natural bond orbitals (NBO) analyses, Cu(i) ion plays as
electron acceptor in binding with the two ligands and two water molecules. Thermochemical properties
including bond dissociation enthalpy (BDE), ionization energy (IE), electron affinity (EA), proton affinity
(PA) characterizing three common antioxidant mechanisms i.e. hydrogen transfer (HT), single electron
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ligands and the copper(i) complex at the same level of theory. As a result, the higher EA and lower BDE

DOI: 10.1039/c8ra09763a and PA values obtained for copper(i) complex show that the complex shows higher antioxidant potential
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1 Introduction

Oxidative stress (OS) is a health-threatening process that is
involved, at least partially, in the development of several human
diseases including different types of atherosclerosis, inflam-

matory injuries, cardiovascular diseases, cancer,
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neurodegenerative diseases, and aging.'” It can be defined as
an imbalance between reactive oxygen species (ROS) and anti-
oxidant levels leading to cell damage and health problems. OS
provokes the production of ROS which are generally oxygen-
containing radical species such as superoxide anion radicals,
hydroxyl radicals or even hydrogen peroxide and singlet oxygen.
Reactive nitrogen species (RNS), reactive sulfur species (RSS)
could be also generated during oxidative stress. Antioxidants
moderate ROS levels in cells and can therefore attend as a type
of defensive medicine for human diseases caused by OS.

The transition metal ions can endorse an extensive range of
coordination numbers, geometries, and oxidation states in
comparison with other main group elements. The great poten-
tial value of finding or creating new antioxidant classes has
already encouraged researchers to study for the metal-derived
antioxidants. However, the antioxidant capacity of metal
complexes is still not evident. Indeed, several experimental data
in the literature reveals that flavonoid complexes are more

This journal is © The Royal Society of Chemistry 2019
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effective radical scavengers than free flavonoids.® The enhanced
activity was reported for the Fe(u), Fe(m), Cu(u) and Zn(u)
complexes of rutin, epicatechin and dihydroquercetin.”®

On the other hand, the role of flavonoids as pro-oxidant
agents, especially in cancer cell lines, has been the subject of
research for decades.®" The complexes of flavonoid
compounds with metals like Cu(u) or Fe(ur) have been shown to
act as pro-oxidant in forming hydroxyl radical. This trend can be
explained by the fact that metal coordination changes the redox
potential of ligand and thus affects on its antioxidant capacity.*
For example, luteolin (5,7,3/,4'-tetrahydroxyflavone) shows
better antioxidant activity than the luteolin-Fe(m) complex in
the DPPH" assay.'* Markovi¢ et al. evaluate the relevant inter-
actions of morin and quercetin, as well as their respective
iron(m) complexes with DPPH’, tempone, hydroxyl and super-
oxide radicals.” The authors observe that both quercetin and
morin present higher free radical scavenging activity than their
corresponding complexes with Fe(u) ion.

Thus, several questions rise from, first, the choice of metal
and linker to build the complex which promotes the enhanced
antioxidant activity and second, the type of mechanism which
favors the improvement of the antioxidant capacity of the metal
complex compared to that of their parent components. The lack
of an in-deep understanding about the general behavior of
metal complexes in this field prompts us to study the antioxi-
dant activity of metal complexes by both experimental and
theoretical ways.

The main objective of this work consists of synthesizing
a new copper(un) complex based on lidocaine and ibuprofen
amide-phenanthroline ligands which hopefully possesses
stronger radical scavenging activity in comparison with its
ligands, and evaluating their antioxidant activities through
experimental assays and computational chemistry approach. It
is noteworthy that while seeking for the development of met-
allodrugs as potent antioxidant agents, Cu(u) ion appears to us
as natural ideal metal candidate. The Cu() is a biologically
essential ion that includes positive redox potential in biological
electron transfer reactions. Copper complexes have revealed
significant performance in antioxidant studies.**" In addition,
lidocaine (LC) is a local anesthetic agent widely used in the
clinic therapy which is reported to act as a concentration
dependent antioxidant.”* Recently, the syntheses and biological
properties on the Ni(u), Co(u), Ru(u), Ir(m), Pt(u) and Pd(u)
complexes with lidocaine have been reported for traditional
chemotherapy and photodynamic therapy.”*?*” Ibuprofen is
a propionic acid derivative and nonsteroidal anti-inflammatory
drug with anti-inflammatory, analgesic and antipyretic effects.
Ibuprofen inhibits the activity of cyclo-oxygenase I and IT (COX-1
and COX-2), causing a reduced formation of precursors of
prostaglandins and thromboxanes.>****

Herein, we report the synthesis and characterization of a new
copper(u) complex based on lidocaine and ibuprofen amide-
phenanthroline agents. The antioxidant activity of the free
ligands and copper complex are experimentally evaluated by
DPPH’, ABTS'" and HO' radicals scavenging assays. A density
functional theory (DFT) study based on calculations of ther-
mochemical parameters such as bond dissociation enthalpy
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(BDE), ionization energy (IE), electron affinity (EA) and proton
affinity (PA) is also performed in the gas phase and water
solvent. These parameters allow providing more insight into its
free radical scavenging capacity and mechanism.

2 Methods

2.1. Materials and methods

The ligand Ibu-phen was synthesized under nitrogen atmo-
sphere by standard Schlenk techniques using as-received
analytical or HPLC grade solvents and reagents from commer-
cial suppliers.® 2,2'-Azino-bis(3-ethylbenzthiazoline-6-
sulphonic acid) (ABTS'Y) and 2,2-diphenyl-1-picrylhydrazyl
(DPPH’), ascorbic acid and lidocaine were purchased from
Sigma-Aldrich.

Fourier transform infrared (FT-IR) spectra were recorded on
a PerkinElmer Spectrum 400 (FT-IR/FT-NIR spectrometer) fitted
in the 650-3600 cm™* range. 'H, *C nuclear magnetic reso-
nance (NMR) spectra were recorded on a Bruker-400 MHz
spectrometer at ambient temperature in DMSO-d,. Electrospray
ionization (ESI) mass spectra were recorded on a Waters LCT
Premier XE spectrometer in positive- or negative-ion mode.
Elemental analyses were performed with an EA 3000 CHNS.
Electron paramagnetic resonance (EPR) spectra (X-band, 0.34 T,
9.5 GHz) were obtained with a Varian spectrometer, equipped
with a variable-temperature facility in the following conditions:
3385.0 Gs field, 20.0 mV power, 100.0 kHz modulation
frequency, 1.0 GS amplitude and 300 seconds sweep time. The g
values were determined using a DPPH standard. Electronic
absorption spectra were obtained on a Shimadzu Lambda-1600
UV-Vis spectrophotometer. Solid state UV-Vis diffused reflec-
tance spectra were recorded with a Shimadzu 2450 PC UV-Vis
recording spectrophotometer. Thermogravimetric analysis
(TGA) of the copper(ir) complex was obtained on a STA625
thermal analyzer from Rheometric Scientific by collecting 10 mg
of the compound in nitrogen atmosphere. The heating rate was

kept constant at 10 °C min™ .

2.2. Synthesis of ibuprofen amide-phenanthroline (Ibu-
phen)

To a solution of ibuprofen (0.661 g, 3.2 mmol) in DMF (10 mL)
was added N,N-diisopropylethylamine (DIEA) (1.251 g, 9.7
mmol). The mixture was cooled to 0 °C and treated with N-(3-
dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride
(EDC-HC]) (1.2 g, 6.5 mmol), 1-hydroxybenzotriazole hydrate
(HOBt-xH,0) (0.879 g, 6.5 mmol) and 1,10-phenanthrolin-5-
amine (0.957 g, 4.9 mmol). The reaction was stirred at room
temperature for 15 h under nitrogen. After completion, the
mixture was diluted with water (50 mL) and extracted with
dichloromethane (70 mL). The organic layer was dried with
sodium sulfate (Na,SO,) and concentrated in vacuum. The
resulting material was purified by silica gel column chroma-
tography (3% methanol/dichloromethane) to provide the
product as orange solids (1.058 g, 86% yield, 3.2 mmol). Anal.
calc. (%) for C,5H,5N;0 (383.1998): C, 78.30; H, 6.57; N, 10.96;
found (%): C, 78.22; H, 6.51; N, 10.90. TOF-MS: 384.2076 [M +
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HJ'. FT-IR: v 3219 (NH stretch), 1679 (C=0 stretch) cm *. 'H
NMR (DMSO-dg): 6 9.02 (s, 1H), 8.68 (m, 2H, H-Ar), 8.01 (m, 1H,
H-Ar), 7.69 (m, 1H, H-Ar), 7.17 (t, 2H, H-Ar, J = 5.0 Hz), 7.08 (t,
2H, H-Ar, ] = 5.0 Hz), 6.87 (s, 1H, H-Ar), 3.50 (q, 1H, H-6,] = 5.0
Hz), 2.36 (d, 2H, H-3,J = 10.0 Hz), 1.87 (m, 1H, H-2), 1.42 (d, 3H,
H-7, ] = 10.0 Hz), 0.90 (d, 6H, H-1, J = 10.0 Hz). *C NMR
(DMSO-dg): 6 174.9 (C=0), 160.0 (Ar), 152.2 (Ar), 148.1 (Ar),
142.3 (Ar), 136.0 (Ar), 133.1 (Ar), 129.9 (Ar), 128.3 (Ar), 125.7 (Ar),
123.9 (Ar), 122.1 (Ar), 44.6, 29.1, 24.3, 17.1.

2.3. Synthesis of the complex [Cu(LC)(Ibu-phen)(H,0),](ClO,),

A solution of Cu(Cl0O,),-6H,0 (0.37 g, 1 mmol) in acetonitrile (5
mL) was added to a solution of lidocaine (LC) (0.234 g, 1 mmol)
in acetonitrile (5 mL). The mixture was stirred for 10 min, then
a solution of ibuprofen amide-phenanthroline (Ibu-phen)
(0.383 g, 1 mmol) in dichloromethane (10 mL) was added
dropwise at 50 °C and the mixture was left stirring for 24 h. The
mixture was filtered and the filtrate was dried under vacuum
giving desired complex as a greenish-orange solid (660 mg, 72%
yield, 1 mmol). Anal. calc. (%) for C3oHs,Cl,CuN504, (916.3005):
C, 51.12; H, 5.61; N, 7.64; found (%): C, 51.07; H, 5.59; N, 7.59.
TOF-MS: 815.2722 [M — (ClO,)]". FT-IR: » 3356 (H,0), 3227 (NH
stretch), 1679, 1648 (C=O stretch), 1097 (ClO, ), 994
(Cloy ) em™.
Warning: perchlorate salts may be explosive.

2.4. DPPH’, ABTS' " and HO' radicals scavenging assay

2.4.1. DPPH'. The DPPH" assay was carried out using the
reported method with some modifications.*® To a 0.1 mM
solution of DPPH' in MeOH (2 mL), was added a 5-15 pM
solution of the inquired antioxidant in methanol (20 uL) and
the reaction mixture was shaken vigorously. The reduction of
DPPH" absorbance was followed by monitoring at 517 nm every
5 min for about 35 min. As a control, the absorbance of the
blank solution of DPPH" (2 mL) was also registered at 517 nm.

2.4.2. ABTS'". ABTS ' radical scavenging activity was based
on the reported method.* Briefly, ABTS powder (54.2 mg) was
dissolved in 10 mL of phosphate buffer (5 mM, pH 7.0). 1.0 g of
MnO, was added and the resulting solution was incubated at
room temperature for 30 min to generate a green color ABTS""
solution. The solution was centrifuged for 5 min and filtered to
remove all excess of MnO,. The filtrate was diluted with phos-
phate buffer until the absorbance of solution measured at
723 nm equal to 0.70 £+ 0.01 (final concentration 1 mM).
Different concentrations (5-15 uM) of the inquired antioxidant
(20 uL) were added to 2 mL of ABTS"" solution and incubated for
10 min at room temperature. The decrease of absorbance was
monitored at 734 nm after 10 min.

2.4.3. HO'. Hydroxyl radical (HO") scavenging activity was
investigated based on the method reported in literature.*
Briefly, different concentrations of (5-15 uM) of the inquired
antioxidant (20 pL) were added to the reaction mixture, which
contained 8 mM FeSO, (0.25 mL), 6 mM H,0, (0.4 mL), 0.25 mL
distilled water and 20 mM sodium salicylate (0.1 mL) (final
concentration 1 mM). Then the reaction system was incubated
at 37 °C for 1 h. Absorbance value was determined at 562 nm.
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For all assays, the radical scavenging activity (RSA) was
calculated using the following equation:

RSA (%) = (1 — i) x 100 (1)

Ao
where A, is the absorbance of the control, and A is the absor-
bance of test sample.

2.5. Electron paramagnetic resonance (EPR) measurements
for DPPH", ABTS"* and HO' radicals scavenging assay

EPR spin trapping were applied to detect the DPPH' radical
scavenging activity by LC, Ibu-phen, copper(n) complex and
ascorbic acid as previously described procedure.** A solution of
5 uM or 15 pM of inquired antioxidant in EtOH (60 pL) was
added to a 60 pM solution of DPPH in EtOH (60 pL). After
mixing vigorously for 10 s, the solution was transferred into
a 100 pL quartz capillary tube, and the spin adduct was
measured after 2 min.

For ABTS"" radicals scavenging assay, a solution of 5 uM or
15 uM of inquired antioxidant in EtOH (50 uL) was added to a 50
uM solution of ABTS™" in EtOH (50 pL). After mixing vigorously
for 5 s, the solution was transferred into a 100 puL quartz
capillary tube, and the spin adduct was measured after 3
minutes.

For HO" scavenging assay, the Fenton reagents were used to
test the ability of antioxidants.*® The reaction mixture contained
10 mM DMPO, 100 pM FeSO,, 10 mM H,O, without and with
the presence of each studied antioxidant. After stirring for 5 s,
50 pL of the mixture were transferred into a 100 pL disposal
capillary tube. The EPR spectrum was recorded after 2.5
minutes.

The radical scavenging activity (RSA) was calculated using
the following equation:

H
RSA (%) = (1 - —) x 100 (2)
H,
where H and H, were the height of the third resonance peak for
test sample and the control, respectively.

2.6. Statistical analyses

Obtained data are presented as averaged value + standard
deviation (SD). Statistical analyses were carried out using
ANOVA and a Student's t-test and the Kruskal-Wallis and
Mann-Whitney U-test (SPSS for Windows version 10.0). Differ-
ences were considered significant if p < 0.05.

3 Computational methods

All computational calculations were performed by employing
GAUSSIAN 09 RevE.01.*® Geometry optimization and frequency
calculations for LC, Ibu-phen and copper complex were inves-
tigated using M05-2X functional which has been suggested by
its authors for estimation of thermodynamic parameters.*” All
geometry optimizations were realized using the LanL2DZ basis
set®® without any symmetry constraints.* LanL2DZ is known as
an appropriate basis set to describe electronic structure for

This journal is © The Royal Society of Chemistry 2019
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compounds of transition metals. Calculations performing at
this basis set provided acceptable correlations with some
experimental results.*” The geometrical structures of copper(u)
complex with different spin configurations were examined and
the lowest energy one was kept for further analysis. The opti-
mization was followed by a single-point calculation at the M05-
2X/6-311++G(2df,2p) model chemistries.

Natural bond orbital (NBO) analyses were also performed in
order to provide more insight into electron density transfer
between the two ligands and Cu(u) ion. The extend of these
interactions was quantified by means of the second order
perturbation energy values (E®) estimated from the following
equation:**

2 (Fid)z
E® = —i E 3)
where & — ¢ was the energy difference between donor and
acceptor i and j NBO orbitals and Fjj is the Fock matrix element
between i and j NBO orbitals.

Natural population charges for heavy atoms including C, N, O
and Cu, electrostatic potential map and frontier orbitals distribu-
tions were also analysed for further prediction of local reactivity.

Three common mechanisms including hydrogen atom
transfer (HAT), single electron transfer (SET) and proton loss
(PL) were considered in this study to analyse the antioxidant
potential of the ligands and copper(u) complex.

e Hydrogen atom transfer (HAT):

Anti — H — (Anti)’ + H', (BDE) (R1)

e Single electron transfer (SET):

Anti — H — (Anti — H)'" + ¢, (IE) (R2)

Anti — H+e - (Anti — H)'", (EA) (R3)

e Proton loss (PL):

Anti — H — (Anti)” + H", (PA) (R4)

The thermochemical properties characterizing the above
mechanisms including bond dissociation enthalpy (BDE),
adiabatic ionization energy (IE) and electron affinity (EA) and
proton affinity (PA) were systematically calculated in the gas
phase at 298.15 K and 1 atm.

BDE = H(Anti') + H(H") — H(Anti — H) (4)
IE = H(Anti — H'") + H(e™) — H(Anti — H) (5)
EA = H(Anti — H) + H(e") — H(Anti — H' ") (6)

PA = H(Anti)” + HH") — H(Anti — H) (7)

where Hwas the total enthalpy of the studied species at 298.15 K
and is usually estimated from the following expression:

H= EO + ZPE + leans + Hrol + Hvib + RT, (8)

This journal is © The Royal Society of Chemistry 2019
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Hians, Hrot and H,j, were the translational, rotational, and
vibrational contributions to the enthalpy, respectively. E, was
the total energy at 0 K, and ZPE was the zero-point vibrational
energy.

The enthalpy value for the hydrogen atom (H') was calcu-
lated at the same level of theory. The enthalpies in the gas phase
of proton (H') being 0.00236 Hartree (5/2RT, the value of an
ideal gas) has widely been accepted.** The effect of water on the
thermochemical properties was also investigated based on
integral equation formalism of the polarizable continuum
model (IEF-PCM) at the same level of theory.** Solvation
enthalpies of proton and electron in water solvent were calcu-
lated using computational approach proposed by Markovic
et al. (2016)." When a proton or an electron is surrounded by
the water molecules, it will bind to the water molecule to form
a positive or a negative charged particle, H,O4," or HyOg01
respectively. These charged particles are then embedded in
a dielectric continuum. This computational approach has been
accepted and widely used in several works in the field of anti-
oxidant compounds.***® As a result, the enthalpies of proton
and electron in water were equal to —981.8 and —48.3 k] mol %,
respectively.

4 Results and discussion

4.1. Synthesis and characterization

The ligand ibuprofen amide-phenanthroline (Ibu-phen) was
synthetized using a slightly modified literature method.*®
Coupling of ibuprofen with 1,10-phenanthrolin-5-amine was
carried out wusing  N-(3-dimethylaminopropyl)-N'-ethyl-
carbodiimide hydrochloride (EDC-HCI), N,N-diisopropylethyl-
amine (DIEA) and 1-hydroxybenzotriazole hydrate (HOBt-xH,O)
in DMF via the procedure outlined in the Experimental section
(Scheme 1). Good yield and pure ligand of Ibu-phen are ob-
tained when the reaction is run at a temperature range of about
0 °C to room temperature. The ligand Ibu-phen is highly soluble
in methanol but insoluble in other solvents such as water,
benzene, toluene, acetone, ether, acetonitrile, dichloromethane
and chloroform. The success of the coupling reaction is
demonstrated in the "H NMR spectrum by the disappearance of
the signals of amino proton of the starting 1,10-phenanthrolin-
5-amine at 6.16 ppm and of COOH proton of ibuprofen at
12.21 ppm (Fig. S1 and S2 of the ESIt).*"**

The copper(i1) complex was obtained by reacting Cu(ClO,),-
-6H,0 with ibuprofen amide-phenanthroline (Ibu-phen) and
lidocaine (LC) in acetonitrile/dichloromethane (1 : 1) at 50 °C
(Scheme 1). The copper(n) complex is soluble in methanol,
DMF, DMSO, and water but insoluble in other organic solvents.
The mass spectrum of ligand Ibu-phen shows peaks of [M + H]"
centered at m/z 384.2076 and 385.1132 while in the spectrum of
copper complex we observed major isotopes of the fragment of
[M — (ClO,)]" at m/z 815.2722 and 817.2345 (Fig. S3 and S4 of the
ESIY). In the IR spectrum of copper complex, the »(C=0) bands
were shifted to lower frequencies at 1648 cm ™" (1662 cm ' in
LC) due to the coordination of oxygen atom to the copper ion.>*
The copper(n) complex shows broad »(H,0) band at 3356 cm™*

RSC Adv., 2019, 9, 3320-3335 | 3323
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Ibu-phen

(C10y),

Copper (II) complex

Scheme 1 Synthetic pathways of the ligand Ibu-phen and the cop-
per(i) complex. Reagents and conditions: (i) EDC, HOBt, DIEA, DMF,
0°Ctort., 15h, 86%; (ii) Cu(ClO4)2-6H,0, CH3sCN : CH,Cl,1: 1,50 °C,
24 h, 72%.

in coherence with the presence of coordinated water (Fig. S5-S7
of the ESIT).*

4.2. UV-Vis spectroscopy studies and stability in solution

The UV-Vis spectrum of the copper(u) complex in the solid state
(Fig. S8t) showed two bands at 408 nm and 702 nm. The
broadness of the band at 702 nm showed the three transitions
*Big — “Asg (1), “Big = “Byg (v2) and *Byg — *Eg (v3), due to
dynamic Jahn-Teller distortion and suggested the distorted
octahedral geometry (D4y,) around Cu(u) center.*® In the DMSO
solution, the absorbance bands were observed at the same
wavelength, that the copper(u)

indicating complex is
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structurally stable in DMSO solution and no significant change
in the coordination environment of the Cu(u) ion was observed.

In addition, the stability of copper(i) complex was monitored
over 72 h in DMSO solution at room temperature (Fig. S9t). The
results did not show any significant change in either the
intensity or the position of the absorption bands, which
confirmed the stability of the copper(n) complex in DMSO
solution.

4.3. Electron paramagnetic resonance (EPR) spectroscopy of
copper(n) complex

The X-band EPR spectra of the copper(u) complex in the solid
state and in DMSO solution were recorded at both 298 K and 77
K to clarify the coordination environment around Cu(u) center.
The EPR spectra of the copper(n) complex are displayed in
Fig. 1. The spectral parameters and their assignments are pre-
sented in Table 1.

The EPR spectra for both the solid sample and in DMSO
solution have the same features. The EPR spectrum of the
copper(u) complex both at 298 K or 77 K as solid or in DMSO
solution, shows the distorted octahedral symmetry center, for
which the evaluated parameters are: g > g, and A = 141 — 149
x 10~* cm™'. The obtained A value for copper(u) complex is
comparable with A found for six-coordinate complexes of dis-
torted octahedral geometries, such as the bis(pyridine-2,6-
diimine) Cu(u) complex (4 = 145 x 10°* em™ '), or the
[Cu(NOTA)]” complex (NOTA = 1,4,7-triazacyclononane-1,4,7-

(d)

(b)

(@)

T T T T T T
2600 2800 3000 3200 3400 3600

h (Gauss)
Fig.1 EPR spectra of the copper(i) complex in the solid state at 298 K

(a), in the solid state at 77 K (b), in DMSO solution at 298 K (c) and in
DMSO solution at 77 K (d).

This journal is © The Royal Society of Chemistry 2019


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c8ra09763a

Open Access Article. Published on 25 January 2019. Downloaded on 10/26/2025 3:54:05 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

Table 1 EPR spectral parameters of the copper(i) complex

Copper(i)

complex  Solid (298 K) Solid (77 K) DMSO (298 K) DMSO (77 K)
g 2.374 2.371 2.412 2.403

g, 2.092 2.088 2.098 2.095

A 148 142 149 141

e] 4.144 4.302 4.281 4.322

“ A values have 10 * em ' units. ” G = (g — 2.0023)/(g, — 2.0023).

triacetate) (4 = 149.5 x 10 * em™').>**> The g > g, > 2.0023
observed for the copper(un) complex is consistent with a cop-
per(n) (d°) ion in axial symmetry and the unpaired electron in
the d,._,» orbital.® It was reported that g values vary in the
ranges of 2.3-2.4 and 2.2-2.3 for complexes owning Cu-O and
Cu-N bonds, respectively.>**” Therefore, g values 2.37-2.41
found for our copper(u) complex are in agreement with both
Cu-0 and Cu-N bonds in this complex. A minor variation in the
point symmetry from octahedral geometry is observed for mixed
copper-nitrogen and copper-oxygen system.”” The calculated
geometric parameter G using the equation G = (g — 2.0023)/(g |
— 2.0023) for the copper(un) complex is higher than 4, this
predicts that the exchange interaction between the metal
centers is minor.*®

4.4. Thermal analysis

By using thermogravimetric analysis (TGA), we can get infor-
mation whether the water molecules are inside or outside the
inner coordination sphere of the central metal ion. The
temperature range at 90-140 °C corresponds to the weak
binding of water and region 150-220 °C corresponds to the
strong binding of water (or coordinated water molecules).*
Analysis of the TGA and differential thermogravimetric analysis
(DTG) curves of the copper(1) complex (Fig. 2) indicates a weight
loss of 3.94% (calcd 3.93%) at a temperature range 178-218 °C
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Fig. 2 TGA and DTG curves for copper(i) complex.
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(DTGmax = 201 °C) which corresponds to the removal of two
coordinate water molecules. A weight loss of 68.43% (calcd
68.40%) is observed in the temperature range 218-402 °C
(DTGmax = 364 °C) which suggests the elimination of two
ligands LC and Ibu-phen molecules. Further heating causes to
decompose with explosion at 462 °C (735.15 K). The explosion of
the complexes containing perchlorate anion during the thermal
decomposition was observed for other compounds such as
[Ca(NH;)6](ClO,)5, [Sr(OS(CHj),)6)(ClO,)2, [Mn(NH;)6](ClOy)s,
and [Ca(H,0)4](ClO,), that the temperature of explosion
changed from 540 K to above 700 K.**%*

4.5. Antioxidant activity

Oxidative stress results from an imbalance between two
processes, one leading to reactive radical production and the
other removing these species. Although these free radicals are
formed during normal cellular functions in the body, their
excess amount may play a crucial role in developing various
diseases including cancer and chronic inflammation. Antioxi-
dants can defense human health from reactive radicals and
decrease oxidative stress.

In this part we discuss the antioxidant activity of free ligands
and copper(u) complex evaluated in a series of in vitro assay
involving HO" radicals, DPPH" radicals and ABTS"" cation
radicals.*** The results are shown in the Fig. 3-5. The ICs,
values of all samples including two ligands, copper(u) complex
and ascorbic acid as a reference are summarized in the Table 2.

4.5.1. DPPH’ radical. The model of the scavenging of
DPPH' radicals is simple, rapid and this is considered as an
appropriate method to study the antioxidant property of
compounds. The DPPH'" radicals are generally stable except in

100 m Copper (II) complex
m LC
- - Ibu-phen
= 80} m  Ascorbic acid ]
=
)
O
©
2 60F
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V<
>0
© 40 |
)]
©
O
o 20}
©
a4
0
5.0 10.0 15.0

Concentration (M)
Fig. 3 Radical scavenging activity (RSA%) of DPPH". Comparison of

different concentrations of LC, lbu-phen, copper(i) complex and
ascorbic acid. Data are shown as means + SEM (n = 3).
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Fig. 4 Radical scavenging activity (RSA%) of ABTS'*. Comparison of
different concentrations of LC, Ibu-phen, copper(il) complex and
ascorbic acid. Data are shown as means + SEM (n = 3).
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Fig. 5 Radical scavenging activity (RSA%) of OH'. Comparison of
different concentrations of LC, Ibu-phen, copper(il) complex and
ascorbic acid. Data are shown as means + SEM (n = 3).

the presence of compounds capable of donating hydrogen
atoms, in which the radical sweep results a color change from
purple to yellow.**

In the DPPH" assay (0.1 mM), the ICs, (50% concentration of
inhibition for radical scavenging activity) values for LC, Ibu-
phen and copper(u) complex were found as 59.20, 63.20 and
1.21 pM, respectively. Under our reaction conditions ICs, value
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Table 2 In vitro antioxidant activity of the free ligands and copper(i)
complex

Radical scavenging activities” (ICso, LM)

Samples DPPH’ ABTS"" HO'
LC 59.20 £+ 0.10 24.20 £ 0.20 54.30 £ 0.10
Ibu-phen 63.20 £ 0.30 27.30 £ 0.10 57.60 £ 0.18
Copper(u) complex 1.21 £+ 0.21 2.92 + 0.10 4.05 + 0.05
Ascorbic acid 3.24 £ 0.10 3.84 £ 0.15 5.17 £ 0.20

% ICs (50% concentration of inhibition for radical scavenging activity).
Values are mean + SD of triplicates.

of ascorbic acid was 3.24 uM (Table 2). Free radical scavenging
activity (RSA) at various concentrations was decreased in the
following order: copper(u) complex > ascorbic acid > LC > Ibu-
phen (Fig. 3).

4.5.2. ABTS™ radical. 2,2'-Azino-bis-(3-
ethylbenzothiazoline-6-sulphonic acid) (ABTS'") is also a free
and stable radical cation. This radical is reactive towards most
antioxidants such as phenols, thiols or compounds that can
give a hydrogen atom or an electron. The ABTS"" test is usually
used to evaluate the antioxidant capacity of the biological fluids
and many pure compounds.

Under these conditions, the blue ABTS'" radical cation
becomes colorless on reduction. This radical cation absorbs
light at 734 nm."” In the ABTS"" assay (1 mM), the ICs, values for
LC, Ibu-phen, and Cu complex were found as 24.20, 27.30 and
2.92 uM, respectively. Under our reaction conditions, ICs, value
of ascorbic acid is 3.84 uM (Table 2). Thus, the RSA values at
various concentrations were decreased in the following order:
copper(u1) complex > ascorbic acid > LC > Ibu-phen (Fig. 4).

4.5.3. HO’ radical. Hydroxyl radical (HO') can damage
virtually all types of macromolecules such as carbohydrates,
nucleic acids, lipids and amino acids. Because of very short in
vivo half-life (approximately 10~° seconds), hydroxyl radical is
very dangerous species to the organism compared with other
free radicals. It attacks proteins, DNA, polyunsaturated fatty
acid in membranes and most biological molecules. Therefore,
the scavenging of this radical is one of the major aims of anti-
oxidant administration. Hydroxyl radical is known to be capable
of abstracting hydrogen atoms from membrane lipids and
brings about peroxide reaction of lipids.** The ICs, values of
HO'’ radical scavenging assay (1 mM) for LC, Ibu-phen, and Cu
complex were found as 54.30, 57.60 and 4.05 pM respectively.
Under the same conditions, ICs, value of ascorbic acid was 5.17
uM (Table 2). Thus, the RSA at various concentrations was
decreased in the same order as for the DPPH' and ABTS™":
copper(u1) complex > ascorbic acid > LC > Ibu-phen (Fig. 5).

Overall, the antioxidant activity of the free ligands and cop-
per(n) complex against the free radicals including DPPH’,
ABTS'" and HO' showed that the copper(m) complex displays
greater scavenging activity than the free ligands. Moreover, the
copper(i1) complex shows much better scavenging activity than
the standard antioxidant, ascorbic acid. Furthermore, the
antioxidant activity of the copper(ir) complex against the DPPH’
radical is better than ABTS™" and OH'" radicals and the trend is

This journal is © The Royal Society of Chemistry 2019
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Fig.6 EPR spectra of DPPH" radical in the absence and presence (top) of LC, lbu-phen, copper(i) complex and ascorbic acid at 5 (middle) and 15

uM (bottom) concentrations.

decreased in the following order: DPPH' > ABTS'" > HO'. The
low ICs, values obtained in the antioxidant assays confirm that
the copper(r) complex could be a considerable example for the
design of radical-quenching-based drugs.

The antioxidant activities of this copper complex against the
DPPH" and ABTS'' radicals are comparable with other copper
complexes based on mixed 1,10-phenanthroline and coumarine
ligands.®® The potent antioxidant activity of this copper(u)
complex is probably related to the use of the ibuprofen amide-
phenanthroline ligand, known as antioxidant agents, and the
coordination of these ligands to the copper center.

4.6. Electron paramagnetic resonance (EPR) analysis for
DPPH’, ABTS'* and HO' radicals scavenging assay

Antioxidant activities of LC, Ibu-phen, copper(un) complex, and
ascorbic acid were also tested for free radical sources by EPR
spin trapping technique. During the addition of copper
complex, the EPR signal is decreased as function of concen-
tration, and scavenging pattern is dose-dependent. The copper

complex and ascorbic acid scavenge DPPH" radical over about
91% and 89% at 15 uM, respectively, and the activity is
decreased in the following order: copper(ir) complex > ascorbic
acid > LC > Ibu-phen (Fig. 6).

Copper() complex also quenches ABTS'' radical and the
scavenging ratio is 77% at 15 uM that is comparable with
ascorbic acid, i.e. 69%, at the same concentration (Fig. 7).

Hydroxyl radicals generated in Fe*'/H,0, system are trapped
by DMPO forming spin adduct which can be detected by an EPR
spectrometer. The typical 1:2:2:1 EPR signal of the DMPO-
OH adduct is clearly observed (Fig. 8). The ESR results show that
copper(u1) complex and ascorbic acid suppress about 66% and
62% of the hydroxyl radical at 15 uM, respectively. Antioxidant
activity decreases in the following order: copper(u) complex >
ascorbic acid > LC > Ibu-phen (Fig. 8).

EPR studies indicate that copper complex is the most potent
scavenger of the DPPH", ABTS'" and HO' radicals compared
with ascorbic acid and free ligands. The scavenging activities of
the DPPH", ABTS'" and HO' radicals obtained by EPR spec-
troscopy are comparable with the results of UV-Vis study.

- A A
s — "\~ —\— J\r /\f

Ascorbic acid

Copper (II) complex LE

Ibu-phen

Fig.7 EPR spectra of ABTS* radical in the absence and presence (top) of LC, lbu-phen, copper(i) complex and ascorbic acid at 5 (middle) and 15

uM (bottom) concentrations.
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uM (bottom) concentrations.

4.7. Mechanism of DPPH’" radical scavenging assay by
copper complex

As the copper complex shows stronger radical scavenging
activity towards DPPH’ than towards ABTS'" or HO" radical, the
scavenging mechanism of DPPH" by copper(u) complex is
chosen to be studied in details. The DPPH" is characterized by
an absorbance at 514 nm by UV-Vis. By adding the copper
complex, the concentration of DPPH" decreases following by the
decrease of visible absorption band at 514 nm. Meanwhile, by
accepting one electron from copper(u) complex, the DPPH ™
anion is formed and shows the absorption peak around
431 nm.*”*® The intensity of the band at 431 nm increases as
a function of the copper complex concentration up to 12 pM
which demonstrates the anion form of DPPH (Fig. 9). In the
excess amount of copper(n) complex (14 to 16 uM), the band at
431 nm is disappeared due to the exchange of the anion form of
DPPH™ to DPPH-H. The DPPH-H is formed by accepting one
proton from the copper complex.***

This study suggests a two-step mechanism for the scav-
enging reaction of DPPH" by copper(un) complex including the
electron-accepting in the first and the proton-accepting in the
second step.

4.8. Computational study of antioxidant activity

4.8.1. Optimized structures and electronic properties.
Optimized geometries of copper(un) complex, Ibu-phen and LC
investigated at the M05-2X/LanL2DZ level of theory are shown
in Fig. 10. The Cu(u) ion is coordinated with the ligands by
distorted octahedral geometry in which both Ibu-phen and LC
act as bidentate ligands and two water molecules. The copper(u)
complex structure wasoptimized using different spin multi-
plicities from 2, 6 and 8 to evaluate influence of its spin states
on stabilization of the complex. As a result, the structure with
doublet states (multiplicity being 2) was obtained with the
lowest energy. Cartesians coordinates and molecular enthalpies

3328 | RSC Adv., 2019, 9, 3320-3335

of copper(u1) complex with three multiplicity values are resumed
in Table S1 of the ESL{

As can be seen in Fig. 10, Ibu-phen is coordinated to Cu(u)
ion through its two nitrogen atoms, i.e. N53 and N54, while LC
binds with the central cation via N56 and O55 atoms. The
atomic distances of N53-Cu94 and N54-Cu94 are equal to 2.03
and 2.09 A, while the atomic distances of N56-Cu94 and 055-
Cu94 are 1.99 and 2.13 A, respectively. Moreover, the Cu(u) ion
coordinates also with two water molecules with the distances of
098-Cu94 and 095-Cu94 equal to 2.26 and 2.38 A.

Molecular electrostatic potential consists in an efficient
approach to find the reactive sites of a molecule for electrophilic
and nucleophilic attacks.”””* The reactive site consists in

1.0 1 —— DPPH —— 10puM
— 4uM — 12 uM

6 UM 14 yM

0.8 1 — 8uM - —- 16uM

Absorbance

0 T T T T

400 450 500 550
Wavelength (nm)

Fig.9 UV-Vis spectral monitoring of reaction between DPPH" (60 pM)
and copper complex (4-16 pM) in methanol: DMSO (99.5: 0.5).
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Copper (ll) complex

Fig. 10 Optimized structures of copper(i) complex, Ibu-phen and LC ligands at the M05-2X/LanL2DZ level of theory.

partially charged regions of a molecule that have affinities for
interacting with charged particles. The ESP maps of Ibu-phen,
LC and copper(u) complex are displayed in Fig. 11A.

As can be observed in Fig. 11A, the most negative regions
expressed in red color are located at the heteroatoms of the
ligands, such as N53, N54 and O1 on Ibu-phen, or 055, N56 and
N57 on lidocaine. This observation is also confirmed by natural
population analysis (NPA) charges resumed in Table S2 of the
ESL

The highest occupied molecular orbital (HOMO) and the
lowest unoccupied molecular orbital (LUMO) are two of the
most important frontier orbitals which characterize the local
reactivity of the studied compounds.” The shapes of HOMO
and LUMO of Ibu-phen, LC and the copper(u) complex are
shown in Fig. 11B and C.

As observed in Fig. 11, the HOMO and LUMO for Ibu-phen
are all distributed across the phenanthroline moiety, while for
LC the HOMO is principally delocalized across the diethyl-
amino substituent and its LUMO is concentrated at the
phenyl ring. In case of the copper(i) complex, the HOMO is
mainly localized at the Ibu-phen ligand and while its LUMO is
distributed at the LC one. Moreover, the delocalized regions of
the complex are essentially found at the phenyl moieties of the
two ligands.

This journal is © The Royal Society of Chemistry 2019

4.8.2. Natural bond orbital (NBO) analysis. The natural
bond orbital of the copper(n) complex is also analyzed and the
obtained results are presented in Table S3 of the ESI.{ Gener-
ally, the Cu94 cation plays as an electron acceptor in coordi-
nating with the two ligands and two water molecules.

In fact, electron density is essentially transferred from the first
lone pair of electron on N53 atom, LP(1) N53, of Ibu-phen to the
unoccupied orbitals on copper such as LP*(5) Cu94, LP*(6) Cu94
and LP*(8) Cu94 with lower stabilization energies of 120.2, 49.6
and 52.7 k] mol ', respectively. Similarly, the electron density is
also donated from the first lone pair of electron from N54 atom,
LP(1) N54, to the vacant orbitals on copper with lower stabiliza-
tion energies from 37.1 to 98.9 k] mol .

Regardless of the electron transfer from LC ligand, the
electrons are donated from the ¢ orbital on the N56-C59 bond,
o(1) N56-C59, to the vacant orbital on Cu cation, LP*(9) Cu94,
with a stabilization energy of 237.1 k] mol™". The first electron
lone pairs located on N56 atom, LP(1) N56, are transferred to
unoccupied orbitals on Cu94 cation, LP*(5) Cu94, LP*(6) Cu94
and LP*(8) Cu94, with energy values from 35.9 to 73.8 k] mol .
Moreover, the electrons are also donated from the lone pairs of
electrons on 055 atom of LC, LP(1) O55 and LP(2) O55 and LP(3)
055, to the vacant orbitals on the Cu94 ion with lower stabili-
zation energies from 26.2 to 395.8 kJ mol .

RSC Adv., 2019, 9, 3320-3335 | 3329
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Two H,0 molecules which are attached to the central Cu(u)
ion also contribute their lone pairs of electrons to the vacant
orbitals of the metal. Indeed, the second lone pairs of electrons
on 095 atom, Ze. LP(2) 095, and 098 one, i.e. LP(2) 098, are
donated to LP*(9) Cu94 with lower stabilization energies of 81.3
and 844.9 kJ mol ', respectively. Thus, the existence of two
water molecules improves significantly the stabilization of the
copper(u) complex.

4.9. Characteristic thermochemical properties for
antioxidant activity

4.9.1. Hydrogen transfer (HT) mechanism. Generally,
antioxidant capacity of a compound via HT mechanism is
characterized by its bond dissociation enthalpy (BDE) property
(reaction (R1) and eqn (2)), the lower BDE value the higher
antioxidant capacity via HT mechanism.

The lowest BDE values for Ibu-phen, LC and copper(n)
complex calculated in the gas phase and in water solvent at the
MO05-2X/6-311++g(2df,2p)//M05-2X/LanL2DZ level of theory are
resumed in Table 3.

For Ibu-phen, the C6-H bond located beside the O1 hetero-
atom has the lowest BDE, i.e. 358.7 k] mol ' in the gas phase.
While for LC ligand the easiest H-atom donating site is found at
the C58-H bond with BDE value being 354.6 k] mol " in the gas
phase. The corresponding BDE values of the copper(1) complex
for the same positions on the two ligands are also calculated. As
a result, BDE values are equal to 701.3 and 686.9 k] mol* for
the C6-H and C58-H bonds, respectively. Moreover, the lowest
BDE value of copper(u) complex is found at the C60-H position
with value being 596.3 k] mol .

3330 | RSC Adv., 2019, 9, 3320-3335

(A) ESP maps, (B) HOMO and (C) LUMO distributions of Ibu-phen, LC ligands and copper(i) complex.

The same trend of activity is observed in water solvent with
considerable decrease of all BDE values. For example, BDEs
obtained in water at the C6-H position for Ibu-phen and cop-
per(n) complex increase from 360.0 to 459.8 k] mol ', respec-
tively. However, an inverse observation is noted for BDEs
obtained in water for C60-H position which are equal to 364.0
and 305.6 k] mol™" for LC ligand and copper(n) complex,
respectively.

Thus, the calculated data for C60-H position is in good
agreement with the experimental one obtained from DPPH’
essay which indicates that the radical scavenging activity of
copper(u) complex in the solvent is always higher than LC and
Ibu-phen (Fig. 2).

4.9.2. Single electron transfer (SET) mechanism. Table 4
represents ionization energy (IE) and electron affinity (EA)

Table 3 The lowest BDE values (kJ mol™) for Ibu-phen, LC and
copper(i) complex calculated at the M05-2X/6-311++g(2df,2p)//M05-
2X/LanL2DZ level of theory®

Bond dissociation enthalpy, BDE (k] mol ™)

Bond position  Ibu-phen LC Copper(n) complex
Ibu-C2-H 396.2

Ibu-C3-H 376.3

Tbu-C6-H 358.7 (360.0) 701.3 (459.8)
LC-C58-H 354.6 (339.6)  686.9 (350.5)
LC-C59-H 366.9

LC-C60-H 365.5 (364.0)  596.3 (305.6)

“Values in parentheses correspond to BDE values obtained in water
solvent.

This journal is © The Royal Society of Chemistry 2019
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Table 4 |E and EA (kJ mol™) for Ibu-phen, LC and copper(i) complex
calculated at the M05-2X/6-311++g(2df,2p)//M05-2X/LanL2DZ level
of theory”

Ibu-phen LC Copper (1) complex
IE (eV) 723.6 (551.3) 719.8 (500.7) 1105.7 (647.3)
EA (eV) 56.0 (188.4) 88.8 (52.8) 661.9 (278.6)

% Values in parentheses correspond to the results obtained in water
solvent.

values obtained for Ibu-phen, LC and copper(u) complex
calculated in the gas phase and in water solvent (reactions (R2),
(R3) and equations eqn (5) and (6)) at the MO05-2X/6-
311++g(2df,2p)//M05-2X/LanL2DZ level of theory.

As a result, IE and EA values in the gas phase for Ibu-phen
are equal to 723.6 and 56.0 k] mol *, respectively. Meanwhile,
these values for LC ligand are 719.8 and 88.8 kJ mol %,
respectively. The copper(un) complex has an increased IE value in
the gas phase, i.e. 1105.7 k] mol™", being 1.5-fold higher than
the one of two ligands, while its EA value, i.e. 661.9 k] mol ™, is
7- to 11-fold higher than the one of LC and Ibu-phen, respec-
tively. The considerably higher EA value of copper(un) complex by
compared with the ones of two ligands indicates its high anti-
oxidant activity via the electron-accepting action. Thus, the
antioxidant potential of the compounds can be classified in
descending order: copper(u) complex > LC > Ibu-phen. This
order is quite consistent with the results observed from ABTS'"
essay (Fig. 3). The same trend is also observed in water solvent
with the higher EA value of copper(n) complex, ie.
278.6 k] mol™", by compared with the values of Ibu-phene and
LC, i.e. 188.4 and 52.8 k] mol ™, respectively.

Adiabatic reaction enthalpy (AH) and Gibbs free energy (AG)
of SET reaction between the two ligands and copper(i1) complex
with different free radicals are also investigated. The electron-
donating/-accepting reactions between the potential antioxi-
dant (Anti) and free radicals (R’) may occur as follows:*

Anti + (R") = (Anti'"") + (R7) (R5)

Anti + (R") > (Anti'") + (R") (R6)

For reaction (R5), the adiabatic AH° and AG® values are
calculated as follows:

AI—I(c)lonor = [H(Anti.Jr) + H(Ri)] - [H(Antl) + H(R.)] (9)
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AGSonor = [G(Anti*™) + G(R7)] — [G(Anti) + G(R")]  (10)

Whereas for reaction (R6), the calculations are as follows:

AHjeeepior = [H(Anti*") + HR™)] — [H(Anti) + HR")] (1)

AGqeceptor = [G(Anti™) + GRM)] — [G(Anti) + GR")]  (12)

The free radicals considered for the above reactions include
HOO’, CH;00°’, HO', ABTS'" and DPPH'. The HOO" and
CH3;00" are chosen, because they are the simplest members of
the peroxyl radicals (ROO") family which represent moderate
reactivity and are suggested to be used for accurate prediction of
rate constants for free radical scavenging processes.” Whereas
the HO", ABTS'* and DPPH" radicals consist in the ones used in
the experimental antioxidant capacity essays.

The reaction enthalpies (AH®) and Gibbs free energies (AG®)
(in kJ mol ", at 298.15 K) for the electron-donating/-accepting
reactions ((R5) and (R6)) of the studied compounds and the
free radicals calculated in the gas phase and in water solvent are
all resumed in Tables 5 and 6, respectively.

On the basis of the results in Tables 5 and 6, it can be noted
that the electron-donating reactions in the gas phase for Ibu-
phen and LC are thermodynamically more favorable than the
electron-accepting ones with two-fold lower values of AH® and
AG°. For example, AH® of the reactions (R5) and (R6) between
HOO' and Ibu-phen increases from 632.2 to 1117.8 kJ mol
respectively, while AG° value increases from 628.4 to
1118.0 kJ mol ", respectively. However, for copper(i) complex,
similar AH® and AG® value are obtained for the same reactions.
Indeed, AH® and AG° values of reaction (R5) are equal to 1003.4
and 1004.3 kJ mol ', respectively, while the ones of reaction
(R6) are two-fold lower, 511.9 and 511.5 k] mol ™", in turn.

In water solvent, the reaction enthalpies and Gibbs free
energies are all strongly decreased because of the high solvation
enthalpy of electron. And, the same trend is also found in water
solvent with the higher AH® and AG° values of the electron-
accepting reaction (R5) than the ones of the electron-donating
reaction (R6). For example, the AH® value of reactions (R5)
and (R6) between copper(n) complex and ABTS™" in water
solvent increases from 264.1 to 353.7 k] mol ™, respectively
(Table 5). These results indicate the higher electron-accepting
capacity of the studied compounds by compared to their
electron-donating capacity which are coherent with the IE and
EA data presented in Table 4.

Table 5 Reaction enthalpies (AH®, kJ mol™?) at 298.15 K for the reactions (R5) and (R6) between different radicals (R*) and the potential anti-
oxidants (Anti) in the gas phase, calculated at the M05-2X/6-311++g(2df,2p)//M05-2X/LanL2DZ level of theory®

(R5): Anti + (R) — (Anti"") + (R7)

(R6): Anti + (R) — (Anti"") + (RY)

Ibu-phen LC Copper(ir) complex

Free radical Ibu-phen LC Copper (i) complex
HOO' 632.2 (200.0) 627.9 (149.3) 1003.4 (296.0)
CH,00° 623.1 (206.7) 618.8 (156.1) 994.3 (302.7)
HO' 565.9 (104.9) 561.7 (54.2) 937.2 (200.9)
ABTS™ 54.3 (168.1) 50.1 (117.4) 425.6 (264.1)
DPPH' 389.4 (129.2) 385.1 (78.5) 760.6 (225.2)

1117.8 (632.3) 1262.8 (767.9) 511.9 (542.1)
995.3 (559.2) 1140.3 (694.8) 389.4 (469.0)
1497.3 (977.8) 1642.3 (1113.4) 891.4 (887.6)
959.2 (443.9) 1104.1 (579.5) 353.2 (353.7)
632.3 (301.4) 777.3 (437.0) 26.4 (211.2)

“ Values in parentheses correspond to the results obtained in water solvent.
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Table 6 Gibbs free energy (AG®, kJ mol™) at 298.15 K for the reactions (R5) and (R6) between different radicals (R*) and the potential antioxidants
(Anti) in the gas phase, calculated at the M05-2X/6-311++g(2df,2p)//M05-2X/LanL2DZ level of theory”

(R5): Anti + (R") — (Anti"") + (R")

(R6): Anti + (R') — (Anti"") + (R")

Free radical Ibu-phen LC

Copper (i) complex

Ibu-phen LC Copper(u) complex

HOO’ 628.4 (196.8) 620.6 (146.2) 1004.3 (293.5)
CH;00° 621.2 (206.1) 613.5 (155.5) 995.0 (302.8)
HO' 563.0 (102.4) 555.2 (51.8) 936.7 (199.2)
ABTS™ 48.1 (163.3) 40.3 (112.7) 421.8 (260.0)
DPPH’ 384.2 (127.1) 376.4 (76.6) 757.9 (223.9)

1118.0 (627.4) 1267.4 (767.1) 511.5 (535.6)
995.5 (555.4) 1144.8 (695.1) 388.9 (463.6)
1496.7 (972.2) 1646.0 (1111.9) 890.1 (880.4)
960.1 (441.1) 1109.4 (580.8) 353.5(349.3)
629.7 (294.0) 779.0 (433.7) 23.1 (202.2)

% Values in parentheses correspond to the results obtained in water solvent.

Furthermore, the electron-donating ability of the three
studied compounds can be classified in descending order as
follows: LC = Ibu-phen > copper(i) complex. For example, AH’
values of LC, Ibu-phen and copper(n) complex for reaction (R5)
with DPPH’ radical in the gas phase are 385.1, 389.4 and
760.6 k] mol *, respectively, while AG® values are 376.4, 384.2
and 757.9 k] mol™!, in turn. The same trend is also found in
water solvent with AH® values of LC, Ibu-phen and copper(i)
complex are equal to 78.5,129.2 and 225.2 k] mol ", respectively
(Table 5). The corresponding AG® values are 76.6, 127.1 and
223.9 k] mol ™", respectively (Table 6).

Conversely, the electron-accepting capacity of the considered
compounds decreases in the following trend: copper(ir) complex
> Ibu-phen = LC. For example, AH’ values of reaction (R6) with
DPPH' radical in the gas phase are equal to 26.4, 632.3 and
777.3 k] mol™ ' for copper(un) complex, Ibu-phen and LC,
respectively (Table 5). Similarly, AG® values for the same reac-
tion increase from 23.1 k] mol ' for copper(un) complex to
629.7 k] mol ™! for Ibu-phen and 779.0 k] mol " for LC (Table 6).
The same results are obtained in water solvent.

This observation is consistent with the obtained results from
DPPH’, ABTS " and HO" assays (Fig. 3-5), and it agrees with the
conclusion obtained from UV-Vis study (Section 4.7.) in which
we proposed that copper(u) complex scavenges DPPH' radical
by accepting one electron and then one proton particle.

Moreover, in comparing the AH’ and AG° values of the
reactions between copper(u) complex with DPPH", ABTS"" and
HO'’ radicals in both the gas phase and water solvent, it can be
seen that the reaction feasibility trend decreases in the
following order: DPPH" > ABTS'" > HO". This result is also in
agreement with the experimental observations as discussed
above (Table 2).

Finally, the results resumed in Tables 5 and 6 show that the
electron transfer processes are strongly endogenic with highly
positive values of reaction enthalpies and Gibbs free energies.
While the electron-donating reactions (R5) are less endogenic
than the electron-accepting ones (R6) for Ibu-phen and LC, the
reaction (R6) for copper(un) complex is more endogenic than the
reaction (R5).

4.9.3.
the first step of the two-steps mechanisms including sequential

Proton loss (PL) mechanism. Proton loss consists in
proton loss electron transfer (SPLET) or proton coupled electron

transfer (PCET). The difference of these mechanisms with the
hydrogen transfer (HT) one is that one proton (H') and one

3332 | RSC Adv., 2019, 9, 3320-3335

electron (e™) are separately donated to free radical by different
channels, while a single entity (H') is transferred in HT mech-
anism.” The proton loss characterized by proton affinity (PA)
acts as the initiation reaction in these two-steps mechanisms.
For that reason, the PA values of the ligands as well as copper(u)
complex are finally calculated in this study. In principal, the
lower the PA value is, the higher the proton-donating ability of
the studied compound possesses.

Table 7 resumes proton affinity (PA) values calculated for LC,
Ibu-phen ligands and copper(u) complex in the gas phase and in
water solvent at the MO05-2X/6-311++g(2df,2p)//M05-2X/
LanL2DZ level of theory.

Generally, it can be seen that copper(u) complex possesses
more remarkable proton-donating ability than the two ligands
Ibu-phen and LC with lower PA values in both the gas phase and
water solvent. Indeed, the lowest PA values in the gas phase of
Ibu-phen found at the C12-H position is equal to
1398.5 k] mol !, whereas the PA of copper(i) complex calcu-
lated at the same position decreases to 1022.1 k] mol~'. The
lowest PA in the gas phase for LC ligand is equal to
1454.2 k] mol " obtained at the C65-H position. This value is
almost two times higher than the one of copper(u) complex
calculated at the same position, ie. 844.8 k] mol ', which
consists also in the easiest proton donating position. Similarly,
PA value calculated in water solvent at the C65-H position
decreases from 461.8 to 336.8 k] mol " for LC ligand and cop-
per(u) complex, respectively.

Table 7 PA value (kJ mol™) for LC, Ibu-phen ligands and copperii)
complex in the gas phase at the M05-2X/6-311++g(2df,2p)//M05-2X/
LanL2DZ level of theory, (values in parentheses correspond to PA
obtained in water solvent)

Proton affinity (kJ mol™")

Proton donating

position Ibu-phen LC Copper(ir) complex
Ibu-C11-H 1401.0 1014.6
Ibu-C12-H 1398.5 (249.3) 1022.1 (226.8)
Ibu-C6-H 1457.9

Ibu-C13-H 1401.0 1208.5
Ibu-N32-H 1400.0

LC-C65-H 1454.2 (461.8)  844.8 (336.8)
LC-C66-H 1456.0

LC-N57-H 1465.0

LC-C60-H 1460.6

LC-C56-H 1531.1 856.9

This journal is © The Royal Society of Chemistry 2019
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Thus, it is observed that the lowest PA value of LC, Ibu-phen
ligands and copper(u) complex is classified in decreasing order:
LC > Ibu-phen > copper(u) complex with the values being 1454.2,
1384.5 and 856.9 k] mol *, respectively in the gas phase, and
being 461.8, 249.3 and 226.8 k] mol ', respectively in water
solvent. This result shows that the antioxidant activity via the
proton-donating capacity of three studied compounds increases
in the inverse trend: LC < Ibu-phen < copper(un) complex.

5 Conclusion

A new mononuclear copper(u) complex, [Cu(LC)(Ibu-phen)(H,-
0),](Cl04), (LC: lidocaine, Ibu-phen: ibuprofen amide-
phenanthroline), has been synthesized and characterized in
order to study its antioxidant activity. The density functional
theory (DFT) modeling was also investigated to characterize the
structural and electronic properties of the ligands and copper(u)
complex in the gas phase and water solvent at the M05-2X/6-
311++g(2df,2p)//M05-2X/LanL2DZ level of theory. ESP maps,
NPA charge, HOMOs and LUMOs distributions and NBO anal-
yses were systematically analyzed. Finally, the free radical
scavenging activities in both media via hydrogen transfer (HT),
single electron transfer (SET) and proton loss (PL) mechanisms
were also computed by calculating the characterizing thermo-
chemical properties such as BDE, IE, EA and PA quantities. The
findings are multiple:

(i) Structural characterization by FT-IR spectroscopy,
elemental analysis, thermogravimetric analysis and mass
spectrometry shows that the ligands LC, Ibu-phen and two H,O
molecules coordinate with Cu(u) ion in distorted octahedral
geometry in which O and N atoms of the ligands are bound to
the copper ion. The structure of copper(n) complex and the
coordination environment around Cu(u) center were also
confirmed by EPR and UV-Vis spectroscopy.

(ii) Optimized structure of copper(u) complex and ligands are
calculated. ESP maps and NPA charge distributions analysis
demonstrate the highly negative charges found on the hetero-
atoms including N53, N54 atoms of Ibu-phen and 055 and N56
atoms of LC which favor the ligands to bind with the Cu94 ion.

(iii) Frontier molecular orbitals analyses indicate that HOMO
for copper(un) complex is mainly localized at Ibu-phen ligand,
while its LUMO is distributed at LC ligand. Moreover, the
delocalized regions of the complex are essentially found at the
phenyl moieties of two ligands. The natural bond orbital (NBO)
analyses also show the electron-accepting role of the central
Cu(u) ion in coordinating with the ligands and water molecules.

(iv) The EPR spin trapping technique was also used to eval-
uate the antioxidant activities of LC, Ibu-phen, copper(n)
complex and ascorbic acid for various free radicals including
DPPH’, ABTS " and HO'". The obtained results show that the free
radicals scavenging potential of the studied species is decreased
as follows: copper(i1) complex > ascorbic acid > LC > Ibu-phen.
All the DPPH", ABTS'" and HO" radicals scavenging assays
also confirm this trend.

(v) The UV-Vis spectroscopies were investigated for the
DPPH" scavenging assay by copper(u) complex to evaluate
thoroughly the reaction mechanism. The obtained results allow
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us to propose that copper(1) complex scavenges DPPH" radical
by a two-steps mechanism in which the radical accepts one
electron and then one proton particle from the copper complex.
This result is in agreement with computational calculations for
single electron transfer (SET) mechanism.

(vi) Bond dissociation enthalpy (BDE) values of the
compounds under study were calculated in the gas phase and
water solvent to evaluate HT mechanism. It can be seen that the
lowest BDE values of copper(u) complex in water solvent are
lower than the ones of Ibu-phen and LC. This result is in good
agreement with the experimental results from DPPH" antioxi-
dant assays.

(vii) Electron-donating and -accepting reactions of the
ligands and copper(u1) complex with some representative radi-
cals including HOO*, CH;00°, HO’, ABTS'" and DPPH" were
considered in both media. It is shown that copper(u) complex
displays considerably higher radical scavenging activity than
the ligands via its electron-accepting capacity. This activity
decreases in the following trend: copper(u) complex > Ibu-phen
=~ LC. Moreover, the reactivity of copper(n) complex with
different radicals decreases in the following order: DPPH" >
ABTS'" > HO'. This result agrees with the experimental
observations.

(viii) Proton affinity calculation demonstrates that the
proton loss ability of copper(i1) complex is considerably higher
than the one of Ibu-phen and LC ligands, which is coherent
with the experimental observation from DPPH' radical essays as
well as UV-Vis spectroscopies results.

The present experimental and computational studies may
hopefully contribute an effort towards the development of
metallodrugs as potent antioxidants agents based on copper(i)
complex.
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Abbreviations

LC Lidocaine

Ibu-phen Ibuprofen amide-phenanthroline

ROS Reactive oxygen species

ABTS 2,2'-Azinobis(3-ethylbenzthiazoline-6-sulphonic
acid)

DPPH 2,2-Diphenyl-1-picrylhydrazyl

DIEA N,N-Diisopropylethylamine

EDC-HCl  N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide
hydrochloride

HOBt-xH,0 1-Hydroxybenzotriazole hydrate

HOMO Highest occupied molecular orbital
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LUMO Lowest unoccupied molecular orbital

HT Hydrogen transfer

BDE Bond dissociation enthalpy

IE Ionization energy

EA Electron affinity

AH Adiabatic reaction enthalpy

AG Gibbs free energy

NBO Natural bond orbital

SET Single electron transfer

PL Proton loss

PA Proton affinity

ZPE Zero-point vibrational energy
EPR Electron paramagnetic resonance
TGA Thermogravimetric analysis

DTG Differential thermogravimetric analysis
caled Calculated
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