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1 – a layered oxide material for ion
exchange in aqueous media

Peiwen Lva and Feng Huang *ab

Layered perovskite oxides have attracted considerable attention due to their potential application in

photoelectricity and catalysis. The unique character of layered perovskites as ion-exchange materials

provides the possibility of creating structural diversity. A new ion-exchange reaction in aqueous solution

was observed in layered oxide gamma-Bi4V2O11. When employed in ion exchange, gamma-Bi4V2O11 is

converted into the scheelite-type phase (ABO4) by selectively discarding Aurivillius-type sheets, and is

also converted into the A2X3 phase by selectively dissolving perovskite-like layers. Metal-doped BiVO4

and Bi2O3 were obtained using such an ion-exchange reaction.
Recently, perovskite oxides and layered perovskite oxides have
been widely and thoroughly studied because of their structural
simplicity and exibility, good stability, and their promising
applications in solar cells, photocatalysts, and fuel cells, for
example.1–3 Perovskite oxides are a type of oxide with the
chemistry formula ABO3, where A is a large cation and B is
a smaller cation. The skeleton of perovskite oxides comprises
corner-sharing BO6 octahedra, where the B-site cation is located
in the center of an octahedron of oxygen anions with a coordi-
nation number of 6, and the A-site cation is located at the center
of eight corner-sharing BO6 octahedra. Layered perovskite
oxides are stacks of perovskite oxide layers interspersed with
other metal oxide layers. The layered perovskite oxides are well
known as The Dion–Jacobson phases, A0[An�1BnO3n+1]; the
Ruddlesden–Popper phases, A20[An�1BnO3n+1]; and the Auri-
villius phases, Bi2O2[An�1BnO3n+1].4–6 Unlike the perovskite
oxides, the layered perovskite oxides have the unique charac-
teristic of undergoing so chemical reactions, such as inter-
calating molecules into their interlayer space, ion-exchange
reactions, and exfoliation to nanosheets.6,7 Many so chemical
reactions of layered perovskites have been reported, with the
unique characteristic of replacing or modifying the interlayer
cations under mild conditions.7–9

BIMEVOX materials are a group of compounds obtained by
doping Bi4V2O11 with other metallic ions. These materials
exhibit high oxide ion conduction and have potential applica-
tion at the membrane for oxygen separation.10,11 Among BIME-
VOX materials, the gamma phase of Bi4V2O11 consists of
Aurivillius-type Bi2O2

2+ sheets alternating with perovskite-like
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oxygen-decient layers (VO3.5–0.5)
2�.12 Encouraged by the so

chemical reactions, and using the layered structure of Bi4V2O11

as templates, it is feasible to design perovskites that retain the
structural features of the precursor layered phases. Interest-
ingly, we found that it is possible for Bi4V2O11 to be converted by
so chemical reactions. Moreover, the compound is converted
in alkaline solution, and the high crystal symmetry is inherited
from the parent compound. We believed that this approach
would provide a rational route to the design of materials with
high symmetry at high temperatures, using so chemical
reactions at room temperature.

Gamma-Bi4V2O11 is synthesized by a standard solid-state
reaction. Bi4V2O11 possess three polymorphs: alpha, beta, and
gamma. The phase-transition temperature of gamma-Bi4V2O11

is 840 K (ref. 13). Gamma-Bi4V2O11 can be synthesized by
quenching in liquid nitrogen aer sintering at 1073 K for 48 h or
doping with a transition metal to stabilize the high-temperature
phase. Gamma-Bi4V2O11 constituted with Aurivillius-type
Bi2O2

2+ sheets alternating with perovskite-like oxygen de-
cient layers (VO3.5–0.5)

2�. The X-ray diffraction (XRD) pattern of
gamma-Bi4V2O11 is shown in Fig. 1.

Inspired by the ion-exchange mechanism in layered perov-
skites, in which the Ruddlesden–Popper phases, Dion–Jacobson
phases, and Aurivillius phases can be inter-converted,6 we
conjectured that the interlayer cations in the layered structure
of gamma-Bi4V2O11 have the potential to be replaced. Aer ion
exchange with protons (0.6 M HNO3), gamma-Bi4V2O11 is con-
verted into a red powder. The red powder is indexed as the space
group I21/a, with cell parameters of a ¼ 5.1950, b ¼ 11.701, c ¼
5.0920, and beta ¼ 90.3800. These cell parameters are highly
consistent with BiVO4.14 However, according to the structure of
gamma-Bi4V2O11, which consists of Bi2O2

2+ sheets and (VO3.5–

0.5)
2� layers, the sheets of Bi2O2

2+ are thought to be removed in
the ion exchange. Thus, the overall reaction could be repre-
sented as follows:
This journal is © The Royal Society of Chemistry 2019
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Fig. 1 XRD pattern of (a) gamma-Bi4V2O11, (b) BiVO4, and (c) Bi2O3

converted from gamma-Bi4V2O11, (d) the product of a solid-state
reaction between BiVO4 and Bi2O3 converted from gamma-Bi4V2O11.
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(Bi2O2)2(VO3.5)2 + 2HNO3 / V2O5 + 2H2O

When examining the structure of gamma-Bi4V2O11, we nd
that there are two Wyckoff positions for the Bi-atom: the 4e and
16m positions, respectively. Among the Bi2O2

2+ sheets, the Bi-
atom at the 4e position is connected to the oxygen atom in
the sheets with a bond length of 2.3149 Å.15 The distance
between the Bi-atom (4e) and the oxygen atoms in the (VO3.5–

0.5)
2� layers is as far as 2.7699 Å, which deviates from the typical

Bi–O bond length.16 Thus, the Bi-atom at the 4e position and the
oxygen atom in the sheets can be regarded as an integral part of
the Bi2O2

2+ sheets. For the Bi-atom at the 16m position, the
distance between the bismuth and the oxygen atom in the
Bi2O2

2+ sheets is 2.6005 Å. Meanwhile, the Bi-atom (16m)
connects to the oxygen atoms in the (VO3.5–0.5)

2� layers with
a bond length of 2.4193 Å. Compared with Bi-atoms at the 4e
position, the Bi-atom at the 16m position prefers connecting
(VO3.5–0.5)

2� layers to Bi2O2
2+ sheets. We believe the different

Wyckoff positions for the Bi-atom leads to different behaviors
when extracting Bi2O2

2+ sheets in acidic solution. Consequently,
BiVO4 nanosheets, shown in Fig. 2, are obtained aer ion
exchange in acid solution.
Fig. 2 Transmission electron microscopy (TEM) image (a) and atomic
force microscopy (AFM) image (b) of BiVO4 nanosheets.

This journal is © The Royal Society of Chemistry 2019
Traditional ion exchange oen occurs under acidic condi-
tions or through solid-state reactions with alkali or BiOx at
elevated temperatures. Interestingly, we nd that the layered
structure of gamma-Bi4V2O11 is not only convertible under
acidic conditions, but also in alkali solution. Aer reaction with
20 M KOH solution at room temperature, gamma-Bi4V2O11 was
converted to a light green powder. The powder was identied
with XRD, and was composed of the alpha phase of Bi2O3 and
a small fraction of the gamma phase of Bi2O3. Consistent with
BiVO4 leached from the acid treatment of gamma-Bi4V2O11,
Bi2O3, which can be regarded as perovskite-like layers (VO3.5–

0.5)
2�, along with partial bismuth was removed from the layer

structure. We believe that the Bi2O2
2� layers which lacked MOx

octahedra would keep growing under a high concentration of
alkaline solution, which is regarded as a minimizer, and boost
the crystal growth of Bi2O3. In this respect, most of the Bi2O2

2+

layers leached from gamma-Bi4V2O11 kept growing in the alka-
line solution and formed the thermodynamically stable phase –
alpha Bi2O3. As a result of crystal growth, the scanning electron
microscope (SEM) image of Bi2O3 in Fig. 3 shows the micro-
morphology of a single crystal.

The structural evolution is demonstrated in Fig. 4, and the
overall reaction is:

Bi2O3ðBiVO4Þ2 ��!
HNO3

2BiVO4

Bi2O3ðBiVO4Þ2 �!
KOH

Bi2O3

Considering the structural evolution and the overall reac-
tion, the reaction could form a closed loop, as shown in Fig. 5.
The Bi2O3 and BiVO4 are obtained by ion exchange from
gamma-Bi4V2O11, introducing further dopant, and form
gamma-Bi4V2O11, again by solid-state reaction:

2BiVO4 þ Bi2O3 !D Bi4V2O11
Fig. 3 SEM image of a Bi2O3 single crystal prepared via the ion-
exchange mechanism.

RSC Adv., 2019, 9, 8650–8653 | 8651
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Fig. 4 Structural evolution of gamma-Bi4V2O11.

Fig. 5 Toolbox of metal-doped Bi2O3 and BiVO4 derived from
gamma-Bi4V2O11.

Fig. 7 Introducing dopant into BiVO4 nanosheets by the modified
two-step reaction.
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ð2� yÞBiVO4 þ ð1� 0:5xþ 0:5yÞBi2O3 þ dMOx !D

Bi4�xV2�yMdO11

Regarding the large solid solution regions of metal-doped
Bi4V2O11 and the availability of most cations in the periodic
table,17,18 such a toolbox could construct a diverse set of struc-
tural architectures, with certain specic morphologies.

Moreover, the toolbox provides the possibility to design
BiVO4 and Bi2O3 with dopants exceeding the equilibrium solid
Fig. 6 UV-vis absorption spectra of metal-doped BiVO4.

8652 | RSC Adv., 2019, 9, 8650–8653
solubility. We rst doped Mn into BiVO4 and tuned the doping
level at a wide range from 0 to 18% (mole ratio of Mn) by the
modied two-step reaction shown in Fig. 7. Moreover, titanium-
doped BiVO4 was also realized. Accordingly, many transition
metal-doped BiVO4 materials were available by the two-step
reaction, which could be employed to insert other elements to
trigger various capabilities in the BiVO4 mother compound.
Fig. 6 shows the UV-vis absorption spectra of metal-doped
BiVO4. The bandgap as well as the band structure could be
modied.
Conclusions

In summary, gamma-Bi4V2O11 could be directly converted into
the scheelite-type phase (ABO4) by selectively discarding
Aurivillius-type sheets. At the same time, gamma-Bi4V2O11

could be converted into the A2X3 phase by selectively dissolving
the perovskite-like layers. This ion-exchange reaction, along
with a solid-state reaction, formed a closed loop and enabled
the formation of a diverse array of structural architectures with
certain specic morphologies.
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