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Machine learning algorithms enhance the
specificity of cancer biomarker detection using
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Specificity is a challenge in liquid biopsy and early diagnosis of various diseases. There are only a few
biomarkers that have been approved for use in cancer diagnostics; however, these biomarkers suffer
from a lack of high specificity. Moreover, determining the exact type of disorder for patients with positive

liquid biopsy tests is difficult, especially when the aberrant expression of one single biomarker can be

found in various other disorders. In this study, a SERS-based protein biomarker detection platform in
a microfluidic chip and two machine learning algorithms (K-nearest neighbor and classification tree) are
used to improve the reproducibility and specificity of the SERS-based liquid biopsy assay. Applying
machine learning algorithms to the analysis of the expression level data of 5 protein biomarkers (CA19-9,
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HE4, MUC4, MMP7, and mesothelin) in pancreatic cancer patients, ovarian cancer patients, pancreatitis

patients, and healthy individuals improves the chance of recognition for one specific disorder among the
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1. Introduction

Early diagnosis would significantly decrease the mortality from
cancer prior to the onset of metastasis with removal surgery or
even at the early initiation of metastasis with current common
therapies such as chemotherapy and cytotoxic drugs.' Liquid
biopsy is an emerging non-invasive diagnosis approach which
can be used as an inexpensive early detection tool and an
alternative to cumbersome imaging and tissue biopsy tech-
niques.>® The high cost and invasive nature of conventional
tissue biopsies prevent them from being standard screening
tests for normal adults. Recent studies demonstrated that liquid
biopsies have potential to diagnose adenovirus infection,” lung
cancer,® breast cancer,’ lung cancer,® breast cancer® and ovarian
cancer (OVC).*
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aforementioned diseases with overlapping protein biomarker changes. Our results demonstrate
a convenient but highly specific approach for cancer diagnostics using serum samples.

One of the major challenges that bottleneck the broad
applications of the liquid biopsy in cancer screening is the lack
of specificity. So far, only a few protein biomarkers have been
approved by the FDA for use in cancer diagnostics. However,
these biomarkers are often non-specific to a certain type of
cancer. For example, CA19-9 is the only validated serum
biomarker for pancreatic cancer (PC). However, CA19-9 also
elevates in patients with OVC'" and chronic pancreatitis.'?
Similarly, human epididymis protein 4 (HE4), an approved
serum biomarker for OVC,">" is also overexpressed in patients
with PC,"*'® endometrial cancer,”” and lung cancer.'®"
MMP-7, 22> MUC-4 *** and mesothelin**?*® are some other
examples of potential biomarkers for PC have also been iden-
tified as potential biomarkers for OVC.>° Thus, relying on
a single biomarker for cancer diagnostics has limited success.

Current strategies to improve the specificity of liquid biopsy
is to detect various types of biomarkers not limited to proteins,
but also including microRNAs, circulating tumor DNA, etc.?**"
Although this approach significantly improves the detection
specificity, multiple detection methods such as immunoassays
and PCR are required, limiting its application in resource-
limited settings.

We recently reported a Surface Enhanced Raman Spectros-
copy (SERS)-based immunoassay for detecting several
biomarkers of PC in sera.*” SERS can provide intrinsic finger-
print information of samples with high sensitivity.** The SERS
technique has evolved as one of the most suitable candidates
for the multiplex detection,*** due to the sharp and narrow
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spectra and multiple signatures of Raman spectra.*® SERS has
been widely used for the detection of cancer biomarkers.?”**
Although SERS is a promising way for biomarker detection,
a quantitative assessment of SERS is difficult, partially due to
the poor reproducibility.*** This is because SERS-based
immunoassays using conventional immobilization of func-
tionalized gold particles (NPs) are often associated with tech-
nical issues such as the inhomogeneous distribution of NPs on
substrates during multiple manual washing steps.*’ It has been
suggested that a highly sensitive and reproducible SERS-based
analysis can be addressed if a continuous flow and homoge-
neous mixing conditions are maintained.*

In this work, we reported a SERS-base multiplex protein
biomarker detection platform in a microfluidic chip to detect
several protein biomarkers of OVC, PC, and pancreatitis (CA19-
9, HE4, MUC4, MMP7, and mesothelin). The microfluidic
platform significantly improved the reproducibility of the assay,
and multiplex detection can improve the specificity for cancer
detection. We further employed machine learning algorithms to
predict the type of disease and find critical biomarkers among
multiple biomarkers to distinguish between diseases with
similar biomarkers (PC, OVC, and pancreatitis). Decision tree
and K nearest neighbor classification methods are used in this
analysis. Together, we demonstrated a convenient but highly
specific approach for cancer diagnostics using serum samples.

2. Experimental details
2.1 Reagent

Gold nanoshells (660 nm resonant, 151 nm diameter, 3.7 x 10*°
particles per mL and 800 nm resonant), was purchased from
NanoComposix. Sodium chloride, StartingBlock, and borate
buffer (50 mM) were obtained from ThermoFisher Scientific.
Dithiobis-(succinimidyl propionate) (DSP), dimethylsulfoxide
(DMSO), 4-nitrobenzenethiol (4-NBT), acetonitrile, phosphate
buffered saline (PBS), and bovine serum albumin (BSA) were
acquired from Sigma Aldrich.

In our microfluidic SERS-based immunoassay, five different
sets of monoclonal antibodies were used to modify the capture
substrate and extrinsic Raman labels (ERLs). HE4 antibody was
purchased from Proteintech, anti-mesothelin antibody and
monoclonal anti-MUC4 were obtained from Abcam, lyophilized
MMP7 mAb was purchased from R&D Systems. The CA19-9
antibody was purchased from LifeSpan Bioscience.

2.2 Preparation of ERL

The preparation of antibody-conjugated ERLs has been
described previously® and also is illustrated in Fig. 1. Specifi-
cally, modified gold nanoshell as ERL is exploited to provide
more intense Raman signal and immunopositivity. In this
paper, gold particles were modified with two different thiols,
DSP and 4-NBT. DSP has both disulfide and succinimidyl
functionalities for chemisorption onto the gold and facile
covalent binding of antibodies to the gold particles and
substrate; however, DSP does not show intrinsically intense
Raman signal. 4-NBT, on the other hand, has been used to
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Fig. 1 A SERS-based immunoassay for biomarker quantification: (I)
functionalizing gold substrate with thiol and antibody; (II) capturing
desired antigens from the serum; (1) Raman signal is weak without ERL
(IV) loading antibody-conjugated ERL to enhance Raman signal, gold
nanoparticles were modified with antibody and Raman reporter.

provide intense Raman signal due to aryl nitro group with an
intrinsically strong Raman active vibrational mode. 4-NBT also
contains a disulfide group for spontaneous chemisorption to
the gold particles.** Preparation of ERLs is described as follows:
1.0 mL suspension of gold nanoshells, 40 pL of 50 mM borate
buffer, 2.0 uL of 1.0 mM DSP in DMSO and 8.0 pL of 1.0 mM 4-
NBT solution in acetonitrile were mixed and left to react for 8 h.
To discard excess thiols, the suspension was centrifuged at
2000g for 10 min, and the supernatant was removed with
a syringe. Gold nanoshells were resuspended in 2.0 mM borate
buffer. ERL preparation was continued by adding 20 pg of
MMP7, MUC4, HE4, Mesothelin or CA19-9 primary antibodies
to the suspension and incubating for 16 h at 4 °C. Next, 100 pL
of 10% BSA was added to the suspension for stabilizing the
suspension and blocking nonspecific binding sites and
unreacted succinimidyl for 8 hours. After interaction between
ERL and blocking buffer, the solution needs to be rinsed three
times. For the rinsing process, the suspension was centrifuged,
and after decanting the clear supernatant, the loose red sedi-
ment was resuspended in 1.0 mL of 2.0 mM borate buffer
containing 1% BSA. The triple-rinsed ERL pellet was then
resuspended in 0.5 mL of 2.0 mM borate buffer containing 1%
BSA to have a final solution with the desired concentration of
gold nanoparticles. Finally, the suspension was modified with
50 pL of 10% NaCl for stabilization and then passed through
a 0.22 um syringe filter to remove any large aggregate.

2.3 Functionalizing capture substrate and microfluidic
immunoassay procedures

The optimization of ERL's Raman signal has been described
previously.*> We systematically examined the effects of gold
particle size, the gap distance between the immobilized particle
and the underlying substrate, and substrate materials on the
amplification of Raman signals and demonstrated that immo-
bilization of functionalized gold nanoshells with a resonance
wavelength of 660 nm on the gold-coated silicon substrate leads
to a significant improvement of SERS signals. Thus, we will use
gold nanoshells with a resonant wavelength of 660 nm coupled
with the gold-coated silicon substrate in our following studies.

This journal is © The Royal Society of Chemistry 2019
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As shown in Fig. 2, the substrate was immersed in 1 mM DSP
in ethanol for 10 h and then rinsed with ethanol and dried under
a stream of air. As a result, a layer of DSP is formed on the gold
substrate. The microfluidic method is used to provide on-chip
flow with sequential injections. Polydimethylsiloxane (PDMS)
replica molding from a 3D printed mold was used to fabricate
a microfluidic device. PDMS stamps were fabricated by pouring
a 10 : 1 (w/w) mixture of Sylgard 184 elastomer and curing agent
and mixture were cured for 1 h at 80 °C. Patterned PDMS was
then attached to the DSP coated gold substrate. Capture
addresses were filled with 20 uL, 100 pg mL ™" antibody as the
first injection. DSP coated substrate was then reacted with the
antibody for 6 h. Thus, a capture antibodies layer was formed by
attaching to succinimidyl ester of DSP on the substrate. Antibody
was then rinsed by injection of 10 mM PBS. Next, 10 pL of Star-
tingBlock blocking buffer was injected to each address to react
for 10 h; then the capture substrates were ready to use.

After ERL and capture substrates functionalization, the
substrates should be loaded with samples. 10 uL of undiluted
clinical samples sera were injected in the device and after 6 h
incubation was rinsed with buffer (2 mM borate, 150 mM NaCl).

Captured antigens were then labelled by injecting addresses
with 10 pL of related ERL suspension for 10 h (Fig. 2). Finally,
the substrates were rinsed with buffer (2 mM borate, 150 mM
NaCl) and analyzed by the Raman device.

2.4 SERS readout instrumentation

All the measurements and Raman spectra collection were per-
formed with portable BWS415 i-Raman from B&W TEK Co. The
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incident laser light was focused to 85 pm spot size on the
substrate normal incidence. The working distance is 5.9 mm.
The light source has a power of 499.95 mW, and an excitation
wavelength of 785 nm and the same objective was used to
collect the scattered radiation. The antigen concentration was
quantified using (v4(NO,)) of 4-NBT intensity at the 1336 cm ™.
For reproducibility, three addresses were measured for each
concentration and total of 10 readouts on each sample's
biomarker.

2.5 Patient sample collection and samples characteristics

Under an IRB approved protocol, patients with pancreatic
cancer, benign pancreatic disease, and normal control patients
were identified from the UMass Memorial Medical Center
Chemotherapy Infusion Center and Gastroenterology Clinics.
Patients were identified from a review of the weekly schedules,
and consecutive patients were enrolled to avoid bias. Patient
gender, age, and clinical samples characteristics are shown in
Table 1. Sera samples (4 mL serum per patient) were collected
and immediately processed/frozen for analysis. Five ovarian
cancer samples were purchased from Innovative Research.

3. Results and discussion
3.1 Microfluidic and SERS signal

To investigate the effect of microfluidic approach on the
reproducibility of the Raman signal, CA19-9 in serum samples
of PC/pancreatitis patients and healthy individuals were detec-
ted, and the Raman intensities obtained from the on-chip assay
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Fig. 2 A microfluidic SERS-based immunoassay approach for the multiplex detection of CA19-9, HE4, mesothelin, MMP7 and MUCA4 levels in
serum samples (a) PDMS replica molding from a 3D printed mold was used to fabricate a microfluidic device. PDMS replicated with one closed
and open surface. (b) Patterned PDMS is attached to gold coated microscope slide. (c) 10 pL, 100 ung mL™! antibodies were loaded in to the
capture addresses, the addresses were then exposed with blocking buffer (d) serum samples and (e) ERL. (f) Finally, Raman signals from 10
random positions were collected from each capture address.

This journal is © The Royal Society of Chemistry 2019 RSC Adv., 2019, 9, 1859-1868 | 1861
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Table 1 Clinical sample characteristics
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Serum sample Sex/age Sample characteristics

PC #1 F/38 Metastatic pancreatic adenocarcinoma

PC #2 F/58 Metastatic pancreatic adenocarcinoma

PC #3 M/61 Metastatic pancreatic adenocarcinoma

PC #4 F/88 Locally advanced pancreatic cancer

PC #5 M/57 Metastatic pancreatic adenocarcinoma
Pancreatitis #1 M/41 Acute pancreatitis-gallstone disease
Pancreatitis #2 F/55 Chronic pancreatitis-autoimmune
Pancreatitis #3 M/61 Chronic pancreatitis-alcohol related
Pancreatitis #4 F/43 Chronic pancreatitis-hereditary, cystic fibrosis gene mutation
Pancreatitis #5 M/55 Chronic pancreatitis-alcohol related

OVC #1 F/57 Endometrioid adenocarcinoma of the ovary
OVC #2 F/59 Adenocarcinoma, invasive of the ovary

OVC #3 F/62 Serous carcinoma of the ovary

OVC #4 F/50 Adenocarcinoma, mucinous type of the ovary
OVC #5 F/59 Endometrioid carcinoma of the ovary
Control M : F 3 :2/age 53-75, average 62

is compared with conventional assay using either a handheld
Raman probe or a Raman microscope (Fig. 3a). Notably, the
measurement variation of the microfluidic assay reduced to
about 50% of the variation of the conventional assays (Fig. 3b).
For reproducibility, each microfluidic unit contained three
addresses to capture one single biomarker from one serum
sample. Thus, for each serum sample (including control, PC,
ovarian cancer, and pancreatitis), five microfluidic units were
used to detect five different biomarkers (CA19-9, HE4, meso-
thelin, MMP7, and MUC4). Total of 10 Raman signals were
collected from each microfluidic unit.

3.2 Detection of ovarian and pancreatic cancer biomarkers
in patients samples

In our previous work, we have established the standard curve by
measuring the Raman intensities using pooled human sera
spiked with different concentration of proteins.** We further
used microfluidic SERS-based immunoassay to detect five
potential biomarkers (CA19-9, HE4, mesothelin, MMP7, MUCA4)
from a total of 20 sera samples including five from normal
individuals, five from patients with various types of pancreatitis
but not PC, five from PC patients and five from ovarian cancer
patients. Raman spectra of five selected biomarkers in clinical
sera samples are shown in Fig. 4 and ESI Fig. 1.}
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Fig. 3 (a) Raman intensity obtained using different approaches. (b)

Coefficient of variation (CV) of different approaches, which is calcu-
lated by the ratio of the standard deviation to the mean.
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It appears that CA19-9 is the most sensitive biomarker with
the highest expression level in almost all patient samples, and
other biomarkers, by themselves, cannot distinguish the PC and
OVC. Thus, to fully leverage the data obtained from multiple
biomarkers for a more accurate prediction, more comprehen-
sive data analysis is needed.

3.3 Data analysis

We next sought to use machine earning based approach to
analyze the Raman intensity data we obtained to provide
a better prediction of the condition of patients. We first pro-
cessed the raw Raman spectrum data to reduce the noise level.
As the background noise level in SERS signals is relatively low
compared with the strongly enhanced peak signals, we applied
a simple Fast Fourier Transform (FFT) to the Raman intensity
data three times to reduce the noise and smooth the Raman
spectrum. The original and denoised spectra of CA19-9 for
a pancreatic cancer sample are plotted in Fig. 5(a) and (b)
respectively. Fig. 5(c) also demonstrates the original and

16007 0O e
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> 1 Control
% 10004
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E 800—_
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% 4004
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01 +d ki feE
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Fig. 4 Multiplex detection of CA19-9, HE4, mesothelin, MMP7 and
MUCA4 levels in serum of normal, PC, ovarian cancer and pancreatitis
samples (total of 20 sera samples) using the microfluidic SERS-based
immunoassay. Raman intensities of 4-NBT (1336 cm™?) corresponded
to CA19-9, HE4, mesothelin, MMP7 and MUC4 in serum samples. Each
box represents 50 readouts.

This journal is © The Royal Society of Chemistry 2019
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denoised spectrum together for a better comparison. The pro-
cessed Raman spectrum of each measurement of biomarker
b on patient i is denoted by R?s(f/), as a function of wavelength
discretized with 1783 points. Measured biomarkers include
CA19-9, HE4, mesothelin, MMP7, and MUC4. Performing ten
measurements for each of the 20 individual samples and five
biomarkers, the dataset includes 1000 Raman spectra Ry (7).

Two supervised algorithms are employed to classify the
condition of the patients. First, the Raman spectra peak values
RY((7) are used for decision tree classifiers, which are fast,
simple, and provide useful information about the importance of
biomarkers. However, since a single peak value at 7, =
1500 cm ™, the resonance wavelength of Raman reporter, is
used for classification, it is vulnerable to noise. Therefore, the
full spectrum of Raman spectra R(7) are then analysed using K-
Nearest Neighbor (K-NN) classifiers, which are easy to imple-
ment and robust to spike noise. However, K-NN does not scale
favorably when the size of the dataset increases. In this case, the
artificial neural network may be used to learn the pattern of
Raman spectra for different biomarkers/diseases, in order to
classify patients efficiently. Since the size of our dataset is not
too large yet, we have employed K-NN classifiers at this stage for
the full spectrum analysis.

3.3.1. Classification algorithms

3.3.1.1 Classification tree. Classification trees (CT), consid-
erably advanced in ref. 42 assigns class labels to samples using
a conjunction of rules organized into a tree structure classifier.
The inputs of the algorithm are vectors X; = (x4, Xy, ..., Xz), i = 1,
2, ..., N, where k is the number of features and N is the number
of the training dataset. The rule of each decision node m, in the
form of x4 < t;,, or x4 = ¢y, tests a single feature x4 of the sample
against a threshold ¢, to assign it to the left or right sub-tree.

a b
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Fig. 5 Pre-processing of Raman spectrum. (a) The measured Raman
spectrum; (b) the denoised spectrum using FFT filter; (c) the original
and denoised spectrum together.
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Classification trees are usually constructed using recursive
partitioning algorithms, in which all possible partitioning
based on a single feature are evaluated and the one with the best
score is selected. The scoring of the partitioning may be per-
formed using the Gini impurity®® or information gain.
Assuming that the training dataset at node m is represented by
Try, of size Ny, and each partitioning candidate is denoted by
0(j,tm) consisting of feature j and threshold ¢,,, the impurity at m
is computed as follows:

G(Tr, 6) = ?\?f‘H(Trleu(e)) o Mright gy

Nm (Trrighl(0)> [1)

where H( ) is the impurity function, ;. is the size of the dataset
in the left sub-tree, and #jgp, is the size of the dataset in the
right sub-tree with partition 6. The best partition #* minimizes
the function G(Tr,d). Gini impurity and cross-entropy are the
two-common choices for the impurity function H. The Gini

impurity is computed using:
E pml

where p, is the proportion of class 1 observations at node m.
The cross-entropy or information gain is calculated by:

H(Try) = —mel log(1l — pm1) (3)

Trm pml (2)

In this paper, Gini impurity is utilized.

3.3.1.1.1. Data preparation for CT. The peak values of r}’,s =
RY((7,) at the resonance wavelength of Raman reporter 7, =
1336 cm ™ for measurement s of each biomarker b and patient
are first extracted. Then, the average over the measurements for
each biomarker, * = avg,(r?,), is computed and used as the
features of the input dataset. Therefore, the input data for
patient i takes the form:

CA199 MUC4 M helin _HE4 MMP7
- (V > esot em’ i Sl ) (4)

3.3.1.2 K-nearest neighbor (KNN) algorithm. The K-NN algo-
rithm is a supervised learning method for classifying data points
based on the proximity or similarity of them to the previously
observed data. The algorithm accepts a new patient's data and
compares it with a training set of previously classified patients
with various medical conditions. The algorithm then utilizes the
K-NN technique to classify patients as having or not having
a specific condition. K-NN is easy to implement, adaptive to
relatively noisy training sets, and naturally handles multi-class
classification problems. K-NN has been extensively used in the
medical field with a relatively high rate of success compared to
other methods like Linear Discriminant Analysis (LDA).*>**

The basic underlying hypothesis of K-NN is that if two data-
points have a high degree of similarity, there is a high proba-
bility that they belong to the same class. In other words, the
probability of two data points belonging to the same class is
proportional to their degree of proximity or similarity. There are
various measures for quantifying similarity for the K-NN clas-
sifier, however, in our work we use Euclidean distance as our

RSC Adv., 2019, 9, 1859-1868 | 1863
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measure of similarity. In order to diagnose a new patient, we
first calculate the Euclidean distance between the patient's data-
point and all the data-points in the training set. We then sort
the distances in increasing order and keep the top & points with
the shortest distance to the patient's data. Since we already have
the diagnosis on all the k points from the training set, the
majority value among the k diagnoses will be used as the
diagnostic predictor for the new patient.

The K-NN algorithm works based on a similarity measure
between the data-points. There are various measures of simi-
larity used in the literature to capture different properties of
data.® In this work, we use the simplest and most straightfor-
ward measure of similarity which is the Euclidean distance. The
Euclidean distance between two points p and ¢ in an n-dimen-
sional space R” is defined as:

D(p,q) = \/(ch +p1) (@24 p2) + e+ (@0 +pa)

(5)

3.3.1.2.1 Data pre-processing for K-NN. The most prevalent
method in the literature for analyzing Raman spectroscopy data
is to use the peaks of the spectra. However, this method is very
sensitive to noise in the data since a single noisy fluctuation in
one of the points of the spectrum could change the result of the
classification model. In this work, we introduce a novel method
for analyzing Raman spectral data for cancer diagnosis by using
the whole spectrum. As we will discuss in the results section,
this method outperforms our decision tree algorithm which
uses only the peaks of Raman spectral data. This is in part
because we are extracting more information from the spectra
and this extracted information is more robust to noise in the
experimental setup.

For measurement s of patient i for biomarker b, our Raman
spectra RY is a vector of 1783 intensities. This 1783-dimen-
sional vector could be regarded as a point in a 1783-dimen-
sional space. Therefore, we can define a similarity metric for the
spectral data of a patient based on the Euclidian distance
between the vectors of specific biomarkers. In addition, in order
to use the entire data for all the biomarkers for each patient, we
can create a large vector by appending all the vectors corre-
sponding to different biomarkers and creating a larger vector.

CA19-9 pMUC4 pMesothelin pHE4 pMMP7
Ri,s:[Ri,s sRi,s ’Ri,s ’Ri,s ’Ri,s ] (6)

Given this high dimensional vector which contains the
whole information of all the Raman spectral data for all
biomarkers for a sample of a patient, first, we calculate the
Euclidean distance between this new sample and the rest of the
previously known training dataset. We then create a list con-
taining all the distances:

Distances = [D(RtestaRl,]) D(thslaRl,l) D(Rtest:Ri,s)
D(RleslaRi,s) (XX) D(RleslaRn,IO)] (7)
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where i corresponds to the i-th patient and s corresponds to
measurements of the i-th patient. (In this work, we had 10
measurements for each patient) in the training data. The next
step in the algorithms follows by sorting this list of distances
and choosing the k shortest distances from the list. These k
instances correspond to k pre-classified samples in the training
set. The final stage of the algorithm is performed by taking
a majority vote over the classes corresponding to these &k
samples and determining the diagnosis for the unknown test
sample.

3.3.2. Performance evaluation. To evaluate the perfor-
mance of each model the sensitivity, specificity, and accuracy
are computed. The sensitivity is the ratio of positive samples
that are correctly classified as positive, i.e., the proportion of
patients that are classified with the correct type of cancer. The
specificity is the ratio of negative samples that are correctly
classified as healthy, i.e., the proportion of normal individual
that are classified as healthy. The accuracy is the proportion of
samples that are correctly classified.*® To measure the stability
of the performance of the proposed model the data is divided
into training and testing data with 5-fold cross validation.

true positive

Sensitivity = — 8
Y positive (8)
o true negative
Specificity = ———— 9)
negative
true positive + true negative
Accuracy = P £ (10)

positive + negative

3.3.3. Data analysis result. First, the data analysis results
using classification trees is presented to show the effectiveness
of multiplex biomarker method. Next, the results of full spec-
trum analysis using K-NN approach is presented. Python scikit-
learn® tool is used for all the analysis performed in this paper.

3.3.3.1 Peak-value analysis. Classification trees are used to
analyze the peak-value dataset of Raman shift measurements.
Since the size of the dataset is limited, a specific test set is not
held out to evaluate the performance of the classification.
Instead, five-fold cross-validation is utilized to estimate the
generalization error, in which the dataset is split into five equal
subsets. Four subsets are used to train the model, and the other
held-out subset is used to test the performance of the trained
model. This train-test approach is performed five times, and in
each test, one subset is held out. The outcome of these five tests
for the sensitivity and specificity of the model are averaged and
reported as the performance of the model. In order to avoid
over-fitting, the depth of trees is limited to two.

The performance of the classification trees with 5-fold
cross-validation with depth = 2 for an increasing number of
biomarkers are presented in Table 2. The sensitivity and
specificity for each panel of normal adults, pancreatic
cancer patients, pancreatitis patients, and ovarian cancer
patients in the table demonstrate that the accuracy of the
early cancer perdition is improved by employing multiplex
biomarkers.
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Table 2 The sensitivity and specificity for each panel of patients using classification trees with 5-fold cross-validation with depth = 2 for

increasing number of biomarkers

Normal Pancreatic cancer Pancreatitis Ovarian cancer
Biomarker(s) Specificity ~ Sensitivity =~ Specificity  Sensitivity =~ Specificity =~ Sensitivity =~ Specificity ~ Sensitivity
CA19-9 1 0.8 0.73 0.2 0.87 0.4 0.8 0.8
CA19-9 + HE4 1 0.8 0.87 0.8 0.73 0.6 0.93 0.4
CA19-9 + HE4 + mesothelin 0.67 0.8 0.87 0.2 0.93 0.6 1 0.8
CA19-9 + HE4 + mesothelin + MMP7  0.93 0.8 0.87 1 0.93 0.4 0.93 0.8
CA19-9 + HE4 + mesothelin + MMP7 1 0.8 0.93 0.8 0.93 1 0.93 0.8

+ MUC4

Finally, we used the whole dataset to train the classification
tree shown in Fig. 6. This plot shows that the most important
biomarkers in diagnosis are HE4, CA19-9, and MUC4, as ex-
pected. Note that the whole dataset is used to train this model.
Therefore, the same data cannot be used to evaluate the
performance of the model. It could be used to predict the
healthiness of future patients.

3.3.3.2  Full spectrum analysis. In order to achieve better
accuracy, we have applied K-NN classifier with k£ = 5, which
employs the full spectrum of all biomarkers. The whole dataset
includes 200 vectors R;; of the format in eqn (6), which is
randomly splitted in 20% for training data R{?™ and 80% for
test data R{S™. Using this setup, we achieved sensitivity of 86%,
specificity 93%, and accuracy of 91% to predict the class of each
measurement RS in the test data. If we use the majority vote of
the 5 measurements to diagnose the patient, the prediction
would always be correct. Since the dataset size is limited, we
cannot compute a more accurate estimation of the test error for
this classifier.

The general setting of a K-NN classifier is very hard to visu-
alize due to the high number of dimensions in the algorithm. In
order to visualize how our K-NN algorithm works, we simplify
our model to only two biomarkers. Fig. 7 depicts the scatter plot
of the distance of a sample test data-point from all other data-
points in the training set. The x-axis denotes the distance
between the test data-point and all the training set data-points

for the HE4 biomarker, D(Riet ,Riin)- The Y-axis denotes the

MUC4 <29.35 CA19-9<371

Sample=10

Fig. 6 The classification tree trained with whole dataset of peak-value
Raman shifts with depth = 2. This shows that the most important
biomarkers in diagnosis are HE4, CA19-9, and MUC4.

This journal is © The Royal Society of Chemistry 2019

distance between the test data-point and all the training set
data-points for the CA19-9 biomarker, D(Riat” °,Riam ). The
point (0,0) in the plot, which is not shown, is where the test
data-point resides. This is because the test data-point is regar-
ded as the center for calculating all the corresponding
distances. As it can be seen in the Fig. 7, all 5-nearest neighbors
of the test patient's data points are diagnosed as PC. Therefore,
we conclude that the unknown data point should be diagnosed
as PC, which is a correct diagnosis for the test sample.

In our case, we can clearly observe that when we translate our
problem into K-NN, a small sample of our small dataset
encapsulates lots of information about the spatial patterns
between different classes. This means that there is a clear
spatial separation between different classes in the defined high-
dimensional space. In addition, it is worth noting that the
smallness of our dataset is a limitation to any statistical analysis
technique. Thus, we need to assess different statistical tech-
niques with respect to their robustness. As mentioned earlier,
using the smallest subset of our data (20%) as the training set
for our K-NN model yields very accurate results which shows its
robustness to the size of the training set. In our future work, we

® * Control
: e Pancreatits
3500 § GUE
e PC
o 3000¢t
e
8
8 2500t
[e>]
> o
3 20000 4
A +. Distance=1930 .
1500F ;.'.'\p-\-‘./
p .‘/ ) 5 Nearest
1000} ., e Neighbors
1000 1500 2000 2500 3000

HE4 Distance

Fig. 7 Scatter plot of the distance of a sample test data-point from all
other data-points in the training set. In this case k in our K-NN algo-
rithm is set to 5. The point (0,0), which is not shown, is where the test
point resides. Looking at the 5-nearest neighbours, one quickly
concludes that the test sample should be diagnosed as PC, which in
this case is a correct diagnosis.
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plan to increase the size of our dataset and perform state of the
art machine learning techniques such as deep neural networks
for statistical analysis.

In order to evaluate the effectiveness of adding new
biomarkers to our classification problem, we make use of
a conventional machine learning concept called Receiver
Operating Characteristic (ROC) curve. In a ROC curve, true
positive rate (TPR) is plotted against the false positive rate (FPR)
at various threshold settings. The trained machine learning
classifier outputs the probability that a given test sample is
positive. To plot the ROC curve, we start by sorting all the test
samples based on the predicted probability of being a positive
sample. We then decrease the threshold gradually from 1 until
it is equal to the highest probability and see if the corre-
sponding sample test is a true positive or a false positive. If we
have a true positive/false positive for our first sample, we draw
a unit vertical/horizontal line starting from the point (0,0). We
then continue decreasing the threshold to arrive at the next
sample in our sorted list and continue to draw vertical/
horizontal unit length lines for true positives/false positive. It
has been shown that the area under the ROC curve (AUC) is
equal to the probability that a classifier will rank a randomly
chosen positive instance higher than a randomly chosen
negative one (assuming 'positive’ ranks higher than 'megative’).
AUC is a standard metric for evaluating machine learning
classifiers. A perfect predictor has AUC of 1. On the other hand,
arandom prediction model gives us AUC of 0.5. To this end, the
K-NN model is trained with 80 percent of the data using K = 3
and tested with the other 20 percent of the data. This arrange-
ment is chosen to demonstrate the effect of biomarkers more
clearly. Fig. 8 shows the ROC curve for various combinations of
biomarkers. As it can be seen in the Fig. 8, adding biomarkers
significantly increases our prediction accuracy.

Receiver Operating Characteristic
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Fig. 8 ROC curve for various combinations of biomarkers for the k-
nearest neighbour model with k = 3 and 80 percent of the data as the
training set and 20 percent as the test set.
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4. Conclusions

This study demonstrated that microfluidic assay significantly
reduced about 50% of the Raman signal measurement variation
as compared to conventional assays. Multiplex detection of five
biomarkers which elevate in both PC and ovarian cancer was
accomplished with microfluidic SERS-based immunoassay
approach.

We employed decision tree classification and nearest
neighbor method to evaluate the importance of different
biomarkers and estimate the specificity and accuracy of the
prediction. The result from data analysis demonstrated that
multiplex detection of protein biomarkers (CA19-9, HE4, MUC4,
MMP7, and mesothelin) in cancer patients and diseases with
similar protein biomarkers significantly increased specificity
and prediction accuracy. It is also observed that HE4 and MUC4
biomarkers improved the specificity of diagnosis, in addition to
CA19-9 biomarker.
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