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The efficient construction of quaternary carbon centers has
remained a crucial issue in organic synthesis." Quaternary
carbon centers are ubiquitous in various natural products, and
pharmaceutically relevant compounds.” Although significant
efforts have been devoted to the effective construction of
quaternary centers in recent years," new methodologies that
could be advantageous in terms of functional-group tolerance,
operational simplicity, and the use of easily obtained starting
materials are still highly desired.

On the other hand, dihydropyrazoles represent a class of
important heterocycles that occur in biologically active natural
products and pharmaceuticals such as anti-amoebic, hypo-
tensive, analgesic, anti-bacterial, anti-cancer, anti-depressant
and nonsteroidal anti-inflammatory agents.> Accordingly,
great research efforts have been devoted toward their
synthesis, and remarkable advances have been achieved in the
construction of these nitrogen heterocycles. Representative
synthetic strategies include formal [3 + 2] cycloaddition,® [4 +
1] cycloaddition,® catalytic asymmetric Fischer's pyrazoline
synthesis wvia a sequential aza-Michael addition/
cyclocondensation process,® and photocatalytic radical cycli-
zation.”® In comparison with the more ubiquitous family of [3
+ 2] cycloadditions, [4 + 1] cycloannulations are relatively
underutilized in these target-directed five-membered aza-
heterocycles construction.? In 2012, Bolm and coworkers re-
ported the first example of asymmetric synthesis of dihy-
dropyrazoles by formal [4 + 1] cycloaddition of in situ derived
azoalkenes and sulfur ylides (Scheme 1a).>* Recently, diazo
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in situ has been developed. This strategy provides a potential protocol for the construction of
dihydropyrazoles containing a quaternary center with good to excellent yields.

esters as 1,1-dipolar C1 synthons had also been utilized by the
group of Favi to synthesize racemic dihydropyrazoles in
a similar manner (Scheme 1b).*” However, none of these
investigations has explored the possibility of accessing dihy-
dropyrazoles containing a quaternary center. Herein, we
present a Cu(u)/bisoxazoline ligand-promoted formal [4 + 1]
cycloaddition of diazo esters with azoalkenes formed in situ,
affording dihydropyrazoles containing a quaternary center
with good to excellent yields (Scheme 1c).

At the outset of this investigation, we employed hydrazone
1a and diazo ester 2a as the substrates (Table 1). Preliminary
screening showed that the ligand has a remarkable effect on
the reaction. For instance, the reaction with phosphine
ligands gave the desired dihydropyrazole 3a in low yields
(Table 1, entry 2-4). It was found that the reaction proceeded
efficiently when bisoxazoline L6 was employed as ligand,
leading to the desired product 3a in 98% yield (Table 1, entry
7). Subsequently, different bases and solvents were then
explored (Table 1, entries 7-16), Na,CO; and CH,Cl, was the
best choice.
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Scheme 1 Synthesis of dihydropyrazoles by formal [4 + 1]

cycloaddition.

RSC Adv., 2019, 9, 1487-1490 | 1487


http://crossmark.crossref.org/dialog/?doi=10.1039/c8ra08909d&domain=pdf&date_stamp=2019-01-11
http://orcid.org/0000-0003-0058-2461
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8ra08909d
https://pubs.rsc.org/en/journals/journal/RA
https://pubs.rsc.org/en/journals/journal/RA?issueid=RA009003

Open Access Article. Published on 11 January 2019. Downloaded on 1/13/2026 11:39:58 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

Table 1 Optimization of reaction conditions®
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Table 2 Substrate scope for hydrazones”

Os_Ph o)

N [Cu] (10 mol%) Ph

N,NH 2 ligand (11mol%) _N_ CH3
e E—

N
CO2Bn  pase, solvent )L)Lcoan
o, Ph
1a 2a 40°C,05h s

Entry [Cu] Ligand Base Solvent Yield” (%)
1 CucCl, None Na,CO; CH,Cl, None
2 CuCl, L1 Na,CO; CH,Cl, 18

3 CucCl, L2 Na,CO3 CH,Cl, 6

4 CuCl, L3 Na,CO, CH,Cl, 22

5 CucCl, L4 Na,CO3 CH,Cl, 5

6 CuCl, L5 Na,CO; CH,Cl, 6

7 CuCl, L6 Na,COs CH,Cl, 98

8 CuCl, L6 K,COs CH,Cl, 15

9 CucCl, L6 Cs,CO3 CH,Cl, 26

10 CucCl, L6 NaOH CH,Cl, Trace
11 CucCl, L6 KOtBu CH,Cl, Trace
12 CucCl, L6 Et;N CH,Cl, Trace
13 CuCl, L6 Na,CO; THF 83
14 CucCl, L6 Na,CO; Toluene Trace
15 CuCl, L6 Na,CO; CH,CN 5

16 CucCl, L6 Na,CO; Hexane 12

“ Reaction was run under the following conditions: a solution of 1a (0.1
mmol), 2a (0 5 mmol), base (0.5 mmol), Cu cat. (10 mol%), and ligand
(11 mol%) in anhydrous solvent (1 mL) was stirred at 40 °C under
nitrogen atmosphere for 0.5 h. ? Yields refer to isolated products.

With the optimized conditions in hand, we next explored the
substrate scope of the heterodienes. A series of hydrazones 1a-1
bearing electron-neutral, -deficient or -rich aromatic substituents
were smoothly reacted with diazo ester 2a to give the corre-
sponding dihydropyrazoles 3a-1in 76—98% yield (Table 2, entry 1-
12). Also a-bromo N-benzoyl hydrazone 10 reacted well, and 88%
yield were achieved (Table 2, entry 15). In contrast, 2-naphthyl-
substituted hydrazone 1m and aliphatic hydrazone 1n only gave
a small quantity of product 3m and 3n (Table 2, entry 13-14).

Next, the scope of the reaction was extended by conducting
the reaction with various diazo esters (Table 3). Variation of the
ester R” group (entries 1 and 2) had little influence on the yield
of product 3. The significant steric effect of R' has been
observed. Methyl and ethyl groups gave excellent results (entries
2-3), while the more bulky groups gave only a trace of products
(entries 4-5).

We next attempted to investigate asymmetric variant of this
Cu(u)-catalyzed formal [4 + 1] cycloaddition reaction of diazo
esters with azoalkenes formed in situ (Scheme 2). An extensive
screening of chiral phosphine ligands (L7, L8), bisoxazoline
ligands (L9-12) and different reaction conditions had been
implemented. Unfortunately, only up to 5% ee was obtained
when L12 was employed as chiral ligand, albeit with excellent
yield (98%).

To show the synthetic potential of this strategy, we have
carried out a gram scale synthesis of 3a (Scheme 3). Under the
optimized reaction conditions, the reaction with 3 mmol of 1a

1488 | RSC Adv., 2019, 9, 1487-1490

O PP CuCI2 (10 mol%) OYF’h
-NH N2 _L6(1tmol%)  \-N CHs
N| ¥ )kco B )\)Aco B
R1J\/X 25n NaZCO3 CH,Cl, 2Bn
1 40°C

Entry 1 X R! Yield® of 3 (%)
1 1a cl Ph 3a, 98

2 1b Cl 2-Br-Ph 3b, 82

3 1c Cl 2-F-Ph 3¢, 78

4 1d cl 2-CH;-Ph 3d, 76

5 1e cl 3-Cl-Ph 3e, 93

6 1f Cl 3-OCH3-Ph 3f, 92

7 1g Cl 3-CH;-Ph 3g, 89

8 1h Cl 4-Cl-Ph 3h, 98

9 1i Cl 4-F-Ph 3i, 94

10 1j Cl 4-OCH,;-Ph 3j, 98

11 1k cl 4-NO,-Ph 3k, 92
12 11 Cl 4-CH3-Ph 31, 98

13 1m Cl 2-Naphthyl 3m, trace
14 in Cl n-Bu 3n, trace
15 10 Br Ph 30, 88

¢ Reaction was run under the following conditions: a solution of 1 (0.1
mmol), 2a (0 5 mmol), Na,COj; (0.5 mmol), CuCl, (10 mol%), and L6
(11 mol%) in anhydrous CHZCIZ (1 mL) was stirred at 40 °C under
nitrogen atmosphere for 0.5 h. ? Yields refer to isolated products.

Table 3 Substrate scope for diazo esters®

Os_Ph '
CuCl, (10 mol% Ph i 0 o}

T\I/H N2 L6(21(1mo|°/ 5 E/F“ | W><W\>

on )|\/C| CO,R? N32003 CH,Cl, COR L L Bh
40°C

1a 2
Entry 2 R! R? Yield® of 3 (%)
1 2a Me Bn 3a, 98
2 2b Me Et 3p, 98
3 2¢ Et Et 3q, 92
4 2d Bn Bn 3r, trace
5 2e Ph Et 3s, trace

“ Reaction was run under the following conditions: a solution of 1a (0.1
mmol), 2 (O 5 mmol), Na,CO; (0.5 mmol), CuCl, (10 mol%), and L6
(11 mol%) in anhydrous CH2(312 (1 mL) was stirred at 40 °C under
nitrogen atmosphere for 0.5 h. ” Yields refer to isolated products.

proceeded smoothly with 5 equiv. of 2a, affording 1.07 g of 3a
(90% yield).

In summary, we have developed a Cu(u)/bisoxazoline ligand-
promoted formal [4 + 1] cycloaddition of diazo esters with
azoalkenes formed in situ, affording dihydropyrazoles contain-
ing a quaternary center with good to excellent yields. The
reaction involves the use of stable, readily available starting
materials and is operationally simple.

This journal is © The Royal Society of Chemistry 2019
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Scheme 2 The investigation on asymmetric [4 + 1] annulation
reaction.
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Scheme 3 Reaction on the gram scale.
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