Dimethylacrylamide, a novel electrolyte additive, can improve the electrochemical performances of silicon anodes in lithium-ion batteries

Guobin Zhu, Siming Yang, Yan Wang, Qunting Qu* and Honghe Zheng

To enhance the electrochemical properties of silicon anodes in lithium-ion batteries, dimethylacrylamide (DMAA) was selected as a novel electrolyte additive. The addition of 2.5 wt% DMAA to 1.0 M LiPF6/EC : DMC : DEC : FEC (3 : 3 : 3 : 1 weight ratio) electrolyte significantly enhanced the electrochemical properties of the silicon anode including the first coulombic efficiency, rate performance and cycle performance. The solid electrolyte interphase (SEI) layers developed on the silicon anode in different electrolytes were investigated by a combination of electrochemical and spectroscopic studies. The improved electrochemical performances of the Si anode were ascribed to the effective passivation of DMAA on the silicon anode. The addition of DMAA helped develop a uniform SEI layer, which prevented side reactions at the interface of silicon and electrolyte.

1. Introduction

High-performance lithium-ion batteries (LIBs) are very important to support the rapid growth of power and battery technologies. Graphitic carbon cannot meet the requirements of high energy density due to its relatively low capacity (372 mA h g⁻¹). Many promising anode materials such as Si-based, tin-based or other metal-based materials with improved volume and weight energy density have been extensively studied in recent years. Among them, silicon has attracted attention because of its high specific capacity of 4200 mA h g⁻¹, comparably low delithiation potential of 0.4 V, rich reserves, acceptable cost and environmental friendliness. However, silicon undergoes a dramatic volume change (around 300% for Li₄.₄Si) during Li⁺ insertion and extraction, which makes the solid electrolyte interphase (SEI) highly unstable. At a low electrode potential, the electrolyte components reductively decompose and build up a passivating SEI layer on the silicon surface. In contrast with that on graphite, the SEI development on the Si surface is always incomplete and fragile. As the Si particle expands and contracts, it easily cracks, breaks off and forms fluffy debris. Regrowth and rearrangement of SEI on an Si anode are accompanied by continuous consumption of active lithium and electrolyte. Therefore, SEI optimization is very critical for developing high-performance LIBs with Si anodes.

To date, many attempts have been reported including reducing the particle size of silicon and developing many new binders for improving the mechanical properties as well as maintaining conductive passages of silicon electrodes. Although these solutions are quite effective, there are still some major problems for Si anode: large irreversible capacity loss, poor rate capability and cyclability. One of the main obstacles is the instability of the SEI layer. On the one hand, the continuous rupture and regrowth of SEI resulting from large volume changes block Li-ion diffusion and increase the electronic resistance of the electrode. On the other hand, the growth of the SEI layer traps increasing amounts of active lithium, which causes serious irreversible capacity deterioration. To improve the SEI quality on Si anodes, addition of film-forming additives in the electrolyte is a prevalent strategy because they can advance the formation of uniform SEI layers on the silicon particle surface. This effect occurs at higher potentials than that with ordinary carbonate electrolytes. Some of the film-forming additives for graphite anodes are also effective for Si anodes. Vinyl carbonate (VC), fluoroethylene carbonate (FEC), succinic anhydride (SA) and lithium bis(oxalatoborate) (LiBOB) have been proven to be effective for silicon anodes. Nowadays, FEC is widely adopted in electrolyte solutions with Si anodes. The main products of FEC decomposition on the electrode are known to be ROCO₂Li, LiF and polymerized FEC. These products contribute to a uniform and stable SEI layer on the silicon particle surface, thereby preventing further decomposition of EC and LiPF₆ salts at lower potential conditions. Nevertheless, the effect of FEC additive in electrolyte is still far from satisfactory in stabilizing the electrode surface and reducing the rupture of SEI. LiBOB additive generates a higher content of oxalates and Li₄P₂O₇. However, the lower LiF content in the SEI film results in modest improvement of the cycling stability for Si anodes. Han et al. confirmed that there is high content of hydrocarbon and Li₂CO₃ on the silicon...
Moreover, DMAA forms a complex with the Lewis acid PF$_5$ and thus improves the electrochemical performance of Si/C nanosheets under 40 °C. DMAA was introduced into the mixing solvent. Finally, 1 M LiPF$_6$ salt was added into the above solvent. The electrolytes with DMAA additives of 1 wt%, 2.5 wt%, 5 wt% and 10 wt% are named D1, D2, D3 and D4, respectively. The conductivity of the prepared electrolytes was measured at 25 °C using a DDS-307A conductivity meter.

2.2 Electrode preparations and electrochemical testing

Silicon nano-particles (100 nm, 99.99%) were obtained from the Kejing Star Technology Co. Ltd., China. Sodium alginate with medium viscosity was purchased from Sigma-Aldrich Co. Ltd. and was used as the electrolyte binder in this work. Carbon conductive additive (40 nm) was acquired from TIMCAL (Switzerland). The silicon nanoparticles, carbon black, and sodium alginate binder were mixed in a 15:85 weight ratio. The slurry was coated onto a 15 μm-thick copper foil (99.99% purity) and dried at 70 °C for 4 h. The silicon anode was cut into small circles with a slicer and was fully dried at a temperature of 120 °C and a heating time of 12 hours with vacuum treatment. We carefully controlled the loading of the silicon active material to be 0.5 mg cm$^{-2}$. Silicon electrodes were transferred into an argon-filled glove box and assembled in CR2032 coin-type half cells with a counter electrode (lithium foil), separator (Celgard 2500) and prepared electrolyte. The charge–discharge characteristics of the silicon electrodes were studied using battery test equipment (CT2001A, LAND). The formation and testing of half cells involved cycling between 0.01 and 1 V under different cycle rates of 0.05C and 0.2C, respectively. The silicon electrodes in different electrolytes were investigated by a cyclic voltammetry test and electrochemical impedance spectra obtained by an electrochemical workstation (VSP, Biologic).

2.3 Material characterization

Morphologies of the silicon electrodes cycled in the electrolytes with different amounts of DMAA additive were observed by using SEM (SU8010, Hitachi). The cyclic voltammetry tests were performed using an M271 electrochemical workstation (BioLogic, US) at a scan rate of 0.1 V s$^{-1}$ between 0.01 and 1 V. The formation and cycling tests of half cells were performed using a battery test equipment (CT2001A, LAND). The silicon electrodes were cut into small circles with a slicer and was fully dried at a temperature of 120 °C and a heating time of 12 hours with vacuum treatment. We carefully controlled the loading of the silicon active material to be 0.5 mg cm$^{-2}$.
obtained with increasing DMAA concentration in the electrolyte. This result is explained by the higher DN value (DN = 26.6) of DMAA compared to that of DMC and DEC solvents. Therefore, the preferential solvation of Li⁺ to DMAA molecules and the reduced Stokes radius of Li⁺ in the solution contribute to enhancement of the ionic conductivity.

The cyclic voltammetry of the Si anode in 1 M LiPF₆/DMAA solution is shown in Fig. 2. DMAA is reduced at around 1.5 V vs. Li/Li⁺ during the first negative scanning process. The 1.5 V potential is notably higher than the reduction potential of the main solvents EC, DMC, DEC and FEC. At this potential, DMAA is decomposed on the Si surface and thereby builds up a passivation film prior to the decomposition of the main solvents. The strong reduction peak at 1.5 V vanishes in the second cycle, implying that the Si anode is effectively passivated by the reduction reactions of DMAA at the interface of silicon and electrolyte. Therefore, DMAA can function as a valid film-forming additive with the Si anode.

Fig. 3 displays the cyclic voltammetry of the silicon anode in different electrolytes in the first cycle. The reduction peak in the first negative scanning process appears at around 1.6 V vs. Li/Li⁺, corresponding to SEI development on the Si surface. The onset potential associated with the irreversible reduction is shifted to a higher potential after adding more DMAA additive. Meanwhile, an increase in the peak intensity with increasing DMAA content is observed, implying that DMAA is reduced before the decomposition of carbonate solvents. The cathodic peak is near 0 V and is ascribed to lithiation of the Si anode.

In the following anodic process, the value of anodic peak of the Si anode slightly increases after addition of 1 wt% and 2.5 wt% DMAA additives in the electrolyte. However, at a high content of DMAA (5 wt% to 10 wt%), a significant reduction in the 0.3 V delithiation peak represents an increase in the electrode polarization, implying that a thick passivation film has developed.

In this study, the optimum content of DMAA in the electrolyte is determined to be 2.5 wt% for the Si anode.

Fig. 1 Conductivity of 1 M LiPF₆/EC : DMC : DEC : FEC (3 : 3 : 3 : 1) electrolytes with different contents of DMAA additive and 1 M LiPF₆/DMAA.

Fig. 2 Cyclic voltammetry profiles of the silicon anode in 1 M LiPF₆/DMAA.

Fig. 3 Cyclic voltammetry profiles of the silicon anode in 1 M LiPF₆/EC : DMC : DEC : FEC (3 : 3 : 3 : 1) electrolytes with different contents of DMAA additive (scan rate: 0.05 mV s⁻¹).
The rate performance of the silicon anode cycle with different electrolytes was investigated at nine different rates ranging from 0.05 to 20C. The discharge capacity values of the silicon anode in the original electrolyte at 1C, 5C and 20C are 2554.9, 2115.2 and 420.1 mA h g\(^{-1}\), corresponding to the capacity retentions of 74.3%, 61.5% and 12.2% (Fig. 5a). In contrast, the addition of 1 wt% and 2.5 wt% DMAA results in significant enhancement in the rate capability of the silicon anode. Particularly for D2, the Si anode achieves discharge capacity of 1162.4 mA h g\(^{-1}\) at the rate of 20C, corresponding to capacity retention of 31.8%. The significantly enhanced rate capability of the Si anode is due to the optimization and modification of the SEI layer by addition of a proper amount of DMAA in the electrolyte. This can be confirmed by the electrochemical impedance spectroscopy (EIS) results, which were measured after the rate performance test. The EIS values of the silicon electrodes at a depth of charge of 65% after rate test in the mixed electrolytes are compared (Fig. 5b). The first small semicircle in the high-frequency region represents low resistance of the silicon particles (\(R_{SEI}\)). The second semicircle appears in the medium-frequency region, which can be correlated to the charge transfer resistance of the silicon electrode surface (\(R_{ct}\)). By comparison, the electrode impedance decreases in the presence of a small amount of the DMAA additive. With the addition of 2.5 wt% DMAA, the lowest \(R_{SEI}\) and \(R_{ct}\) values are obtained, which explains the improved rate performance of the silicon electrode. Further increasing the DMAA content causes significant increase in electron transfer impedance related to
The strong reduction of DMAA molecules at the interface of silicon and electrolyte, which affects the diffusion of Li ions.

The cycle performance of the silicon anode cycled with different electrolytes was evaluated at a current density of 0.84 A g⁻¹ (0.2C). As shown in Fig. 6a, upon galvanostatic charge–discharge cycling, the reversible capacity of the Si anode without DMAA exhibits rapid capacity fading from 2467.6 to 1522 mA h g⁻¹ in 500 cycles, corresponding to ~40% capacity loss. By comparison, the Si anode showed higher capacity retention in the electrolyte in the presence of a proper amount of DMAA additive over prolonged cycling process. After 500 cycles, the Si anode delivered reversible capacities of 1734.1, 1950.7, 1274 and 466.3 mA h g⁻¹ in D1, D2, D3 and D4, respectively. The capacity loss of the Si anode in D2 is less than 20%. More importantly, the Si anode in D2 displayed high coulombic efficiency over the whole cycling process. In Fig. 6b, we have compared the coulombic efficiencies of the Si anode cycled with the original electrolyte, D2 and D4 in the initial 100 cycles. Enhancement in the coulombic efficiency is obtained by the addition of 2.5 wt% DMAA additive, but clear deterioration is seen with the addition of 10 wt% DMAA additive.

We observed the morphologies of the silicon anode before and after 500 cycles in different electrolytes (Fig. 7). The surface of pristine silicon nanoparticles is clean and smooth. The solid electrolyte interface formed in the original electrolyte has non-homogeneous, rougher and more porous morphology. By comparison, the silicon electrode cycled with D2 shows smooth and uniform morphology. Many silicon particles disintegrate when cycled in D4. These morphology images clearly indicate that a proper amount of DMAA can effectively protect the silicon anode in the carbonate original electrolyte. SEI produced with the proper amount of DMAA is uniform, compact and resistant to the decomposition of the electrolyte and fracture of silicon particles.

FTIR spectra (Fig. 8) recorded from silicon electrodes after the cycling test provide information about the surface chemistry. The broad peaks in the 1200–900 cm⁻¹ range in the original electrolyte are associated with asymmetric −COO−, symmetric −COO− and asymmetric C–O–C vibrations. Suppression of the 1200–900 cm⁻¹ range by addition of DMAA additive indicates the surface modification of the Si nano-
particles. Meanwhile, the strong vibrations of the OCOO\(^{-}\) moiety of Li\(_2\)CO\(_3\) at 1512, 1427 and 864 cm\(^{-1}\) can be found for all electrodes.\(^{13}\) The intensity of the typical Li\(_2\)CO\(_3\) peaks is reduced with increase in DMAA additive, indicating that the decomposition of the main solvent is suppressed. The typical peaks between 1643 and 1747 cm\(^{-1}\) are not very prominent for the original electrolyte, which should be ascribed to poly(DMAA) species.\(^{42}\) The intensity of the broad peak significantly increases after the addition of DMAA additive; this is due to the double bond in DMAA, which makes the additive more electrochemically active on the Si surface.

To gain deeper insights into the mechanisms of the DMAA additive, the harvested Si anodes after the cycling test were analyzed by XPS. Fig. 9 shows the XPS spectra of C 1s, O 1s and F 1s for the Si surfaces developed in different electrolytes. For the original electrolyte, the typical peak related to Li\(_2\)CO\(_3\) at 289.9 eV (CO\(_3\)) in the C 1s spectrum and the C=O peak at 531.4 eV in the O 1s spectrum are observed. The intensity of the Li\(_2\)CO\(_3\) peak is reduced by addition of DMAA additive. The typical peaks related to ROCO\(_2\)Li appear at 287.7 eV (CH\(_2\)O) and 285.8 eV (CH\(_2\)CH\(_2\)O) in the C 1s spectrum and the C=O peak is observed at 532.1 eV in the O 1s spectrum. The intensity of the ROCO\(_2\)Li peak increases after the addition of DMAA additive. The clear peak in the C 1s spectrum at 284.6 eV can be ascribed to the absorbed carbon from the environment. The other peak at 285.0 eV is assigned to the alginate binder. Meanwhile, the peaks at 287.5 eV (CH\(_2\)O) and 285.6 eV (CH\(_2\)CH\(_2\)O) indicate the participation of DMAA in SEI formation with higher alkyl lithium carbonate and lower Li\(_2\)CO\(_3\) contents. DMAA has considerable effects on the reactions of the silicon anode with the electrolyte. DMAA is more reactive compared to the carbonate solvents in the electrolyte because of double bonds.

The F 1s spectra indicate a peak at 685.7 eV (LiF) for all electrolyte samples in the experiment. The peak at 285.0 eV is assigned to the alginate binder. Meanwhile, the peaks at 287.5 eV (CH\(_2\)O) and 285.6 eV (CH\(_2\)CH\(_2\)O) indicate the participation of DMAA in SEI formation with higher alkyl lithium carbonate and lower Li\(_2\)CO\(_3\) contents. DMAA has considerable effects on the reactions of the silicon anode with the electrolyte. DMAA is more reactive compared to the carbonate solvents in the electrolyte because of double bonds.

The F 1s spectra indicate a peak at 685.7 eV (LiF) for all electrolyte samples in the experiment. The peak at 687.5 eV (LiPF\(_6\) and LiP\(_x\)F\(_y\)) in the F 1s spectrum gradually decreases with the increase in DMAA content, revealing that the SEI layer mainly contains less stable salts such as LiP\(_x\)F\(_y\) in the original electrolyte. In contrast, in the original electrolyte, more LiF salt
is present on the surface layer. The weaker shoulder at 687.5 eV indicates that DMAA effectively hinders the decomposition of LiPF₆ salt with cycles.

4. Conclusions

In summary, we report a novel electrolyte additive, DMAA, for use with Si anode in this study. The presence of DMAA helps to develop a more stable SEI layer on the Si surface at relatively high electrode potential and thereby suppresses the decomposition reactions of the main electrolyte solvents. The significance of this study is that the electrochemical properties of silicon anode in electrolyte containing FEC can be further improved by the addition of DMAA additive. With 2.5 wt% DMAA in the 1 M LiPF₆/EC : DMC : DEC : FEC (3 : 3 : 3 : 1) electrolyte, the electrochemical properties of the Si anode including the first coulombic efficiency, rate performance and cycle performance are significantly enhanced. The silicon anode can maintain more than 80% of its reversible capacity after 500 cycles. The electrochemical enhancement of the Si anode results from different SEI mechanisms due to the addition of DMAA additive. The presence of DMAA enables the development of the SEI film on the Si anode at a higher electrode potential and thus mitigates the decomposition of the electrolyte solvents. Relatively low electrode impedance and compact SEI layer can be achieved by adding 2.5 wt% DMAA additive, which explains the electrochemical enhancement of the Si anode.

Conflicts of interest

The authors declare there is no conflicts of interest regarding the publication of this paper.

Acknowledgements

The authors are very grateful to the funding of the National Natural Science Foundation of China (NSFC no. 21875154 and 21473120).

References

5 N. Kim, S. Chae, J. Ma, M. Ko and J. Cho, Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes, Nat. Commun., 2017, 8, 812.
6 W.-J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries, J. Power Sources, 2011, 196, 13–24.
8 R. S. Fu, K. L. Zhang, R. P. Zaccaria, H. R. Huang, Y. G. Xia and Z. P. Liu, Two-dimensional silicon suboxides nanostructures with Si nanodomains confined in amorphous SiO₂ derived from silicon as high performance anode for Li-ion batteries, Nano Energy, 2017, 39, 546–553.
12 V. Baranchugov, E. Markevich, E. Pollak, G. Salitra and D. Aurbach, Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes, Electrochem. Commun., 2007, 9, 796–800.

18 M. Ulldemolins, F. Le Cras, B. Pecquenard, V. P. Phan, L. Martin and H. Martinez, Investigation on the part played by the solid electrolyte interphase on the electrochemical performance of the silicon electrode for lithium-ion batteries, *J. Power Sources*, 2012, **206**, 245–252.

38 A. Xiao, W. T. Li and B. L. Lucht, Thermal reactions of mesocarbon microbead (MCMB) particles in LiPF₆-based electrolyte, *J. Power Sources*, 2006, **162**, 1282–1288.

41 V. Giordani, J. Uddin, V. S. Bryantsev, G. V. Chase and D. Addison, High Concentration Lithium Nitrate/

