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Sensitive and rapid detection of aflatoxin B1 (AFB1) without using antibody or biomolecular modifications in
water is achieved using a novel water-stable luminescent metal-organic framework (LMOF) termed Zr-
CAU-24. The 1,2,4,5-tetrakis(4-carboxyphenyl) benzene (H4;TCPB)-based LMOF with high water-stability
has demonstrated drastic fluorescence fading in the presence of AFB1. The detection limit for AFB1 using
this porous nanomaterial reaches as low as 19.97 ppb (64 nM), which is below the applicable action level
for peanut and corn products set by the FDA and among the most sensitive sensors reported for AFB1.
We further investigated its response to five other mycotoxins including AFB2, AFG1, AFG2, AFM and OTA
and their Stern—Volmer quenching efficiencies are significantly below that of AFB1 (138 461 M~%). The
prepared water-stable LMOF was directly used for the detection of AFB1 in spiked walnut and almond

beverages. High recovery rates (91-108%) were achieved in 5 min. We found that the quenching of
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Accepted 2nd December 2018 H4TCPB molecules towards mycotoxins was remarkably enhanced by anchoring them into the periodic

framework and its mechanism was discussed. The presented method with acceptable detection limit is
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Introduction

Mycotoxins are secondary metabolites produced by Aspergillus
that are frequently found in spoiled agricultural commodities
(such as peanuts, corns, rice, and milk), posing significant
adverse health effects worldwide.' Among them, aflatoxins (AFs)
and ochratoxin A (OTA) represent the most dominant and
harmful mycotoxins,” which have been proved teratogenic,
mutagenic, and carcinogenic to human beings and animals.?
There are basically four types of AFs: B1, B2, G1, and G2 and
AFB1 represents the most harmful one. In many countries,
legislative limits were set for AFB1 in foodstuffs.* More impor-
tantly, AFB1 has demonstrated high chemical stability against
elevated temperature through food processing, making the
prevention of their entrance into the food supply chain difficult.

Therefore, it is extremely important to detect their
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AFB1 in agricultural and food products.

contamination at low concentration to ensure global food
safety.” Nowadays, there are basically two methods for the
detection of AFs: enzyme-linked immunoassays and
chromatographic-based methods, including high performance
liquid chromatography (HPLC) and immunoassay chromatog-
raphy.® The former method provides a potable and rapid
method for mycotoxins detection. However, low sensitivity and
complex operation procedures has hampered its practical
applications.” Chromatographic-based methods are considered
as facile, sensitive and portable sensing method for AFs
sensing.® Nevertheless, this method has some drawbacks such
as high-cost, technique required operation and time-
consuming sample preparation process. The incorporation of
biomolecules in immunoassay chromatography also makes this
method less robust. Thus, development of sensitive, low-cost
and robust sensing methods for AFB1 is in high demand,
especially in developing countries.” Metal-organic frameworks
(MOFs), as an emerging class of porous materials with high
surface area, flexible chemical properties, rich functionalities
and tuneable pore structures, have demonstrated great poten-
tial in the detection of harmful residues, especially for small
molecules.'™ For example, a series of luminescent Zr-based
highly luminescent metal-organic frameworks (LOMF) were
reported as sensitive chemical sensors for toxic chemicals
detection and removal, including nitroaromatic explosives.'***
Two water-stable 3D florescent Zr(iv)-based metal-organic
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frameworks were constructed with different pore structures.®
Both their florescence could be efficiently quenched with nitro
compound, which enables the sensitive detection of organic
explosives with the detection limit reaches as low as ppb level.
2D Cd-based LMOF was also reported for the selective detection
of nitroaromatic explosives different -NO, groups.'” Further-
more, a LMOF-based method was reported for TNP selective
detection with the presence of other nitro compounds based on
the specific electrostatic interaction and electron and energy
transfer between TNP and LMOF."” Taking advantage of the
cation-exchange approach, a water-stable Eu-MOF was explored
as sensitive and selective Fe*" sensor with potential applications
in biological system.' However, their potential as mycotoxins
sensors was seldom investigated. Li et al reported a highly
sensitive Zn-based luminescent MOF (LMOF) towards myco-
toxins that achieves a low detection limit of AFB1 (46 ppb) in
10 min. This novel sensing material is of potential for the
development of applicable low-cost, rapid and sensitive myco-
toxin sensors.' However, Zn-based MOFs suffered from poor
water-stability due to the fragile Zn-O bond under the attack of
H,0 molecules,* which has generally limited its applications in
industrial practices, such as water purification and sensing.
Here, we present a robust Zre-cluster based water-stable LMOF
termed Zr-CAU-24 with sensitive response to AFs. With water-
stable Zr*" clusters and luminescent TCPB*~ severing as
second building units (SBU) and organic linkers, respectively,
the prepared Zr-CAU-24 nanocrystals have demonstrated high
structure stability in water due to their strong metal-ligand
bond strength.>*?>* As-prepared Zr-LMOF crystals not only
demonstrated high surface area but also revealed improved
sensitivity towards AFB1 compared to free standing H,TCPB
molecules in water. The limit of detection reaches as low as
19.97 ppb in 5 min, which is below the applicable action level
set by Food and Drug Administration (FDA) for cottonseed
meals intended for beef cattle (300 ppb) and corn and peanut
products (20 ppb).2*2°

Results and discussion
Characterization

Water-stable luminescent Zr-CAU-24 was synthesized according
to a reported research with modifications.? In this study, ben-
zoic acid was used as structure modulator to control the crystal
size and morphology of prepared nanocrystals. Without benzoic
acid, amorphous colloid-like polymer that is formed by the
aggregation of nano-Zr-CAU-24 crystals (~30 nm) is observed
(Fig. S1t). Notably, we also found that the amorphous polymer
has demonstrated negligible response towards AFB1. Thus,
incorporating the H,TCPB into the long-range order periodic
structure is necessary for its sensitive response towards AFB1.
The as-prepared Zr-CAU-24 crystals have demonstrated a rod-
like morphology with a size of ~1 pm (Fig. 2A) with strong
blue fluorescence. As shown in Fig. 1A, the Zr*" are coordinated
by eight carboxylate groups to form a C-centred orthorhombic
arrangement cluster ([Zrg(13-0)4(15-OH)4]**"). The rest coordi-
nation sites at the Zr'" ions are occupied by H,O and OH™
molecules as mentioned in other Zr-based MOFs. As reported,
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Fig. 1 Crystal structure of Zr-CAU-24 that is constructed from the
[Zre(uz-O)aluz-OH)4I2" clusters (A) and TCPB** molecules (B). Ball-
stick models of Zr-CAU-24 crystals (C) and (D).

the clusters are further bridged by TCPB*~ linkers (Fig. 1B) in
a SCU topology, giving rise to a porous framework with rhombic
channels of ~5.3 x 10.5 A and ~2.4 x 3.5 A in diameter (Fig. 1C
and D). For rapid and sensitive detection of mycotoxins in
water, the structure stability of Zr-CAU-24 crystals in water is of
great importance.

To prove its water-stability, the prepared Zr-CAU-24 crystals
were immersed in water for 24 h before it is measured with
Powder X-ray Diffraction (PXRD) and N, adsorption/desorption
isotherm. As shown in Fig. 2B, the XRD peaks before and after
water treatment are in good agreement, indicating the intact
pore structure after long time of operation in water. The PXRD
pattern is also retained after the loading of AFB1, which proves
that the Zr-MOF structure was well kept after its quenching of
florescence by AFB1. Similar results can be found in its N,
adsorption/desorption isothermal curves before and after 24 h
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Fig. 2 Scanning electron microscopy images of prepared Zr-CAU-24
crystals with different magnification times. Scale bar: 1 um ((A), inset).
PXRD of Zr-CAU-24 crystals before and after water treatment and
AFB1 absorption, (B) and N, adsorption/desorption isotherms (C) of Zr-
CAU-24 crystals before and after 24 h water treatment. TGA result of
as-prepared Zr-CAU-24 crystals (D).
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water treatment (Fig. 2C). We found that the Brunauer-
Emmett-Teller (BET) surface area remained, which again
proves its intact pore structure during water treatment. The
isothermal curve of Zr-CAU-24 is in good agreement with type I
adsorption/de-adsorption isothermal curve, which implies the
uniform microporous structure of prepared Zr-CAU-24. Further
pore size distribution analysis directly revealed that most of the
micropores have an aperture of 1 nm (Fig. 2C, inset). Larger
micropores of ~2 nm with higher accessibility to mycotoxins
can also be found. Thermal gravimetric analysis (TGA) was used
to prove the thermal stability of Zr-CAU-24 (Fig. 2D). It first
exhibited a weight loss of 3% in the temperature range 50—
200 °C. Sequentially, further weight loss of 5% was observed
between 200-420 °C (loss of internal solvent molecules). The
decomposition of the thermal robust porous material starts at
420 °C with a total weight loss of ~38% after degradation. With
good water and thermal stability (~420 °C), this robust sensing
material is considered as an appropriate candidate for the
development of low-cost, rapid and sensitive sensors for
detection of mycotoxins.

Detection of mycotoxins

Mycotoxin detection was achieved by monitoring the PL signal
fading of Zr-CAU-24 crystals after reacting with mycotoxins. We
first determined the optimum LMOF dosage to harvest the
highest FL fading by reacting with 50 uM AFB1 (Fig. S2t). When
50 pg mL~" LMOF was applied, highest FL fading of 83% was
achieved, while both lower and higher LMOF dosage decreased
FL fading (73%). Sequentially, we examined its performance in
the detection of AFB1 by adding given amount of toxins to the
solution containing 50 pg mL~" Zr-CAU-24 crystals. The strong
blue-fluorescence-emission LMOF nanocrystals were signifi-
cantly quenched in 5 min and the signal was monitored by
a fluorimeter (Fig. 3A). Under the excitation of 340 nm
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Fig. 3 Emission spectra of Zr-CAU-24 with the incremental addition
of AFBL1 in water, with toxin concentrations given from 0 to 50 pM (A).
Linear relationship between lg Carg; and FL intensity. Inset: optical
photo of florescent Zr-CAU-24 crystals in water (left) and water (right)
(B). Stern—Volmer curves acquired at Aoy = 340 nm and Aem, = 410 Nm
for AFB1, AFG1, AFM and OTA (C). FL intensity fading of Zr-CAU-24
towards 50 uM AFB1, AFB2, AFG1, AFG2, AFM and OTA (D).
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wavelength, the fading of fluorescence intensity at 410 nm (Zr-
CAU-24) is correlated linearly with the logarithmic molar
volume of toxins (eqn (1))

y = 0.379 + 0.320 Ig x (> = 0.991) (1)
y = — PIF, (2)

where y represents the relative florescence intensity, x repre-
sents the molar volume of AFB1, and F, and F is the intensity of
fluorescence with and without toxins, respectively. Good linear
relationship between relative fluorescence ((F, — F)/F,) and the
logarithm of toxic concentration (>99%) is achieved for a wide
range of toxin concentrations (0.075 to 25 uM), which is of
advantage over its counterparts.”” The detection limit reaches as
low as 19.97 ppb (S/N = 3). The value of this detection limit is
below the tolerant level of cottonseed meals intended for beef
cattle (300 ppb) and corn and peanut products (20 ppb) (FDA)
and among those of the most sensitive materials reported for
AFB1 sensing. Furthermore, we applied the sensing material to
the detection of other two aflatoxins (AFG1, AFM) and ochra-
toxin A (OTA). Drastic fluorescence quenching was also
observed and the liner relationships were obtained as shown in
the Fig. S3-S5.1 They all demonstrated good linear relationship
between relative fluorescence and the logarithm of toxic
concentration (>98%), ranging from 0.075 to 25 puM. Stern-
Volmer quenching efficiency is used to describe its sensitivity
towards different mycotoxins.

I/l = K\ [Q] + 1 (3)

where I, represents the initial emission peak of intensity, I is the
emission peak intensity upon the addition of analyte, [Q] is
molar intensity upon the addition of analyte (quencher) and K,
is the quenching efficiency, which is used to quantitatively
evaluate the performance of Zr-CAU-24 as a mycotoxin sensor.
As shown in Fig. 3C, this porous nanomaterial has demon-
strated sensitive quenching effect towards four kinds of myco-
toxins including AFB1, AFG1, AFM and OTA and the K, reaches
138 461, 50 793, 68 119, 53 149 M *, respectively. The K, for
AFB1 is almost doubled compared with that for AFG1, AFM and
OTA, indicating its higher selectivity toward AFB1. Stronger
orbital overlap (-7 conjugation) between AFB1 and Zr-CAU-24
is reported responsible for the enhanced selectivity towards
AFB1 compared with other kinds of mycotoxins.'* To better
reveal the different responses of Zr-CAU-24 toward different
mycotoxins, we treated the analyst with a fixed concentration
(50 uM) of AFB1, AFB2, AFG1, AFG2, AFM and OTA (Fig. 3D).
The fluorescence intensity at 380 nm dropped drastically after
adding of mycotoxins. Obvious red shift was observed in all test
samples, which is due to the fluorescent properties of myco-
toxins under the excitation of 340 nm.

Walnut and almond beverages are common products made
from nuts, exposing them to the risk of being contaminated by
AFB1. Therefore, we further applied this sensing material to the
direct detection of AFB1 in the spiked samples (Table 1). AFB1
of three different concentrations (0.1 uM, 1 uM, 10 pM) were

This journal is © The Royal Society of Chemistry 2019
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Table 1 Recovery rates of AFB1 in spiked walnut and almond beverages using fluorescent Zr-CAU-24 crystals (HPLC method was used as

comparison)
Spiked amount (uM) HPLC (M) Proposed method (uM) Recovery (%)
Walnut beverage 0.1 0.102 0.0975 98%
1.0 1.007 1.079 108%
10.0 9.969 9.73 97%
Almond beverage 0.1 0.0946 0.0966 97%
1.0 0.956 1.041 104%
10.0 9.73 9.06 91%

tested with Zr-CAU-24 and HPLC method is valued as a control
to evaluate the recovery rates in real samples (Fig. S71). High
recoveries were achieved in all samples (91-108%), which is
comparable to that of HPLC (95-102%). At low toxin concen-
tration (0.1 pM), the recovery rates for walnut and almond
beverages both reached 93%. It's noticed that this sensing
method has demonstrated a wide liner range of 0.075-25 uM,
while most of reported methods have narrow liner ranges.?*°
These results have revealed the potential of this water-stable
sensing material for the development of low-cost, rapid, and
potable mycotoxin sensors.

Mechanism of mycotoxin detection

By anchoring the fluorophore into the framework, the
absorption wavelength presents a red shift from 280 nm to
330 nm (Fig. 4A) due to the strong w-7 interaction in the
framework, which is observed in other sensing materials re-
ported. However, the emission wavelength of TCPB*~
remained at 410 nm (Fig. 4B), which implies a higher energy
transfer efficiency in Zr-CAU-24 crystals. TCPB*~ is a strong
fluorophore, but it has no strong interaction with AFs (Fig. 4C).
Also, nano-Zr-CAU-24 crystals of ~30 nm demonstrates negli-
gible fluorescence quenching effect towards AFB1. Thus,
incorporating the fluorophore into a long-range order struc-
ture of metal-organic framework is essential for sensitive and
selective quenching of AFB1. The quenching mechanism of
LMOF as a mycotoxin sensor was due to the electron transfer
between the LMOF and mycotoxins because the LUMO energy
state of MOF is above the LUMO state of mycotoxins."
However, the enhanced quenching efficiency of anchored
TCPB*™ molecules in the Zr-CAU-24 was barely discussed. N,
absorption/desorption curve demonstrates that the average
pore size slightly decreases from 1 nm to 0.8 nm, which
demonstrates that most pores of Zr-MOF is not occupied after
AFB1 adsorption. Combined with the absorption testing result
(Fig. S6t), it is found that the AFB1 was fully absorbed by the
Zr-CAU-24 crystals and removed from the solution after
sensing and the notable enhancement may be due to the
amplified luminescence quenching of luminescent MOFs at
the surface. The periodic structure of phosphorescent Zr-CAU-
24 has allowed for long distance transfer of intra-MOF energy,
which significantly enhances the electron-transfer quenching
of fluorescence Zr-CAU-24 at the surface®* and thereby causes
higher quenching efficiency of micron level Zr-CAU-24 crystals
compared with nano-Zr-CAU-24 of ~30 nm.

This journal is © The Royal Society of Chemistry 2019
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(B) of TCPB** molecules and Zr-CAU-24 crystals. FL intensity fading of
Zr-CAU-24 crystals and TCPB** molecules with the existence of AFB1
(Q).

Experimental
Instrumentation

Hitachi SU-8000 field-emission electron scanning microscope
(Hitachi, Japan) was used to characterize the morphology and
the EDS of MOF particles with an acceleration voltage of 3 kV
(10 nm gold coating). Powder X-ray Diffraction was conducted
on an X Pert PRO diffractometer (PANalytical, Netherland)
equipped with Cu Ka radiation (A = 0.15406 nm) (scan speed:
1° min~'; 26 range: 2-50°; step size: 0.05°). The BET surface area
of the MOF particles was measured using an AUTOSORB-1-C
surface area and pore size analyzer (Quantachrome, USA) with
samples degassed at 200 °C for 24 h in advance. The thermal

RSC Adv., 2019, 9, 620-625 | 623
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stability of the MOF particles was determined on a Pyris 1
thermal gravimetric analyzer (Perkin Elmer, USA) with a ramp
rate of 10° min~ " up to 600 °C. DU 800 UV-visible spectrometer
(Beckman Coulter, USA) with 1 cm quartz cuvettes was used to
measure the absorbance of TCPB'~ and Zr-CAU-24. High
Performance Liquid Chromatography (HPLC, Agilent 1260
Infinity, USA) was used to accurately determine the AFB1
concentration in both walnut and almond beverages. Analytical
balance with an accuracy of 0.01 mg (Mettler Toledo, USA) was
used.

Reagents

Zirconium chloride (97%), H,TCPB (99%) and benzoic acid
(98%) were purchased from Sigma-Aldrich (USA). AFB1, AFB2,
AFG1, AFG2, AFM, OTA, methanol (97%) and arsenic acid (80%)
were purchased from Sinopharm Chemical Reagent Co., Ltd
(Shanghai, China). Walnut and almond beverages were
purchased from a local supermarket. All other chemicals were
of analytical grade or better quality and used as received. Milli-Q
ultrapure water (Millipore, USA; = 18 MQ cm) was used
throughout.

Synthesis of Zr-CAU-24

Zr-CAU-24 was prepared according to a reported article with
modifications.” 100 mg ZrCl,, 140 mg H,TCPB and 5400 mg
benzoic acid were ultrasonically dissolved in 32 mL H,O : DMF
(1:2)in a 50 mL Teflon vessel. The clear mixture was then kept
in reaction kettle at 120 °C and maintained for 48 h. After
cooling down to room temperature, the obtained white cloudy
liquid was washed with DMF once and methanol twice and
dried at 60 °C overnight. For the preparation of amorphous
colloid-like polymer, 50 mg of H,TCPB was allowed to react with
70 mg of ZrCl, in 8 mL of dimethyl formamide in a Teflon vessel
baker for 24 h at 120 °C before washed with methanol for 3
times. The product was dried at 60 °C overnight.

AFB1 absorption

100 uM AFB1 and 0.5 mg mL~ " Zr-MOF were mixed for 10 min
before being centrifugated at 8000 rpm for 10 min. The super-
nate was collected and measured using a fluorimeter.

Fluorescence detection

Typically, 4 mg of Zr-CAU-24 were simply dispersed in 10 mL
of water at room temperature. The mixture was oscillated for
2 min to prepare the metal ion incorporated suspension for
luminescent measurements. Then 90 pL of diluted Zr-CAU-24
(55 ug mL ™) aqueous solution was added with 10 pL of AFB1
solution with final concentrations of 0.075, 0.1, 0.25, 0.5,
0.75, 1.0, 2.5, 5.0, 7.5, 10, 25, and 50 uM. For specificity test,
Zr-CAU-24 was mixed with 50 uM AFs (OTA, AFB1, AFB2,
AFG1, AFG2, or AFM) or with 10 puL of water as a blank
control. For the test on mechanism of mycotoxin detection,
90 uL of H,TCPB (55 pg mL™ ") aqueous solution was added
with 10 uL of AFB1 solution with final concentrations of 0.05,
0.1, 0.5, 1.0 and 5 puM.

624 | RSC Adv., 2019, 9, 620-625
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Analysis of AFB1 in spiked samples

In this study, walnut and almond beverages without sprayed
AFs were used for spiked experiments. The obtained spiked
samples (5 mL) were added with 1 g of NaCl and then dissolved
into 25 mL of methanol-water solution (volume ratio:
methanol : H,O = 7 : 3). The mixed solution was filtrated and
purified by immunoaffinity chromatography column, finally
filtrated by 0.22 um filter membrane before chromatographic
determination.

Conclusions

We have presented a facile method for rapid and sensitive
detection of microscale mycotoxins using a water-stable porous
Zr-based luminescent MOF. It has demonstrated ultrasensitive
response towards AFB1 with a detection limit of 19.97 ppb in
5 min (from sample detection to signal output) which is below
the applicable action level set by FDA for cottonseed meals
intended for beef cattle (300 ppb) and corn and peanut products
(20 ppb). The quenching efficiency for AFB1 was as high as
138 461 M !, which is almost a doubled value compared to that
of AFG1, AFM and OTA, which indicates a higher selectivity for
AFB1. Due to the good water-stability of prepared LMOF, we
further applied the prepared Zr-CAU-24 without further modi-
fication to the detection of toxins in spiked samples of walnut
and almond beverages. High recovery rates (=91%) were ach-
ieved in the detection of different concentrations of AFB1. The
amplified quenching effect of TCPB-based MOFs compared
with unanchored TCPB*~ molecules and nano-Zr-CAU-24 may
be due to the amplified quenching on the surface of Zr-CAU-24
crystals. Thus, we have presented a simple, cost-saving, robust
and sensitive method for the detection of AFB1 with acceptable
detection limit and time, which has great potential for the
development of innovative sensors for detection of mycotoxins
in agriculture and food.
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