Development of a tubular continuous flow reactor for the investigation of improved gas–solid interaction in photocatalytic CO2 reduction on TiO2

Martin Dilla,a Ahmet E. Becerikli,a Alina Jakubowski,a Robert Schlöglb and Simon Ristig c,a

A self-made, low-cost tubular reactor for the gas-phase photocatalytic CO2 reduction was developed. The resulting flow conditions cause an intensive interaction between the reactants in the gas-phase and the fixed bed photocatalyst. This approach is used to test the scalability of tubular reactors for the photocatalytic CO2 reduction.

The photocatalytic CO2 reduction to CH4 is associated with the transfer of eight electrons, the cleavage of two C–H bonds and the formation of four C–H bonds (1). In order to provide a source of electrons and hydrogen it is desirable to oxidize H2O (2). Due to the extreme stability of the reactants CO2 and H2O, the conversion to CH4 and O2 (3) is strongly endergonic ($\Delta G^0 = +818$ kJ mol$^{-1}$). Therefore the photocatalytic CO2 reduction is a highly complex and thermodynamically challenging process and a photocatalyst which can run this process effectively has not been developed yet.1

\[
\text{Reduction: } \text{CO}_2 + 8\text{H}^+ + 8e^- \rightarrow \text{CH}_4 + 2\text{H}_2\text{O} \quad (1)
\]

\[
\text{Oxidation: } 2\text{H}_2\text{O} \rightarrow \text{O}_2 + 4\text{H}^+ + 4e^- \quad (2)
\]

\[
\text{Overall: } \text{CO}_2 + 2\text{H}_2\text{O} \xrightarrow{\text{hv. photocatalyst}} \text{CH}_4 + 2\text{O}_2 \quad (3)
\]

One of the most prominent materials for research on photocatalytic CO2 reduction is TiO2.2–4 The examination of kinetic barriers or the structure–function relationship of TiO2 is often limited. This is due to the low activity in product formation, the detection limit of many standard analytical methods and reaction conditions due to inadequate reactor designs.5 For this reason, the photocatalytic CO2 reduction is still not well understood.6–9 In order to prove if this complicated reaction proceeds, a reactor set-up needs to be developed which allows performing light induced experiments under optimal conditions. For such a design the illuminated fraction of the surface area should be maximized to realize adequate excitation of the photocatalyst, since the penetration depth of UV light with a wavelength of, for instance, 355 nm into TiO2 (anatase) is stated as ~ 280 nm10 which is extremely low. In this way only a very small fraction of TiO2 will be excited by photons. Another important prerequisite is that experiments can be performed under optimal mass transport conditions of reactants and products, necessitating an intensive interaction between the gas-phase and the solid photocatalyst. One approach to meet these demands is the construction of a reactor with tubular geometry. A successful application of such a reactor design in photocatalytic research has already been reported for the oxidation of, for instance, organic compounds11–13 in liquid phase or NO214 in the gas phase, employing quartz glass12,14 and fluorinated-ethylene-propylene (FEP)11 as reactor materials. There are however no reports on the application of a tubular reactor geometry for photocatalytic gas phase CO2 reduction on solid state photocatalysts, e.g. TiO2. The feasibility to design such a reactor and utilize it for studying this highly complex reaction is reported here for the first time. To achieve reaction conditions of highest purity, an experimental procedure was developed for the removal of carbonaceous impurities from the surface of the sample prior to testing the photocatalytic activity in CO2 reduction. This is crucial, as residual impurities can contribute to the product formation in the CO2 reduction reaction, which leads to a significant overestimation of the activity. Only after successful removal it can be guaranteed that product formation originates from the reactants. With this set-up it was possible to conduct photocatalytic CO2 reduction on TiO2 with intensive interaction of the reactants and the solid photocatalyst under high-purity conditions.

For this design it is mandatory that the material of the tubular reactor is transparent and chemically stable under illumination with UV light as well as mechanically flexible. Furthermore, the diameter of the tube must be as small as possible to increase the illuminated portion of the photocatalyst surface. One material which seems to fulfill these requirements is fluorinated ethylene propylene (FEP). The FEP
tube chosen for the approach presented here has an inner diameter of 2.1 mm. To realize illumination of the photocatalyst with a centered high intensity source, the FEP tube was wrapped around a self-made high intensity UV-LED bar. The UV light source consists of a square aluminum bar with three high power UV-LEDs (365 nm) on each side of the bar, amounting to a total of 12 UV-LEDs with a combined output power of 10 W (Fig. 1). Aluminum cooling fins and a high-performance cooling fan (90 m³ h⁻¹) were installed to dissipate the emerging heat (Fig. 1) of the LEDs under operation. The light source is positioned in the center of a PTFE tube with an inner diameter of 6 cm to direct the cooling air flow along the whole bar (Fig. 1). The tubular reactor is wrapped equidistantly to the diameter of 6 cm to direct the cooling air flow along the whole bar (Fig. 1). The inlet of the reactor is connected to the gas supply to realize purging with He 6.0 (99.9999% purity) and dosing of the reactant gas mixture (7000 ppm CO₂ in He 6.0). The outlet of the reactor is connected to a Shimadzu Tracera GC 2010 Plus. This GC is equipped with a barrier discharge ionization detector (BID), which allows quantifying CO₂, CO, CH₄, C₂H₆, H₂O, O₂ and H₂ in the 0.1 ppm range. Based on this high sensitivity, the BID is a suitable analytical device for an application in continuous-flow photocatalytic CO₂ reduction. Swagelok fittings were used for all tube connections.

To verify that the FEP tube does not release any carbon-containing species upon UV light irradiation which can be misleadingly counted as products, a blank experiment with an empty tube reactor was performed (Fig. 2).

After flushing out the remaining atmospheric air inside the reactor with He (50 mL min⁻¹), the flow rate was decreased to 5 mL min⁻¹ (0 h, Fig. 2). Then the gas flow was held for 0.75 h. In this period of time the concentration of CO₂ and O₂ increased. From 0.75 to 1.5 h the He flow rate was increased to 10 mL min⁻¹ and a decrease in the concentration of both species was observed as a consequence of the higher dilution with inert gas. In the following, the gas flow was decreased again to 5 mL min⁻¹. It can be seen that the concentration of CO₂ and O₂ from 0.75 h can be reproduced at 2.25 h. Due to the absence of illumination it is assumed that environmental CO₂ and O₂ diffused through the tube walls. Starting from 2.25 h the UV illumination was initiated. No significant release of CO₂ and CH₄ was observed under the influence of UV light.

Furthermore, the presence of CO, H₂ and C₂H₆ (not shown in Fig. 2) can be excluded. This result shows that the FEP tube is physicochemically stable against UV light irradiation, thus its use is suitable for the purpose of this work. However, since we know from our previous work¹⁵ that O₂ inhibits the photocatalytic CO₂ reduction, it was decided to study the diffusion properties of the FEP tube in detail. More specifically the amount of incoming O₂ as a function of the tube length reactor. An increase of the O₂ concentration by 0.33 ppm cm⁻¹ of reactor was determined from the slope of the linear fit (Fig. 3, red line). Most likely diffusion of O₂ from air is the reason for this observation. To verify the UV-transparency of the reactor material, the relative transmission of the FEP tube was determined via UV-Vis spectroscopy (Fig. 4, blue line). At 365 nm, the emitted wavelength of the UV-LEDs, the relative transmission is 60%. This indicates that a significant fraction of the light intensity does not reach the photocatalysts surface, likely due to absorption and scattering phenomena. As the absorption of photons by the FEP tube could result in heating of the reactor, the temperature inside the tube under photocatalytic reaction conditions was determined, since thermal energy was found to influence the activity in CO₂ reduction on TiO₂₁⁶.

Consequently, a thermocouple was placed in a fixed bed of TiO₂ (P25) in the FEP tube. In the temperature profile in Fig. 5 it can be seen that the temperature inside the reactor increases from 23.1 to 26.2 °C under the applied illumination con-
ditions. Hence, the air stream inside the PTFE tube seems to be sufficient to keep the reactor temperature close to room temperature.

After verification of the suitability of the reactor material and setting the optimum experimental conditions at which the set-up can be used for the photocatalytic CO$_2$ reduction, two tube reactors were prepared with P25 as photocatalyst. Previously, the P25 sample was calcined at 400 °C for 3 h. This pretreatment allows a first oxidative removing of carbonaceous impurities. The sample was pressed and sieved and the mesh size 0.28 mm fraction was filled into the tube using a funnel.

A small plug of glass wool at the reactor outlet and inlet kept the fixed bed in the reactor. For testing the set-up, reactors with lengths of 14 and 26 cm were prepared and filled with 223 and 680 mg of P25, respectively. In Fig. 6 the formation of CH$_4$ in the cleaning procedure and the CO$_2$ reduction with the 26 cm reactor is shown exemplarily.

To flush out the remaining air inside the FEP tube, the reactor was purged with He (50 mL min$^{-1}$) for 30 min. Subsequently, remaining carbonaceous impurities were removed during the flow cleaning procedure (5 mL He min$^{-1}$) under UV irradiation (Fig. 6). Since the powder was in contact with ambient air during the sample filling, the P25 sample was expected to be covered by multilayers of physisorbed water.17 GC measurements were carried out every 45 min to monitor the cleaning progress.

The duration of the cleaning procedure depends on the concentration of carbon-containing species on the photocatalyst. The products of the cleaning procedure are CH$_4$ and CO$_2$. As shown in our previous reports,15 CH$_4$ originates from hydrogenation of carbon-containing impurities and from the photocatalytic reduction of trace amounts of CO$_2$ in the He purging gas. The photocatalytic CO$_2$ reduction experiment is started as soon as the CH$_4$ concentration is almost constant. Then it is assumed that all carbonaceous species are removed and CH$_4$ is formed from CO$_2$ in the He purge gas. For both reactors the CO$_2$ reduction is initiated after 3 h of photocatalytic cleaning (Fig. 6) by changing the gas flow from pure He to the reactant gas mixture (7000 ppm CO$_2$ in He, optimal...
reactant concentration in previous studies15-16). The flow rate of 5 mL min$^{-1}$ is maintained and the UV illumination is continued without interruption. No additional H$_2$O is dosed to the reactor since we verified in previous experiments that continuous dosing of H$_2$O can lower the activity of P25 in the CO$_2$ reduction reaction due to competitive adsorption phenomena and occupation of active sites.16 The present amounts of H$_2$O on P25 are sufficient to run the CO$_2$ reduction for the desired timeframe.16 It becomes obvious from Fig. 6 that the CH$_4$ flow rate increases when CO$_2$ is dosed to the tubular reactor.

In Table 1 the overall formation rates of CH$_4$ with the 14 and 26 cm reactor are shown. Since the activity of the photocatalytic reaction is dependent on the amount of exposed surface area, it becomes clear that the activity scales with the length of the reactor and the amount of TiO$_2$, respectively. However, it is obvious that the correlation with the formation rates is not linear, most likely due to differences in the illumination conditions and the sample filling. The obtained concentrations of O$_2$ displayed in Table 1 correspond to the linear fit in Fig. 3. The results also indicate that there is no increased inhibitive effect which scales with the reactor length and thus the higher amounts of O$_2$.

To investigate the performance of the tubular reactor setup, photocatalytic CO$_2$ reduction was also conducted with an overflow reactor. The results are then compared to those from the 14 cm reactor. A detailed description of the overflow reactor geometry was made by Mei \textit{et al.}18 In this all-stainless steel reactor design, the catalyst is illuminated from above through the quartz reactor lid with a UV-LED (0.82 W output). The reactors only pass the surface of a fixed bed of 70 mg pre-cleaned P25 resulting in a significantly less intensive interaction between the gas-phase and the photocatalyst. Due to the O$_2$ permeability of the FEP tube it was decided to use the experimental results obtained with the smaller tube for a comparison with the overflow reactor. In this way similar reaction conditions are established, except for the gas–solid interaction. This comparison is the basis for an evaluation of the effect of the gas–solid interaction on the activity of photocatalytic CO$_2$ reduction on TiO$_2$.

The formation rates of CH$_4$ obtained in this study from both different reactor designs are shown in Table 2. The rates are related to the mass of P25 (g_{cat}) and the geometric illuminated area to evaluate the effect of the illumination conditions and the gas–solid interaction, respectively. Only the fraction of surface area which is directly illuminated was considered to be the geometric surface, \textit{i.e.} the half of the inner tube surface and the bottom size of the overflow reactor. It can be clearly seen that the overflow reactor shows a higher CH$_4$ formation rate related to the mass of P25 (Table 2). Most likely a large mass fraction of P25 inside the tube is not illuminated due to the small penetration depth of UV light, the tubular geometry and the arrangement of illumination. Consequently, only a minor amount of photocatalyst is excited. This result clearly shows that the activity in the photocatalytic CO$_2$ reduction reaction is strongly dependent on the illuminated fraction of the surface area. For comparison of the rates related to the geometric illuminated area it needs to be stressed that the transmission of the overflow reactor lid (89\% at 365 nm, Fig. 4) exceeds that of the FEP reactor. Although the same kind of UV LED is used for the two reactor types, the light intensity impinging on the exposed surface of the photocatalyst will be lower for the FEP reactor. Still, the comparison of the rates related to the geometric illuminated area reveals a higher activity for the tubular reactor, although the light intensity is lower. It verifies that the improved gas–solid interaction in the tubular reactor is beneficial for the activity in photocatalytic CO$_2$ reduction.

Conclusions

This study shows the successful development of a scalable tubular reactor for the gas-phase photocatalytic CO$_2$ reduction on TiO$_2$. For the development of new reactor geometries for the photocatalytic CO$_2$ reduction it is essential that the illuminated fraction of photocatalyst is maximized and the interaction of the reactants in the gas-phase with the photocatalyst is intensive. In general, a tubular reactor geometry is an appropriate choice to overcome the abovementioned problems. However, with respect to the O$_2$ diffusion properties, FEP as material appears to be less applicable for the scalability as a photoreactor for the photocatalytic CO$_2$ reduction, as an inhibition of the product formation due to increased amounts of O$_2$ in the reactor might occur for elongated reactors. While the reactor design certainly has its limitations in photocatalytic CO$_2$-reduction, its simple and scalable design might be very interesting for other groups examining different photocatalytic reactions or materials. A suggested alternative could be quartz glass, as it is transparent to UV light and prevents the diffusion of O$_2$ into the reactor from the environment. The utilization of quartz capillaries would provide intensive gas–solid interaction and the small inner diameter would improve the illumination conditions. Furthermore, the reactor can be arranged in a centered geometry relative to the light source. This will result in the illumination of the whole tube and an improved UV excitation of the photocatalyst.

Table 1 Summary of CH$_4$ formation rates in the tube reactors

<table>
<thead>
<tr>
<th></th>
<th>14 cm</th>
<th>26 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall CH$_4$ formation rate/nmol h$^{-1}$</td>
<td>1.4</td>
<td>3.6</td>
</tr>
<tr>
<td>O$_2$ concentration (end of reactor)/ppm</td>
<td>4.7</td>
<td>13</td>
</tr>
</tbody>
</table>

Table 2 Comparison of the overall formation rates of CH$_4$ with the 14 cm tube reactor and an overflow reactor geometry

<table>
<thead>
<tr>
<th></th>
<th>Tube reactor</th>
<th>Overflow reactor</th>
</tr>
</thead>
<tbody>
<tr>
<td>rCH$_4$/nmol cm$^{-2}$ h$^{-1}$</td>
<td>0.42</td>
<td>0.26</td>
</tr>
<tr>
<td>rCH4/nmol g${\text{cat}}$ h$^{-1}$</td>
<td>6.3</td>
<td>23</td>
</tr>
</tbody>
</table>
Conflicts of interest

There are no conflicts to declare.

Acknowledgements

Open Access funding provided by the Max Planck Society.

Notes and references

