Nanoscale

CORRECTION

View Article Online
View Journal | View Issue

Cite this: Nanoscale, 2019, 11, 22134

Correction: MoS₂ nanoflowers encapsulated into carbon nanofibers containing amorphous SnO₂ as an anode for lithium-ion batteries

Huanhui Chen, Jiao He, Guanxia Ke, Lingna Sun,* Junning Chen, Yongliang Li, Xiangzhong Ren,* Libo Deng and Peixin Zhang

DOI: 10.1039/c9nr90247c rsc.li/nanoscale

Correction for ' MoS_2 nanoflowers encapsulated into carbon nanofibers containing amorphous SnO_2 as an anode for lithium-ion batteries' by Huanhui Chen et al., Nanoscale, 2019, **11**, 16253–16261.

The authors have noticed that there were a number of errors in Fig. 7(c-f) in the original article, as well as in the caption. A corrected version of Fig. 7 and its caption is therefore provided below.

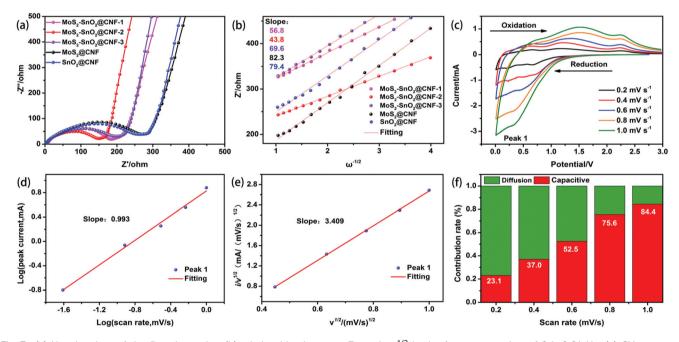


Fig. 7 (a) Nyquist plots of the five electrodes; (b) relationships between $Z_{\rm re}$ and $\omega^{-1/2}$ in the frequency region of 0.1–0.01 Hz; (c) CV curves at different scan rates of 0.2, 0.4, 0.6, 0.8 and 1.0 mV s⁻¹; (d) corresponding $\log(i)$ versus $\log(v)$ plots of the MoS₂-SnO₂@CNF-2 electrodes; (e) corresponding $i/v^{1/2}$ versus $v^{1/2}$ plots of the MoS₂-SnO₂@CNF-2 electrodes; (f) normalized ratio of the capacitive- and diffusion-controlled contributions at different scan rates of the MoS₂-SnO₂@CNF-2 electrode.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China. E-mail: renxz@szu.edu.cn, lindasun1999@126.com; Fax: +86-755-26558134; Tel: +86-755-26558134