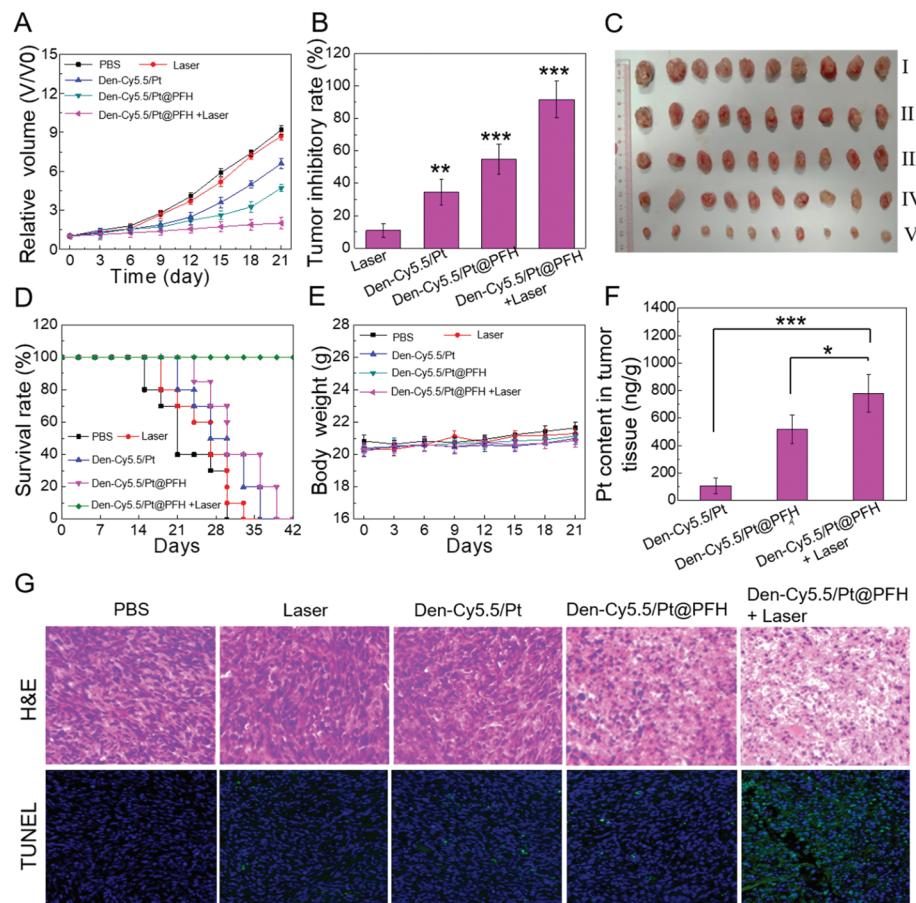


Cite this: *Nanoscale*, 2019, **11**, 13659

DOI: 10.1039/c9nr90153a
rsc.li/nanoscale


Correction: A photoacoustic shockwave triggers the size shrinkage of nanoparticles to obviously improve tumor penetration and therapeutic efficacy

Rong Chen,^{a,b} Qun Chen,^{a,b} Huan Qin^{*a,b} and Da Xing^{a,b}

Correction for 'A photoacoustic shockwave triggers the size shrinkage of nanoparticles to obviously improve tumor penetration and therapeutic efficacy' by Rong Chen *et al.*, *Nanoscale*, 2019, **11**, 1423–1436.

The authors have noticed that the H&E-stained tumor histology image in the 'PBS' treatment group shown in Fig. 6G in the originally published article is actually from the 'Laser' treatment group. A corrected version of Fig. 6 is therefore provided below. The authors confirm that this does not affect the results and conclusions of the study due to there being no pathological changes observed in the samples treated with PBS or Laser alone.

Fig. 6 The *in vivo* antitumor effects of Den-Cy5.5/Pt@PFH. (A) The relative tumor volume for various treatment groups (B) the tumor inhibitory rates for different treatment groups. (C) Photographs of all tumor tissue after different treatments (I: PBS; II: laser; III: Den-Cy5.5/Pt; IV: Den-Cy5.5/Pt@PFH; V: Den-Cy5.5/Pt@PFH + laser). (D) The survival rate for various treatment groups. (E) Body weights were measured over the 21 day evaluation period for mice under different treatments. (F) The quantification of the Pt content in tumor tissue. Mice were killed 24 h post-injection, and tumors were excised. (G) H&E staining images of tumors from different groups. Data are presented as mean \pm SD ($n = 10$); * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

