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Static magnetization of immobilized, weakly
interacting, superparamagnetic nanoparticles

Ekaterina A. Elfimova, a Alexey O. Ivanov a and Philip J. Camp *a,b

The magnetization curve and initial susceptibility of immobilized superparamagnetic nanoparticles are

studied using statistical–mechanical theory and Monte Carlo computer simulations. The nanoparticles are

considered to be distributed randomly within an implicit solid matrix, but with the easy axes distributed

according to particular textures: these are aligned parallel or perpendicular to an external magnetic field,

or randomly distributed. The magnetic properties are calculated as functions of the magnetic crystallo-

graphic anisotropy barrier (measured with respect to the thermal energy by a parameter σ), and the

Langevin susceptibility (related to the dipolar coupling constant and the volume fraction). It is shown that

the initial susceptibility χ is independent of σ in the random case, an increasing function of σ in the parallel

case, and a decreasing function of σ in the perpendicular case. Including particle–particle interactions

enhances χ, and especially so in the parallel case. A first-order modified mean-field (MMF1) theory is

accurate as compared to the simulation results, except in the parallel case with a large value of σ. These

observations can be explained in terms of the range and strength of the (effective) interactions and corre-

lations between particles, and the effects of the orientational degrees of freedom. The full magnetization

curves show that a parallel texture enhances the magnetization, while a perpendicular texture suppresses

it, with the effects growing with increasing σ. In the random case, while the initial response is independent

of σ, the high-field magnetization decreases with increasing σ. These trends can be explained by the

energy required to rotate the magnetic moments with respect to the easy axes.

1. Introduction

Since the 1950s, magnetic particles have been actively used in
many technological applications, and especially in magnetic
recording and data storage. Magnetic elastomers are produced
by embedding magnetic nanoparticles in a rubber matrix,
while magnetic fluids are comprised of magnetic nano-
particles suspended in an inert carrier liquid. Single-domain,
nanometre-scale magnetic particles can be considered as
elementary magnetic units. Embedding a large number of
such particles into a matrix makes it possible to control the
properties of a composite material using an external magnetic
field, and it is this control which is exploited in modern
technologies. So-called magnetic soft matter includes ferro-
fluids,1 magnetorheological fluids, magnetic elastomers2–5

and ferrogels,6–8 ferronematic liquid crystals,9–11 and various
biocompatible magnetic suspensions,12–16 which are applied

in targeted drug delivery and magnetic hyperthermia.17–22 In
addition to technical and biomedical applications, magnetic
nanoparticle ensembles are also useful in colloid technology,
because of interesting self-assembly processes.23

The fundamental magnetic properties of single super-
paramagnetic and ferromagnetic nanoparticles have been
studied in detail, including the composition and architecture
of the particles, and the effects on the static and dynamic
responses to applied magnetic fields.24–29 The effects of inter-
actions between magnetic nanoparticles have been investi-
gated experimentally30–32 and in computer simulations.33–37

The links between the basic magnetic properties – such as the
dynamic magnetic susceptibility spectrum – and power
dissipation38 have been explored in the context of medical
applications, such as hyperthermia treatments.39–41 The effects
of the carrier liquid on heat dissipation have also been
investigated.42

The effects of magnetic interactions on the bulk properties
of magnetic liquids are well understood. In particular, the
magnetization curve M(H) and the initial susceptibility χ =
(∂M/∂H)H=0 of ferrofluids can be predicted accurately using
statistical–mechanical theory,43–45 as tested against experi-
mental measurements46 and computer simulations.47–49 In
such systems, whether the particles are superparamagnetic or
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ferromagnetic is unimportant, as long as the particles are free
to rotate.

In this work, the response of interacting superparamagnetic
nanoparticles (SNPs) immobilized in a solid matrix to an
applied magnetic field is studied using statistical–mechanical
theory and computer simulations. Here, the SNPs are dis-
persed uniformly throughout the matrix, while the orien-
tations of the easy axes are subjected to various types of textur-
ing. The orientation of a nanoparticle’s magnetic moment is
assumed to display uniaxial anisotropy, meaning that there is
only one easy axis of alignment. The magnetization curve and
the initial susceptibility are therefore controlled by the energy
barrier separating the two degenerate alignments of a nano-
particle’s magnetic moment with respect to its easy axis, the
interaction energy between dipoles and the field, and the inter-
actions between dipoles on different particles. The latter two
effects are strongly influenced by the direction and degree of
alignment of the easy axes with respect to the applied mag-
netic field. Herein, parallel, perpendicular, unidirectional, and
isotropic distributions are considered. The reason for these
choices is that the easy axes can be aligned in a liquid precur-
sor solution using a strong magnetic field before initiating a
chemical reaction or physical process that solidifies the sus-
pending medium. The probing field can then be applied at
any angle with respect to the easy-axes. The isotropic distri-
bution is, of course, the default situation without any field
applied during synthesis. It will be shown theoretically that
interactions and textures have huge effects on the magnetic
response, and particularly on the magnitude of χ, which is of
course anisotropic in the case of the easy axes being aligned.
Interactions can only be treated in an approximate manner,
and in this work, the first-order modified mean-field (MMF1)
approach will be exploited.43–45 The role of magnetic inter-
actions between particles will nonetheless be shown to be sub-
stantial, and the accuracy of this approach will be demon-
strated by comparison with Monte Carlo (MC) simulations.
This type of system has been studied before. Carrey et al.
studied the dynamic response of immobilized SNPs with paral-
lel and isotropic distributions of the easy axes, using Stoner-
Wohlfarth models and linear-response theory.50 Elrefai et al.
established empirical expressions for the magnetization curves
of immobilized non-interacting SNPs by fitting to numerical
simulations, and then compared the results to experimental
data.51 The novelty of the current work is that the static mag-
netic properties of immobilized SNPs are expressed in analyti-
cal form, and with interactions taken into account according
to systematic statistical–mechanical theory.

The rest of the article is organized as follows. The essential
features of SNPs, and the particle model adopted in this work,
are defined in section 2. The statistical–mechanical framework
of the theory is outlined in section 3, and the application to
immobilized and orientationally textured systems is detailed in
section 4. The MC simulations are described in section 5. The
results are presented in section 6, in the form of direct compari-
sons between theory and simulation for various cases of orienta-
tional texture. The conclusions are presented in section 7.

2. Superparamagnetic nanoparticles

This work concerns the magnetic properties of interacting
SNPs with a typical diameter of ∼10 nm, and it is important
to define clearly the internal structure of the particles. The
particles are considered to be spherical, and smaller than the
size of a single magnetic domain in the bulk material. Hence,
the particle should be homogeneously magnetized, but the
problem is that the magnetization is less than that in the
bulk material. Qualitatively, this difference can be explained
by the partial frustration of the spin order close to the par-
ticle surface, as shown in Fig. 1(a). An additional effect is
that, with commonly used iron-oxide materials, incomplete
oxidation of the magnetic core leads to a suppression of its
magnetic moment. For example, magnetite (Fe3O4) or maghe-
mite (Fe2O3) nanoparticles may actually contain some wustite
(FeO).52 As a result of both of these effects, the magnetization
of the material becomes dependent on the particle size, and
this dependence cannot be calculated easily from first prin-
ciples. To overcome these problems, a core–shell model is
assumed, in which each particle contains an inner, uniformly
magnetized spherical core, the magnetization of which is
equal to the bulk magnetization of the material; see Fig. 1(b).
The core is surrounded by a so-called ‘dead magnetic layer’,
which is a non-magnetic shell. Usually, the particles are also
covered with an adsorbed layer of surfactant molecules,
which provides steric stabilization against irreversible particle
coagulation. Thus, the particle is characterized by several
dimensions: (i) the diameter of the internal magnetized core
x, which determines the particle magnetic moment; (ii) the
diameter of the solid part of the particle, which largely deter-
mines its mass; and (iii) the hydrodynamic diameter d > x,
which includes the magnetized core, the dead layer, and the

Fig. 1 Model of a superparamagnetic nanoparticle. (a) The magnetic
ordering of the spins is partially frustrated close to the particle surface,
and so the magnetization is less than the magnetization of the bulk
material. (b) The core–shell model of the magnetic nanoparticle. The
internal magnetic core with diameter x is assumed to be uniformly mag-
netized without any frustration of the spins. The external particle dia-
meter d > x includes both the non-magnetic surface layer and the
adsorbed surfactant layer which prevents particle coagulation. (c) The
orientation of the particle is given by the body-fixed, magnetic easy axis
vector n. The orientation of the particle magnetic moment m can be
different from the easy-axis vector due to superparamagnetic
fluctuations.
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surfactant layer. d determines both the translational and
rotational Brownian mobilities of the particles, which are
important for ferrofluids because all translational and
rotational degrees of freedom are active. Evidently, in the
absence of an external magnetic field, the Brownian motion
results in a uniform equilibrium distribution of the orien-
tations of the particle magnetic moments. The core–shell
model is very convenient for determining the magnetic inter-
actions between particles, because the interaction between
two uniformly magnetized spheres is exactly equivalent to
that between two point dipoles, without any multipolar
corrections.53

The next issue is the orientation of the magnetic moment
m inside the body of a particle. The Brownian translations
and rotations of immobilized particles are suppressed, and
so the magnetic moment can vary only by superparamagnetic
fluctuations (the Néel mechanism). In the simplest case, the
crystalline structure of the magnetic material has only one
axis of easy magnetization (uni-axis magnetization).
Therefore, the orientation of the particle is defined by the
direction of the magnetic easy axis, denoted by the vector n;
see Fig. 1(c). The magnetic moment of a particle has two
degenerate ground-state directions, these being parallel and
anti-parallel to the easy axis. The potential energy UN as a
function of the angle between m and n is shown schemati-
cally in Fig. 2. The energy barrier is proportional to the
volume of the magnetic core vm = πx3/6, and the magnetic
crystallographic anisotropy constant K, a material property.
For common nanosized particles, the barrier (Kvm) may be
comparable to the thermal energy, and so thermal fluctu-
ations result in stochastic reorientations of the magnetic
moment. The mean value of the particle magnetic moment,
measured over a long time, will be equal to zero. This behav-
iour is known as Néel superparamagnetism, and it is a

characteristic of nanosized particles only. Superparamagnetic
fluctuations are commonly described as the thermally acti-
vated rotations of the magnetic moment inside the particle
magnetic core. Importantly, this mechanism means that even
if particle positions and orientations (easy axes) are frozen,
the magnetic moments are still able to rotate, subject to the
potential energy UN, and the interactions with the field and
other magnetic moments.

Putting all of this together, the total potential energy
of a configuration of N identical SNPs can be written in the
form

U ¼
XN
i¼1

UNðiÞ þ UmðiÞ½ � þ
XN�1

i¼1

XN
j>i

UHS i; jð Þ þ Ud i; jð Þ½ � ð1Þ

where the first term contains the single-particle energies,
these being the Néel energy (UN), and the interaction energy
between a magnetic moment and an applied field H (Um), and
the second term includes hard-sphere (UHS) and dipolar (Ud)
interactions between pairs of particles. The HS potential pre-
vents overlaps of particles with hydrodynamic diameter d, and
the remaining potentials are as follows.

UNðiÞ ¼ �Kvmðm̂i � n̂iÞ2 ð2Þ

UmðiÞ ¼ �μ0ðmi �HÞ ¼ �μ0mHðm̂i � ĥÞ ð3Þ

Udði; jÞ ¼ μ0m
2

4πrij3
m̂i � m̂j
� �� 3 m̂i � r̂ij

� �
m̂j � r̂ij
� �� � ð4Þ

m̂ and n̂ are unit vectors, μ0 is the vacuum magnetic per-
meability, m = vmM0 is the magnitude of each particle mag-
netic moment, where M0 is the magnetization of the bulk
material, the applied magnetic field H has strength H and
orientation ĥ, and rij = rijr̂ij is the centre–centre separation
vector between particles i and j. Associated with these inter-
actions are several dimensionless parameters, which measure
the corresponding energies with respect to the thermal
energy kBT, where kB is Boltzmann’s constant, and T is the
temperature.

σ ¼ Kvm
kBT

ð5Þ

λ ¼ μ0m
2

4πd3kBT
ð6Þ

α ¼ μ0mH
kBT

ð7Þ

σ is the anisotropy parameter, λ is the dipolar coupling con-
stant characterizing the particle–particle interactions, and α is
the Langevin parameter characterizing the particle–field
interactions.

The essential point here is that the magnetic response of
immobilized particles is dictated by the internal rotation of
the magnetic moments within the particles, rather than by the
Brownian rotation of the particles. In sections 3 and 4, the
magnetization curve and initial susceptibility will be calcu-

Fig. 2 Potential energy UN as a function of the angle between the mag-
netic moment m and the easy axis n inside a single-domain SNP. The
ground states are at angles equal to zero and π radians. The maximum of
the energy barrier corresponds to the perpendicular orientation (π/2
radians). The energy is shown in the units of thermal energy kBT.
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lated for systems of particles with various types of orienta-
tional distributions of the easy axes (n̂). These results will be
compared with those for ferrofluids, which will highlight the
effects of the textures. The sample geometries and textures
studied in this work are illustrated in Fig. 3. Fig. 3(a) rep-
resents the case of a ferrofluid, where the particles translate
and rotate under the influence of Brownian forces, and the
particle–particle and particle–field interactions. Fig. 3(b)
shows an immobilized system, where the easy axes are aligned,
and the particle positions are random. Fig. 3(c) shows an
immobilized system in which the particle positions and easy
axes are distributed randomly.

In all cases, the sample container is taken to be a highly
elongated cylinder aligned along the laboratory z axis, and the
applied magnetic field H = H(0, 0, 1) is in the same direction.
This means that demagnetization effects can be neglected,
and the internal magnetic field can be taken to be the same as
the external applied field H. The centre-of-mass position of a
particle is the radius vector ri = rir̂i, where r̂i = (sin θi cos ϕi,
sin θi sin ϕi, cos θi), θi is the polar angle with respect to the lab-
oratory z axis, and ϕi is the azimuthal angle with respect to the
laboratory x axis. The orientation (easy axis) of a particle is the
unit vector n̂i = (sin ξi cos ψi, sin ξi sin ψi, cos ξi), where ξi and ψi
are, respectively, the polar and azimuthal angles in the labora-
tory frame. The magnetic moment on a particle is mi = mm̂i,
where m̂i = (sinωi cos ζi, sinωi sin ζi, cosωi), and ωi and ζi are,
respectively, the polar and azimuthal angles in the body-fixed
frame of the particle. These vectors are shown in Fig. 1(c). Now
the problem is to study the magnetic properties of a system of
N particles in a container with volume V at temperature T. The
particle concentration ρ = N/V can be expressed in the dimen-
sionless form ρd3, or converted into the hard-sphere volume
fraction φ = πρd3/6.

3. Theory
3.1. First-order modified mean-field theory

The magnetization M of the sample is equal to the projection
of a randomly chosen magnetic moment (on particle number
1, for example) onto the magnetic field direction (laboratory z
axis), weighted by the one-particle distribution function W(1),
averaged over all possible orientations, and multiplied by the
particle concentration:

M ¼ ρm
ð
dm̂1

ð
dn̂1

ð
dr1
V

m̂1 � ĥ
� �

Wð1Þ: ð8Þ

The integration over the unit vector m̂i is defined as

ð
dm̂i ¼ 1

4π

ð2π
0
dζi

ð1
�1

d cos ωi ð9Þ

so that
Ð
dm̂i � 1 ¼ 1. A similar definition applies to n̂i, ξi, and

ψi. The integration over the particle position ri is defined as

ð
dri ¼ lim

R!1

ð2π
0
dϕi

ð1
�1

d cos θi

ðR= sin θi

0
r2i dri ð10Þ

where the domain of integration is a cylinder with volume V,
the radius R is infinitely larger than the particle diameter in
the thermodynamic limit, and

Ð
dri � 1 ¼ V . The saturation

magnetization of the system is equal to M∞ = ρm. The one-par-
ticle distribution function W(1) is given by the Boltzmann dis-
tribution for the N-particle system averaged over all degrees of
freedom except for those of particle 1.

Wð1Þ ¼ 1
Q

YN
k¼2

ð
dm̂k

ð
dn̂k

ð
drk
V

exp �U=kBTð Þ ð11Þ

Q is the partition function, given by the integral of the
Boltzmann factor exp(−U/kBT ) over the degrees of freedom for
all N particles. Differentiating eqn (11) with respect to m̂1 gives

dWð1Þ
dm̂1

¼ �Wð1Þ
kBT

d UNð1Þ þ Umð1Þ½ �
dm̂1

� ρ

kBT

ð
dm̂2

ð
dn̂2

ð
dr2

dUd 1; 2ð Þ
dm̂1

g2 1; 2ð Þ
ð12Þ

where g2(1, 2) is the pair correlation function determining the
mutual probability density for two particles (1 and 2) to be
found with a particular set of positions and orientations.

g2 1; 2ð Þ ¼ 1
Q

YN
k¼3

ð
dm̂k

ð
dn̂k

ð
drk
V

ð
exp �U=kBTð Þ ð13Þ

It is only the last term in eqn (12) that describes the
interparticle correlations. In the limit of low concentration
ρ → 0, the system becomes an ideal paramagnetic gas of
non-interacting particles. Omitting the correlation term, the
ideal one-particle probability density W0(1) is then the solu-
tion of

dW0ð1Þ
dm̂1

¼ W0ð1Þ d
dm̂1

�UNð1Þ
kBT

� Umð1Þ
kBT

� 	
ð14Þ

Fig. 3 Sketches of the samples studied: (a) suspension of SNPs under-
going Brownian motion and Néel rotation; (b) immobilized randomly
distributed SNPs with perfect alignment of the magnetic easy axes in
some direction; (c) immobilized randomly distributed SNPs with no
alignment of the magnetic easy axes. In all cases the samples are
confined to a highly elongated cylindrical container, with the magnetic
field applied along the cylinder axis. The arrows indicate the directions
of the easy axes n, and the projections of the magnetic moments m on
n can be positive or negative.
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which gives

W0ð1Þ ¼ 1
Z0

exp σ m̂1 � n̂1ð Þ2þα m̂1 � ĥ
� �h i

ð15Þ

where Z0 is the normalization constant.
The next step is to identify the effects of interparticle

correlations, represented by the second term in eqn (12). It
contains factors of concentration ρ and Ud/kBT ∼ λ, in
addition to the dependence of g2(1, 2) on those variables.
The following development is limited to the regime of low
concentration (ρd3, φ ≪ 1), and weak-to-moderate inter-
actions (λ ∼ 1). The leading-order correction to eqn (12) is of
order φλ, and can be separated out by neglecting the con-
centration dependence of the pair correlation function, and
writing it as a product of two one-particle distribution
functions:

g2ð1; 2Þ ¼ Wð1ÞW0ð2ÞΘð1; 2Þ þ OðφλÞ: ð16Þ

Θ(1, 2) = exp[−UHS(1, 2)/kBT] is the Heaviside step-function,
describing the impenetrability of two particles. Combining
eqn (12) and (16) gives

dWð1Þ
dm̂1

¼ Wð1Þ d
dm̂1

�UNð1Þ
kBT

� Umð1Þ
kBT

þ Ueffð1Þ
� 	

ð17Þ

where Ueff(1) represents an additional effective energy term
arising from interactions between particle 1 and the other N − 1
particles.

Ueffð1Þ ¼ ρ

ð
dm̂2

ð
dn̂2

ð
dr2 �Ud 1; 2ð Þ

kBT

� 	
W0ð2ÞΘ 1; 2ð Þ ð18Þ

The solution of eqn (17) is then the one-particle distribution
function

Wð1Þ ¼ 1
Z
exp σ m̂1 � n̂1ð Þ2þα m̂1 � ĥ

� �
þ Ueffð1Þ

h i
: ð19Þ

Comparing this result with the corresponding equation
for the ideal paramagnetic system (15) makes the
meaning of −Ueff(1)kBT absolutely clear: it represents the
average interaction energy between particle 1 and the
effective magnetic field produced by the N − 1 other
particles in the system. As a result, this theoretical
approach is called the first-order modified mean-field
(MMF1) theory.43–45

3.2. Evaluation of Ueff in the case of a highly elongated
cylindrical sample

The integration in Ueff (18) can be separated into an average
over all possible orientations of the magnetic moment of
particle 2, and an integration over all possible positions of
particle 2.

Ueffð1Þ ¼ μ0ρm
2

4πkBT

ð
dm̂2

ð
dn̂2W0ð2Þ

�
ð
dr2

Θ 1; 2ð Þ
r123

3 m̂1 � r̂12ð Þ m̂2 � r̂12ð Þ � m̂1 � m̂2ð Þ½ �

¼ 1
2
ρd3λ

ð
dm̂2

ð
dn̂2W0ð2Þ

� 3 m̂1zm̂2zð Þ � m̂1 � m̂2ð Þ½ �
ð
dr

Θ r � dð Þ
r3

3r̂2z � 1
� �

¼ 2π
3
ρd3λ

ð
dm̂2

ð
dn̂2W0ð2Þ 3 m̂1zm̂2zð Þ � m̂1 � m̂2ð Þ½ �:

ð20Þ
Here the subscript z indicates the z components of the corres-
ponding vectors. The last expression can be written in the suc-
cinct form

Ueffð1Þ ¼ ðm̂1 � GÞ ð21Þ
where the components of the vector G=(Gx, Gy, Gz) are defined by

Gx ¼ � 1
2
χL

ð
dm̂2

ð
dn̂2m̂2xW0ð2Þ ð22aÞ

Gy ¼ � 1
2
χL

ð
dm̂2

ð
dn̂2m̂2yW0ð2Þ ð22bÞ

Gz ¼ χL

ð
dm̂2dn̂2 m̂2 � ĥ

� �
W0ð2Þ: ð22cÞ

Here χL is the Langevin initial susceptibility

χL ¼ μ0ρm
2

3kBT
¼ 4πρd3λ

3
¼ 8φλ ð23Þ

for a system of non-interacting particles. Hence, the interaction
correction term is linear in χL ∼ φλ, which is the essence of the
MMF1 theory. The range of validity of the MMF1 approach is χL
≤ 3.46,48 An important feature of the MMF1 approach is that Gz

is the component directed along the external magnetic field
direction, and is defined similarly to the magnetization (8).
More precisely, Gz is proportional to the relative magnetization
of an ideal system of non-interacting particles, which is deter-
mined by the ideal probability density W0.

3.3. Soft magnetic nanoparticles (σ → 0)

In this limit, the magnetic cores of the SNPs are very small, so
that Kvm ≪ kBT. For example, for 5 nm magnetite nano-
particles at room temperature, with a typical value of the mag-
netic anisotropy constant K ≃ 10 kJ m−3, the dimensionless an-
isotropy parameter is σ ≃ 0.2. Hence, the intraparticle energy
barrier is very low, and the magnetic moment may rotate with
respect to the easy axis. Therefore, the orientations of the easy
axes are unimportant, and they can be integrated out trivially.
In this case, G = (0, 0, χLL(α)) where

LðαÞ ¼ coth α� 1
α

ð24Þ

is the Langevin function. The one-particle distribution func-
tion (19) is then

Wð1Þ ¼ αeff
sinh αeff

exp αeff m̂1 � ĥ
� �h i

ð25Þ
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where αeff = α + χLL(α) is an effective Langevin parameter,
including the interactions between particles. The magnetiza-
tion and the initial magnetic susceptibility are then given by

M ¼ M1LðαeffÞ; ð26aÞ

χ ¼ χL 1þ 1
3
χL


 �
: ð26bÞ

These expressions are valid for infinitely soft magnetic nano-
particles irrespective of whether they are suspended in a liquid
and may translate or rotate freely, or they are immobilized in
some rigid matrix. The only requirement is that the spatial dis-
tribution of particles inside the sample is uniform, i.e., no
extensive self-assembly induced by magnetic or other colloidal
forces takes place. The expressions in eqn (26) are coincident
with the MMF1 predictions developed earlier for fluids of
spherical particles with central, fixed, point dipoles.44 This
equivalence is discussed further in section 4.

3.4. Ferrofluids

The most significant example of a functional material containing
magnetic nanoparticles is a ferrofluid.1 The particles are sus-
pended in a carrier liquid [Fig. 3(a)], and undergo both Brownian
motion and Néel rotation. Thus, all of the degrees of freedom (m̂i,
n̂i, and ri) are active. The vector G depends on W0(2) given by eqn
(15), with the normalization constant

Z0 α; σð Þ ¼
ð
dm̂i

ð
dn̂i exp σ m̂i � n̂ið Þ2þα m̂i � ĥ

� �h i

¼ sinh α

α


 �
RðσÞ

ð27Þ

where the function

RðσÞ ¼
ð1
0
expðσt2Þdt ð28Þ

was first introduced by Raikher and Shliomis.54 The important
point is that Z0(α, σ) is a product of two functions, one of α
and one of σ. This means that m̂i and n̂i are decoupled from
one another in ferrofluids. Since the system possesses cylindri-
cal symmetry about the laboratory z axis, the components Gx

and Gy are equal to zero. The z component is found to be

Gz ¼ χL
Z0 α; σð Þ

ð
dm̂2

ð
dn̂2 m̂2 � ĥ

� �

� exp σ m̂2 � n̂2ð Þ2þα m̂2 � ĥ
� �h i

¼ χL
Z0 α; σð Þ

@Z0 α; σð Þ
@α

¼ χLL αð Þ:

ð29Þ

This is precisely the same as the result obtained for soft mag-
netic nanoparticles in section 3. Therefore, eqn (26) holds true
for ferrofluids, and the static (equilibrium) magnetization of a
ferrofluid is influenced only by m̂i. It means that the easy axes
of the particles, at equilibrium, adopt a favourable orienta-
tional distribution for a given applied external field due to
Brownian rotation. As a result, the static magnetic properties
of a fluid suspension of SNPs are independent of the height of
the Néel energy barrier σ.

The MMF1 prediction (26) and its second-order correction
(MMF2) were obtained almost twenty years ago for dipolar fluids
that correspond to magnetically hard ferroparticles, with σ ≫ 1.43

Nonetheless, the MMF approach describes the static magnetic
properties of real ferrofluids containing SNPs rather accurately,46

because the Brownian rotation means that the easy axes cannot
influence the equilibrium distribution of the magnetic moments.
The same MMF1 results also apply to soft magnetic particles
(σ → 0) because the Néel rotation of the magnetic moments is
unhindered. The static magnetic properties of dipolar fluids have
been well studied by means of computer simulations (both MC
and molecular dynamics), and the high accuracy of the MMF1
expressions has been demonstrated over the range χL ≤ 3.46,48

Higher-order corrections for treating concentrated ferrofluids at
low temperatures have also been derived.47,49

4. Immobilized nanoparticles

In this section, the static magnetic properties of immobilized
SNPs will be calculated, assuming a uniform distribution of
particles throughout an elongated cylindrical sample. This
case differs strongly from those considered in sections 3.3 and
3.4 because the Brownian motion is suppressed, and the Néel
rotation may be hindered. Instead, the easy axes are distribu-
ted in fixed configurations, according to several different tex-
tures: parallel texture (section 4.1), perpendicular texture
(section 4.2), unidirectional texture (section 4.3), and a
random distribution (section 4.4).

4.1. Parallel texture

Parallel texturing means that all of the easy axes are aligned par-
allel to the laboratory z axis, i.e., n̂i = (0, 0, 1). It corresponds to
the illustration in Fig. 3(b), but with all of the easy axes aligned
along the cylinder axis. This means that (m̂i·n̂i) = (m̂i·ĥ) = cosωi.
The ideal-gas one-particle distribution function is

W0ð1Þ ¼ 1
R1 α; σð Þ exp α cos ω1 þ σ cos2 ω1

� � ð30Þ

where

R1 α; σð Þ ¼ 1
2

ð1
�1

exp αtþ σt2
� �

dt: ð31Þ

Note that R1(α, 0) = sinh(α)/α. By symmetry, Gx = Gy = 0, and
the z component is

Gz ¼ χL
R2 α; σð Þ
R1 α; σð Þ ð32Þ

where

R2 α; σð Þ ¼ 1
2

ð1
�1

exp αtþ σt2
� �

tdt ¼ @R1 α; σð Þ
@α

ð33Þ

¼ exp ðσÞ
2σ

sinh α� α

2σ
R1 α; σð Þ: ð34Þ

Note that R2(α, 0) = L(α)sinh(α)/α. Substituting these
expressions into eqn (21) and (19), gives for the magnetization
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Mk ¼ M1
R2 αk; σ

� �
R1 αk; σ

� � ð35Þ

where

αk ¼ αþ χL
R2 α; σð Þ
R1 α; σð Þ ð36Þ

is the effective Langevin parameter including the interactions
between particles. The initial susceptibility is given by

χk ¼ χLAkðσÞ 1þ 1
3
χLAkðσÞ

� 	
ð37Þ

where

AkðσÞ ¼ 3
dlnRðσÞ

dσ
¼ 3

2σ
exp ðσÞ
RðσÞ � 1

� 	
: ð38Þ

Note that R1(0, σ) = R(σ), and the function Ak(σ) coincides with
the corresponding value introduced by Raikher and
Shliomis.54 For magnetically soft particles, Ak(0) = 1, and then
eqn (35) and (37) coincide with (26). The limit of magnetically
hard particles (σ → ∞) gives Ak → 3 and the largest value of the

initial magnetic susceptibility, χk → 3χL(1 + χL). This limit is
worth mentioning because it corresponds to the case of Ising
particles, the magnetic moments of which are quantized in
only two states: m̂i = ±1. The magnetization (35) in this limit
becomes

Mk ! M1 tanhðαþ χL tanh αÞ ð39Þ
which is similar to eqn (26a) but with the Langevin function
L(α) replaced by the faster growing function tanh α. The typical
behaviour of the magnetization (35) is illustrated in Fig. 4(a)
with σ = 0, 3, and 10, and a rather large value of the Langevin
susceptibility χL = 2 chosen to magnify the effect. Interactions
lead to higher magnetization in comparison with non-interact-
ing particles, and the magnetization also increases with
increasing anisotropy parameter σ.

4.2. Perpendicular texture

Perpendicular texturing is when all of the easy axes are aligned
parallel to the laboratory x axis, and hence perpendicular to
the applied field, i.e., n̂i = (1, 0, 0). This means that (m̂i·n̂i) =
sinωi cos ζi, and (m̂i·ĥ) = cosωi. The ideal-gas one-particle dis-
tribution function is

W0ð1Þ ¼ 1
R3 α; σð Þ exp α cos ω1 þ σ sin2 ω1 cos2 ζ1

� � ð40Þ

where

R3 α; σð Þ ¼
ð1
0
exp σt2

� �
I0 α

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p� �
dt: ð41Þ

Note that R3(α, 0) = R1(α, 0) = sinh(α)/α. By symmetry, Gx = Gy = 0,
and the z component is

Gz ¼ χL
R4 α; σð Þ
R3 α; σð Þ ð42Þ

where

R4 α; σð Þ ¼
ð1
0
exp σt2

� �
I1 α

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p� � ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
dt

¼ @R3 α; σð Þ
@α

:

ð43Þ

Note that R4(α, 0) = R2(α, 0) = L(α)sinh(α)/α. Here I0(z) and
I1(z) are the modified Bessel functions of zero and first
orders, respectively. Following the same development as in
the parallel-texture case, the magnetization in the perpen-
dicular case is

M? ¼ M1
R4 α?; σð Þ
R3 α?; σð Þ ð44Þ

where

α? ¼ αþ χL
R4 α; σð Þ
R3 α; σð Þ ð45Þ

is the effective Langevin parameter including the interactions
between particles. The initial susceptibility is

χ? ¼ χLA?ðσÞ 1þ 1
3
χLA?ðσÞ

� 	
ð46Þ

Fig. 4 Static magnetization curves for immobilized particles with χL =
2, and with parallel (a) and perpendicular (b) textures of the magnetic
easy axes. The results are plotted as the reduced magnetization M/M∞

as a function of the dimensionless magnetic field strength (Langevin
parameter) α. The dashed lines are for non-interacting (NI) particles, and
the solid lines are the theoretical predictions for interacting particles
according to eqn (35) (a) and eqn (44) (b). The relative anisotropy ener-
gies are σ = 0 (black), 3 (red), and 10 (green).
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where

A?ðσÞ ¼ 3
2
� AkðσÞ

2
: ð47Þ

For magnetically soft particles, A⊥(0) = 1, and eqn (44) and (46)
coincide with (26). For magnetically hard particles, A⊥(∞) = 0,
and χ⊥ = 0.

Similar to the parallel-texture case, the interparticle inter-
actions lead to an increase in the magnetization, as shown in
Fig. 4(b). But the growth of the anisotropy parameter results in
the opposite effect, because for higher barriers, a stronger
magnetic field is required to rotate the magnetic moment away
from the easy axis. Hence, the magnetization is a decreasing
function of σ in this case.

4.3. Unidirectional texture

In the general case of perfect alignment [Fig. 3(b)], the easy
axes are oriented at an angle ξ with respect to the magnetic
field; see Fig. 1(c). In this case, n̂i = (sin ξ cos ψ, sin ξ sin ψ,
cos ξ), so that (m̂i·n̂i) = sin ξ sinωi cos(ζi − ψ) + cos ξ cosωi, and
(m̂i·ĥ) = cosωi. An important difference from the preceding
cases is that the one-particle distribution function becomes
dependent on the angles ξ and ψ.

W0ð1Þ ¼ 1
R5 α; σ; ξð Þ

� exp α cos ω1 þ σ sin ξ sin ω1 cos ðζ1 � ψÞ þ cos ξ cos ω1½ �2 �
ð48Þ

Here

R5 α; σ; ξð Þ ¼ 1
2

ð1
�1

exp σt2 þ αt cos ξ
� �

I0 α sin ξ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p� �
dt

ð49Þ
with the special cases R5(α, 0, ξ) = R1(α, 0) = sinh(α)/α, R5(α, σ,
0) = R1(α, σ), and R5(α, σ, π/2) = R3(α, σ). The x and y com-
ponents of G are in general non-zero, and complicated, but
they do not affect the magnetization, which is in the z direc-
tion. The z component is

Gz ¼ χL
R6 α; σ; ξð Þ
R5 α; σ; ξð Þ ð50Þ

where

R6 α; σ; ξð Þ ¼ 1
2

ð1
�1

exp σt2 þ αt cos ξ
� �

� t cos ξI0 α sin ξ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
sin ξI1 α sin ξ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p� �h i
dt

¼ @R5 α; σ; ξð Þ
@α

ð51Þ
and R6(α, 0, ξ) = R2(α, 0) = L(α)sinh(α)/α. For the arbitrary angle
ξ, the z component of the magnetization is given by

Mξ ¼ M1
R6 αξ; σ; ξð Þ
R5 αξ; σ; ξð Þ ð52Þ

where the effective Langevin parameter is

αξ ¼ αþ χL
R6 α; σ; ξð Þ
R5 α; σ; ξð Þ : ð53Þ

The initial susceptibility is

χξ ¼ χLAξ σ; ξð Þ 1þ 1
3
χLAξ σ; ξð Þ

� 	
ð54Þ

where

Aξ σ; ξð Þ ¼ 3 sin2 ξ

2
þ 3 cos2 ξ� 1

2
Ak σð Þ: ð55Þ

It is interesting that there is a magic angle ξ0 ¼ arccos ð1= ffiffiffi
3

p Þ
at which the coefficient Aξ(σ, ξ0) = 1 and is hence independent
of σ. At this angle, the initial susceptibility of immobilized
SNPs is given by the soft magnetic particle/ferrofluid
expression in eqn (26b).

4.4. Random distribution of particle easy axes

The final case considered here is the isotropic – or random –

distribution of easy axes, depicted in Fig. 3(c). To be precise, the
probability density function of −1 ≤ cos ξ ≤ 1 is uniform. For a
particle with its easy axes at an angle ξ1 with respect to the
laboratory z axis, the ideal one-particle distribution function
is W0(1) (48). Note that this function is dependent on ξ1 in
both the exponent of the numerator, and the normalization co-
efficient R5 in the denominator. So, to calculate the z com-
ponent of the effective dipole field (21), one has to average the
ratio R6/R5 over the angle ξ1, and the magnetization becomes

Mr ¼ 1
2
M1

ð1
�1

R6 αr; σ; ξ1ð Þ
R5 αr; σ; ξ1ð Þd cos ξ1 ð56Þ

where the effective Langevin parameter is also an average, over
a second angle ξ2:

αr ¼ αþ 1
2
χL

ð1
�1

R6 α; σ; ξ2ð Þ
R5 α; σ; ξ2ð Þd cos ξ2: ð57Þ

To calculate the initial susceptibility, it is necessary to first lin-
earize the effective Langevin parameter with respect to the
bare Langevin parameter. For small values of α,

αr � αþ 1
6
χLα

ð1
�1

Aξ σ; ξ2ð Þd cos ξ2 ¼ α 1þ 1
3
χL


 �
: ð58Þ

Therefore, the effective field is independent of the
anisotropy parameter σ, and the initial susceptibility is equal
to the usual MMF1 expression for soft magnetic particles and
ferrofluids:

χr ¼ χL 1þ 1
3
χL


 �
: ð59Þ

Typical magnetization curves are shown in Fig. 5 for both
interacting and non-interacting particles with χL = 2. It is clear
that the initial linear response of the magnetization is inde-
pendent of the anisotropy parameter σ. But the approach to
the saturation magnetization is much slower with a large value
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of σ, and as in all of the preceding cases, interactions increase
the magnetization for a given field strength.

5. Monte Carlo simulations

To test the obtained theoretical predictions, and to determine
the range of validity of the MMF1 theory, MC simulations were
carried out in the canonical (NVT ) ensemble.55 Random con-
figurations of N = 500 dipolar hard spheres were generated in
a cubic box of volume V, by sequentially inserting particles at
random positions, subject to there being no overlaps. Then,
depending on the texture, an easy axis was assigned to each
particle. For both parallel and perpendicular textures, the easy
axes were unit vectors parallel to the laboratory z axis (the
identification of x and z axes being arbitrary in the simu-
lations). For the random texture, the easy axes were randomly
generated unit vectors. Periodic boundary conditions were
applied, and particle interactions were computed using the
Ewald summation with conducting boundary conditions, so as
to eliminate all demagnetization effects. Two types of reorien-
tation move were attempted, with equal probability. The first
one was a conventional random displacement, with a
maximum rotation angle about a random axis tuned to give an
acceptance rate of 50%. The second one was a flip move m → −m,
which was needed to overcome the anisotropy barrier,
particularly with large values of σ. One MC cycle consisted of
one attempted move for each of N randomly selected particles.
A typical run consisted of 5 × 105 MC cycles after equilibration.
Simulations were carried out with dipolar coupling constant
λ = 1, and volume fractions φ = 0.02 and 0.05. As a check of the
simulation algorithm, and particularly the flip move with large
values of σ, some calculations were done for non-interacting

systems for comparison with the exact theoretical results.
Eight independent configurations were studied for each
system and texture, and the results were averaged.

The initial susceptibility in the x direction was computed
using the fluctuation formula

χx ¼
μ0 Mx

2h i
VkBT

ð60Þ

where Mx is a component of the instantaneous magnetization

M ¼
XN
i¼1

mi. Similar equations hold for the y and z directions.

In the random-texture case, χr = (χx + χy + χz)/3. With parallel
and perpendicular textures, χk = χz, and χ⊥ = (χx + χy)/2. The
magnetization curves were computed by applying appropriate
fields in the x direction (perpendicular texture) or z direction
(parallel and random textures).

6. Results

Systems at very low volume fraction φ = 0.02, and with λ = 1,
are considered first. These are magnetically very weak, in the
sense that the Langevin susceptibility is only χL = 0.16. MC
data for the static initial susceptibility, and the corresponding
theoretical predictions, are shown in Fig. 6. Results are shown
for both interacting and non-interacting systems, and with par-
allel, perpendicular, and random textures. The first point is
that the MC data confirm the qualitative theoretical predic-
tions: the susceptibility for the random distribution is inde-
pendent of σ for both the interacting and non-interacting
systems. The susceptibility for the parallel texture increases
with σ, while the susceptibility decreases for the perpendicular

Fig. 5 Static magnetization curves for immobilized particles with χL = 2,
and with random orientations of the magnetic easy axes. The results are
plotted as the reduced magnetization M/M∞ as a function of the dimen-
sionless magnetic field strength (Langevin parameter) α. The dashed
lines are for non-interacting particles, and the solid lines are the theore-
tical predictions for interacting particles according to eqn (56). The rela-
tive anisotropy energies are σ = 0 (black), 5 (red), and 10 (green).

Fig. 6 The initial magnetic susceptibility χ as a function of the an-
isotropy parameter σ for systems with λ = 1 and φ = 0.02, so that χL =
0.16. The solid lines and filled points are for interacting systems, and the
dashed lines and unfilled points are for non-interacting systems. Results
are shown for random (r, black circles and lines), parallel (k, red squares
and lines), and perpendicular (⊥, green diamonds and lines) textures.
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texture. Interactions lead to increases in the susceptibility, and
here the MMF1 theory is sufficient to give a very accurate
description of the magnetic properties. The results for the par-
allel texture display a surprising effect: even for this weakly
interacting system, the difference between the susceptibilities
of the non-interacting and interacting particles is unexpectedly
large (red squares and red lines), and this difference grows
with increasing σ. It means that immobilized SNPs with the
easy axes aligned with the field are very sensitive to interparti-
cle magnetic correlations. This can be understood in terms of
the long-range nature of the dipole–dipole interaction and the
role of orientational averaging; this will be discussed further at
the end of this section.

The magnetization curves of dilute systems with various tex-
tures are shown in Fig. 7. With σ = 0, the magnetization curves
are of course coincident for all textures. With σ = 10, the mag-
netization for the parallel texture grows rapidly with the
applied field, while the magnetization remains low for the per-
pendicular texture. This is obviously consistent with the
initial-susceptibility results presented in Fig. 6. For the
random distribution, the initial slope is the same as that for
the σ = 0 case, since the initial susceptibility is independent of
σ, but the high-field behaviour is different due to the energetic
cost of rotating the magnetic moments with respect to the easy
axes; this effect was demonstrated already in Fig. 5. In all
cases, the effects of interactions are weak, but they are none-
theless described well by the MMF1 theory, eqn (35), (44), and
(56). Note that results are shown for σ = 10, but the behaviour
of the magnetization curves is typical. As demonstrated in
Fig. 4 and 5, the magnetization increases with increasing σ in
the parallel case, and decreases in the random and perpen-
dicular cases.

The initial susceptibilities of systems with φ = 0.05 and λ =
1 are shown in Fig. 8. The qualitative behaviour is no different
from that of the more-dilute system, but the effects of inter-
actions are more pronounced in this case. For the random and
perpendicular textures, the MMF1 theory gives an excellent
account of the interactions, with practically no deviation from
the MC data. But for the parallel texture, there is a surprising
effect: for non-interacting particles, the MC data agree exactly
with the theory over the whole range of σ, showing that the flip
algorithm is working as intended; but at the same time, the
MMF1 susceptibility of interacting particles (37) appears to be
valid only for low-to-moderate values of σ. Here, the MC sus-
ceptibility increases with σ more rapidly than the prediction of
the model (filled red squares and solid red line). Moreover,
with high values of σ, the susceptibility of interacting particles
is about forty percent larger than that of non-interacting par-
ticles, despite the system being only weakly magnetic, with a
Langevin susceptibility χL = 0.40. Increasing the concentration
further does not change these trends (data not shown): the
model (37) agrees well with MC data with low values of σ, but
it underestimates the simulated susceptibility with large
values of σ.

The corresponding magnetization curves for systems with
σ = 0 and σ = 10 are shown in Fig. 9. On the whole, the agree-
ment between theory and simulation is good: the effects of
texture and the interactions are captured well by the theory.
Qualitatively, the trends are the same as those discussed in
connection with Fig. 7, but with the increased interactions
giving a greater enhancement of the magnetization for a given
texture and magnetic-field strength.

The comparison with simulation shows that the MMF1
theory is accurate at least for χL ≤ 0.40. In many biomedical
applications, the volume fractions of magnetic material may

Fig. 7 The magnetization M as a function of the Langevin parameter α
for systems with λ = 1 and φ = 0.02. The solid lines and filled points are
for interacting systems, and the dashed lines are for non-interacting
systems. Results are shown for random (r, black circles and lines), paral-
lel (k, red squares and lines), and perpendicular (⊥, green diamonds and
lines) textures with σ = 10, and for a system with σ = 0 (all textures, blue
triangles and lines).

Fig. 8 The initial magnetic susceptibility χ as a function of the an-
isotropy parameter σ for systems with λ = 1 and φ = 0.05, so that χL =
0.40. The solid lines and filled points are for interacting systems, and the
dashed lines and unfilled points are for non-interacting systems. Results
are shown for random (r, black circles and lines), parallel (k, red squares
and lines), and perpendicular (⊥, green diamonds and lines) textures.
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be an order of magnitude smaller than those considered here.
For instance, if φ ∼ 10–3, then with λ = 1, χL ∼ 10–2. The effects
of interactions can be assessed using the initial magnetic sus-
ceptibility (χ, with interactions) divided by the ideal suscepti-
bility (χideal, without interactions). For the random texture, this
ratio is simply

χr
χL

¼ 1þ 1
3
χL ð61Þ

and it is independent of σ. Taking this texture as a guide,
enhancements of around 10% are to be expected when χL is
about 0.3. Fig. 10 shows the ratios for parallel and perpendicu-
lar textures, and with χL = 0.01, 0.10, 0.16, and 0.40. Fig. 10(a)
shows that over the range 0 ≤ σ ≤ 20, interactions within the
parallel texture enhance the initial magnetic susceptibility by
less than 1% with χL = 0.01, 3.3–9.5% with χL = 0.10, 5.3–15%
with χL = 0.16, and 13–38% with χL = 0.40. With the perpen-
dicular texture, the enhancements for σ = 0 are the same as
with the random and parallel textures, and they decrease with
increasing σ. The effects of interactions on χ are obviously mir-
rored in the initial, linear portion of the magnetization curve
(not shown), but the effects on the magnetization decrease
with increasing field strength due to the field–particle inter-
actions overcoming the particle–particle interactions.

Summing up this section, a comparison of theoretical and
simulation results shows that the effects of interactions on the
initial static magnetic response of immobilized SNPs are much
stronger when the easy axes are aligned parallel with the exter-
nal field direction, than when they are randomly distributed or
perpendicular to the field. While the MMF1 theory (accurate to
leading order in the Langevin susceptibility χL) gives excellent
predictions in the random and perpendicular cases, it is only

accurate in the parallel case when the magnetic crystallo-
graphic anisotropy barrier Kvm is not too large compared to
the thermal energy kBT (σ ∼ 1). This last condition means that
the magnetic moment is not ‘blocked’ inside the body of the
particle.

With large energy barriers (σ ≫ 1), the magnetic moments
in the parallel texture appear to be strongly correlated, which
results in a strong enhancement of the magnetic response,
and especially the initial susceptibility. This can be explained
in terms of the effect of orientational averaging on the range
and strength of the (effective) interactions and correlations
between the particles. With low-to-moderate values of σ, the
superparamagnetic rotation is not blocked, and the orienta-
tional averaging produces an effective interaction between par-
ticles that is short ranged (∼−1/rij6). Hence, the resulting corre-
lations are weak. With large values of σ, all of the particle mag-
netic moments are approximately (anti-)parallel to one
another, and hence the dipolar interactions and the resulting
correlations are long-ranged (∼1/rij3). Here, the interactions
between particles are evaluated on the basis of two-particle
correlations (17), and the many-body contributions to the pair
correlation function should be included to improve the accu-
racy of the theory.

Fig. 9 The magnetization M as a function of the Langevin parameter α
for systems with λ = 1 and φ = 0.05. The solid lines and filled points are
for interacting systems, and the dashed lines are for non-interacting
systems. Results are shown for random (r, black circles and lines), paral-
lel (k, red squares and lines), and perpendicular (⊥, green diamonds and
lines) all textures with σ = 10, and for a system with σ = 0 (alltextures,
blue triangles and lines).

Fig. 10 The initial magnetic susceptibility (χ) divided by the ideal sus-
ceptibility (χideal) as a function of the anisotropy parameter σ with parallel
(a) and perpendicular (b) textures. Results are shown for systems with
χL = 0.40 (black solid line), 0.16 (red dotted line), 0.10 (green dashed
line), and 0.01 (blue dot-dashed line).
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Orientational averaging also explains the relatively weak
effects of interactions on the initial susceptibility with random
and perpendicular textures. In these cases, the effective inter-
actions are short-ranged, due to the azimuthal rotations of the
magnetic moments in the perpendicular case, and the isotro-
pic distribution of easy axes in the random case. Hence, the
orientational correlations and the enhancement of the initial
susceptibility are weak.

7. Conclusions

A theoretical and simulation study of immobilized SNPs has
shown the dependence of the static magnetic response on the
orientational texture of the easy axes, and the effects of inter-
actions between particles. The particle model included the
energy barrier to Néel rotation, and the particle–field and par-
ticle–particle interactions. In all cases, the SNPs were distribu-
ted randomly in an implicit solid matrix. The theory includes
corrections to the non-interacting case at the MMF1 level, i.e.,
to an accuracy proportional to the Langevin susceptibility χL.
Several distributions of the SNP easy axes were considered, all
with respect to an external magnetic field: parallel, perpen-
dicular, unidirectional, and random. Connections were made
with the relevant limiting cases of soft magnetic particles
(σ = 0) and ferrofluids (magnetically hard particles undergoing
Brownian translation and rotation). The theoretical predictions
were compared with numerical results from MC simulations.

The initial susceptibility χ was found to depend on σ in very
different ways, depending on the texture. With a random distri-
bution, χ is independent of σ. With a parallel texture, χ

increases with increasing σ, while with a perpendicular
texture, χ decreases. In all cases, including interactions
between particles leads to an enhancement of χ, but the
enhancement is much stronger for the parallel texture than for
the random and perpendicular textures. The MMF1 theory is
accurate for the random and perpendicular cases with all
values of σ, but for the parallel case, it is only reliable with
small values of σ. All of these effects can be explained in terms
of the effective interactions between the particles, after taking
into account orientational averaging of the magnetic
moments. When the magnetic moments are blocked and
aligned parallel with the external magnetic field, the corre-
lations that control the initial susceptibility are strong and
long-ranged. The susceptibility in the random and perpendicu-
lar cases remains relatively low because of the possibility of
orientational averaging, which renders the correlations short-
ranged. Qualitatively, the theory captures all of the main
effects of textures and interactions on the initial susceptibility.

The magnetization curves show several interesting features.
Although the initial susceptibility of the random texture does
not depend on σ, the high-field behaviour does, with the mag-
netization decreasing with increasing σ. This is due to the
increasing energetic cost of rotating the magnetic moments
with respect to the easy axes. The magnetization is strongly
enhanced by a parallel texture, due to the alignment of the

magnetic moments with the easy axes and the field. In con-
trast, the magnetization is strongly suppressed by a perpen-
dicular texture, as it is restrained by the easy axes. The agree-
ment between the MMF1 theory and MC simulation data is
generally good, as the particle–field interaction energy
becomes at least as significant as the particle–particle inter-
action energy.

The basic magnetic properties of immobilized SNPs are
becoming increasingly important, due to the development of
magnetic gels, elastomers, rubbers, glasses, etc. This work rep-
resents a significant step towards a detailed quantitative
description of this technologically important class of func-
tional materials.
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