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Phonon transport across crystal-phase interfaces
and twin boundaries in semiconducting
nanowires†
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Natalio Mingod and Riccardo Rurali *b

We combine state-of-the-art Green’s-function methods and nonequilibrium molecular dynamics calcu-

lations to study phonon transport across the unconventional interfaces that make up crystal-phase and

twinning superlattices in nanowires. We focus on two of their most paradigmatic building blocks: cubic

(diamond/zinc blende) and hexagonal (lonsdaleite/wurtzite) polytypes of the same group-IV or III–V

material. Specifically, we consider InP, GaP and Si, and both the twin boundaries between rotated cubic

segments and the crystal-phase boundaries between different phases. We reveal the atomic-scale

mechanisms that give rise to phonon scattering in these interfaces, quantify their thermal boundary resis-

tance and illustrate the failure of common phenomenological models in predicting those features. In par-

ticular, we show that twin boundaries have a small but finite interface thermal resistance that can only be

understood in terms of a fully atomistic picture.

Recent advances in nanowire (NW) growth have provided
access to many crystal phases of semiconductor compounds
that either are precluded in bulk form or require extreme
temperature and pressure conditions to become stable.1 The
high degree of control of the growth parameters that favor one
polytype over another allows creating homojunctions, most
often between a zinc blende (ZB) and a wurtzite (WZ) crystal.
These homojunctions form the basis of crystal-phase superlat-
tices, a novel type of structure where different crystal phases of
the same material, rather than different materials, are alter-
nated with a given periodicity.2,3 An even subtler type of homo-
junction is the twin boundary, which results from a 60°
rotation of part of the ZB crystal structure that, when arranged
periodically, gives rise to the so-called twinning
superlattices.4,5 These homojunctions are special in several
aspects: (i) they are atomically flat and do not exhibit rough-
ness, (ii) they are defect-free, (iii) their lattice mismatch is very

small, and (iv) they cannot feature any chemical intermixing.
Therefore, there is a fundamental interest in the properties of
these novel interfaces, particularly concerning the role they
play in transport phenomena.

Phonons are scattered at the interface between two
different materials, giving rise to the phenomenon of thermal
boundary resistance (TBR). The TBR is due to the breakdown
of translational symmetry by the interface, and the difference
in the mass of the constituent atomic species plays a promi-
nent role. Accordingly, one would expect that phonons could
pass through a crystal-phase interface, where the atomic mass
does not vary, without being scattered. On the other hand, it
has been recently shown that the thermal conductivity can
decrease by as much as 40% from a cubic to a hexagonal poly-
type of the same material.6–8 Therefore, there is a need for
detailed insight from atomistic calculations of heat transport
across homojunctions and of their TBR. Understanding heat
transport in these systems is important both for fundamental
reasons and with a view to applications.9,10 On the one hand,
phonon scattering at crystal-phase interfaces and, particularly,
twin boundaries defies many phenomenological models used
to account for interface thermal resistance; on the other hand,
crystal-phase engineering can be used to design materials with
tailor-made properties3,11–15 and twinning superlattices are
playing an increasingly important role in nanowire science.16–19

In this work we use both state-of-the-art nonequilibrium
Green’s functions (NEGF) and nonequilibrium molecular
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dynamics (NEMD), based on carefully parameterized intera-
tomic potentials, to calculate the TBR of a few prototypical
homojunctions, compare them with the values obtained in
similar, conventional heterojunctions and elucidate the
atomic-scale mechanisms that originate interface scattering.
These computational techniques provide complementary
information: while NEGF accounts for the quantum nature of
phonons in the low to mid temperature regime, NEMD natu-
rally accounts for anharmonicity at all orders, which becomes
more important at high temperature.

Computational methods

Ab initio calculations based on density functional theory (DFT)
have demonstrated their predictive power in many areas of
condensed matter physics,20 including the vibrational and
thermal properties of materials.21,22 Nevertheless, because of
the high computational load involved, sometimes their use is
not practical. This is often the case for the calculation of the
interatomic force constants (IFCs) needed to obtain the
phonon dispersion and the thermal conductivity in systems
featuring an interface, which normally need large simulation
cells for their description. Lattice properties can also be
computed using computationally lighter, but still reliable
methods, such as carefully parameterized interatomic
potentials.23,24 A common drawback of these methods,
however, is their limited transferability, and their use in a
different environment from the one used for the parameteriza-
tion is in principle questionable. Polytypism is a textbook case
in this sense, and indeed it is not guaranteed that a potential
parameterized to reproduce the properties of a ZB semi-
conductor works equally well with the WZ crystal.

To address this concern in binary semiconductors, in this
article we use a many-body interatomic potential that builds
on the previous work of Vashishta and coworkers,25,26 and
whose parameterization for GaP27 and InP28 reproduces the
properties of different crystal phases, including ZB, WZ, and
rock salt. As we are mostly interested in the vibrational pro-
perties, we calculated the phonon dispersions of the ZB
and WZ crystals and compared them with those obtained by
first-principles DFT calculations. We found that the ZB
and the WZ phase of both GaP and InP are indeed described
to a similar level of accuracy. Acoustic branches, whose
accuracy is important in the study of interface or dislocation
scattering,29 are reasonably well reproduced (see ESI†). There
is a certain overestimation of the group velocity of the trans-
verse modes in the case of GaP and InP, but it is similar for
both polytypes.

In contrast, common interatomic force fields for Si, such as
the Tersoff30 or the Stillinger–Weber potentials,31 give a rather
poor description of vibrational properties.29 Therefore, we
used machine-learning techniques to build a neural-network
(NN) potential for Si that enables phonon dispersions with
ab initio quality for both the cubic diamond (3C) and the hex-
agonal diamond (lonsdaleite, 2H) polytypes. The energy of the

system is expressed as a sum of contributions from the
environments of the different atoms, E ¼ P

i
Ei. An atom’s

environment is defined by the collection of distances, {rij},
between atom i and its neighbors, up to a cutoff radius rc. This
collection of distances is transformed into an array of descrip-

tors, Di
l ¼

P
j
f rij; rc
� �

e�σljrij�μlj2 , for the environment of each

atom i, where (μl, σl) are adjustable parameters for each

member l of the array, and f r; rcð Þ ¼ 1
2

1þ cos
πr
rc

� �� �
is a

smooth cutoff function. The contribution Ei is given by a

neural network that has Di
l as inputs, and the forces ~Fk on

each atom k are the anaytical derivatives of E with respect to
atom k’s coordinates. The network weights, as well as the sets
of parameters (μl, σl), are adjusted to minimize a cost function,

Δ ¼ c�P
s
ðEs

NN � Es
DFTÞ2 þ

P
i
j~Fs

i;DFT �~Fs
i;NNj2Þ, of the differ-

ences between the network- and DFT-calculated energies and
forces of all the training systems, s. This minimization is per-
formed by stochastic gradient descent and backpropagation
using tensorflow’s32 GPU implementation. We used 32
different values of μ and α, and neural network with 2 hidden
layers, i.e. 3 layers of coefficients, with 200 and 100 units, c =
0.01, obtaining a RMSE of 0.05 eV Å−1 for forces and 1.3 meV
per atom for energies.

Even in the presence of a periodic reconstruction, two dis-
crete translation symmetries can be identified along directions
parallel to an interface between two crystalline regions.
Therefore, elastic scattering of phonons at the interface is
subject to the conservation of a two-dimensional parallel
momentum q∥. The problem of heat-carrier reflection and
transmission by an interface can thus be decoupled into an
infinite set of one-dimensional scattering problems, one for
each possible value of q∥ in a two-dimensional parallel
Brillouin zone, BZ∥. The full solution to each of those pro-
blems consists in obtaining the detailed transmission prob-
abilities per unit time among phonon modes on the left- and
right-hand sides of the interface, constrained by the conserva-
tion of energy. For instance, for a mode incident upon the
interface from the left lead with parallel and perpendicular
components of the momentum (q∥, q⊥) and angular frequency
ω, one first has to search for all the phonon modes in the left
and the right sides compatible with both q∥ and ω, and then
calculate the amplitude of each allowed scattering process.
This involves exploring an effective one-dimensional Brillouin
zone BZ⊥(q∥), looking for values of q⊥ and phonon branch
indices yielding the same frequency as the incident phonon.
The main difference with respect to a typical one-dimensional
problem involving scattering by a barrier is the lack of time-
reversal symmetry, which only applies to the line crossing the
Γ point.

The detailed procedure described above is computationally
expensive and has a tendency to numerical instability because
of the need to solve the inverse problem of finding wave
vectors as functions of frequency. Therefore, an alternative
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approach is often used, both in actual one-dimensional
thermal transport problems and for interfaces: computing the
total phonon transmission at each frequency as the trace of a
matrix product, which is independent from the basis used for
the wave functions. An example of such approach is the Caroli
(or three-region) formula. The phonon transmission is enough
to calculate the total thermal conductance in the Landauer–
Büttiker formalism and can be used to implement semi-
detailed interface scattering in the context of device simu-
lations.33 However, it does not contain enough information to
understand how phonon modes at either side are connected to
one another. Fortunately, a systematic approach to the full cal-
culation has emerged in recent years,34 which we implemented
and used for the present work. In this method, the phonon
modes in the leads at a given frequency are extracted from the
solutions to ordinary eigenvalue problems for the so-called
Bloch matrices, each of which is defined as the product of a
Green’s function times a hopping IFC matrix, i.e., the IFC
block connecting adjacent segments of the leads. The group
velocities and transmission are then computed through
further matrix operations, and the propagating character of
each mode is only analyzed once, so that inconsistencies
between different steps of the calculation are avoided.34

We consider the transport direction to be the cubic [111]
crystal axis, parallel to the hexagonal [0001] axis, and hence
the layer stacking order goes from ABCABC in the ZB to
ABABAB in the WZ. This crystallographic axis corresponds to
the growth orientation of NWs featuring crystal-phase junc-
tions and twin boundaries reported in the experiments. We
take the z axis as perpendicular to the interface and therefore
parallel to the transport direction. We study bulk junctions as
an effective model of NWs with realistic diameters, which have
bulk-like phonon dispersions. Phonon scattering by the side-
walls of the NW, which to a first approximation is independent
on the interface scattering that we study here, is thus not expli-
citly considered.

The general workflow, in the transport geometry described
above, is as follows. We obtain a full set of harmonic IFCs for a
supercell containing two mirror copies of the interface with
the Phonopy code.35 The supercell is long enough that inter-
actions between those two copies are negligible, and the
regions in between far from the interfaces can be taken as
models for the bulk leads. From this set we extract all the IFC
submatrices required to describe the harmonic interactions
between the scattering regions and the leads, as well as the on-
site and hopping matrices of the infinite leads themselves. We
enforce the acoustic sum rules on these constants using a
Lagrange-multiplier approach to eliminate spurious numerical
effects and strictly enforce the short-sighted character of the
interactions in this picture. The next step is to sample the two-
dimensional BZ of parallel wave vectors using a 61 × 61 regular
grid. For each q∥ we apply the procedure described in ref. 34.
The ingredients are the effective complex IFCs computed by
Fourier-transforming the real-space IFCs along the parallel
directions for that value of q∥, the Green’s function of the scat-
tering region obtained by direct inversion, and the surface

Green’s functions of the leads calculated by a real-space renor-
malization-group method, decimation.36,37 With those ingredi-
ents we obtain the mode-by-mode energy transmission coeffi-
cients between phonons at both sides of the interface34 and,
by summing over channels, the total phonon transmission for
a particular q∥. An average over the two-dimensional parallel
BZ is required to compute the total transmission determining
the thermal conductance. The final step is to isolate the effect
of the interface, whose thermal resistance per unit area is
extracted using the standard approach of subtracting the con-
tribution of the leads:

Ri ¼ G�1
joint system � 1

2
G�1
left þ G�1

right

� �
: ð1Þ

The thermal conductances in eqn (1) are computed using
the Landauer formula38,39 as

GðTÞ ¼ 1
2πℏΩ

ð
E TðEÞ @n0 ω;Tð Þ

@T

� �
dE ð2Þ

where n0 is the equilibrium Bose–Einstein distribution, Ω is
the area of the unit cell parallel to the interface, and ħ is the
reduced Planck constant.

We also perform NEMD calculations on GaP and InP boxes
containing a crystal-phase interface that separates a ZB and a
WZ segment of 40 nm each with the LAMMPS code.40 After an
initial structural relaxation with a standard conjugate gradient
algorithm we connect the ends of the computational cell to
two Nosé–Hoover thermostats set at a hot and a cold tempera-
ture, TH and TC. We then evaluate the resulting heat flux from
the work done by the thermostats.41,42 The total simulation
time is 2.5 ns and we use a timestep of 1 fs. The heat flux and
temperature are averaged over the last nanosecond, after
checking that the system reached the nonequilibrium steady
state prior to that. The temperature as a function of position,
T (z), is computed as 2Ek/(3kB), where Ek is the average kinetic
energy per atom within a slice of thickness δz of the compu-
tational cell. The TBR is calculated as the ratio between the
temperature discontinuity across the interface (ΔT ) and the
heat current through it ( J), as well as with the nonequilibrium
thermodynamics formalism of ref. 43; the two approaches
yield values in good agreement. We use a fixed ΔT = TH − TC of
100 K, similarly to other NEMD calculations,42,44,45 but vary TH
and TC in order to sample different interface temperatures.

Crystal-phase interfaces in GaP and
InP

Our first target systems are crystal-phase junctions in GaP and
InP. In Fig. 1 we plot the phonon transmission, T(E), as a
function of energy. The side panels show the same magnitude
for the leads, i.e., for infinite, unperturbed all-ZB and all-WZ
systems. From this energy-resolved result it is already possible
to draw the conclusion that the degradation of the trans-
mission induced by the interface is rather moderate in the
case of GaP, while it is more sizeable for InP, particularly in
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the low-frequency part of the spectrum. These considerations
are confirmed by the quantitative analysis of the TBR, which
we compute from eqn (1) and display in Fig. 1(c). We find an
extremely low TBR for the GaP crystal-phase junction, which at
room temperature is approximately one order of magnitude
smaller than in GaN–AlN46 or Si–Ge heterointerfaces43 (see
also Table 1). The InP crystal-phase junction, on the other
hand, is considerably more resistive and takes values in the
same order of magnitude as those of the GaN–AlN system.

With the purpose to understand the difference between the
two crystal phase interfaces, we analyze the mismatch in
vibrational properties between the ZB and the WZ phase of the
two materials. In principle, a situation where the T(E) of the
left and right leads are as similar as possible favors phonon
propagation across the interface, since energy can be more
easily conserved. To check whether this intuitive fact correlates
with the thermal transport results, in Fig. 2 we plot the absol-
ute value of the difference between the transmission of the ZB
and the WZ crystal-phase, TZB(E) and TWZ(E), for both GaP

and InP. As can be seen from looking directly at the curves or
at their integrals (depicted in the bottom panel of the same
figure), the differences between the ZB and WZ transmissions
are mostly concentrated in the low-frequency range in the case
of InP. Hence they are indeed expected to result in a larger
resistance, since this range is especially critical for thermal
transport because of the higher group velocities and lower
scattering rates of phonons with such energies. This obser-
vation agrees well with the calculated TBR of Fig. 1(c). It is also
related to the significantly larger ratio between the thermal
conductivities of the cubic and hexagonal phases in InP with

Fig. 1 Transmission through a (a) GaP and (b) InP crystal-phase interface. The harmonic transmission functions of the perfect, infinite leads are
shown in the side panels. The ball-and-stick models show the change from ABCABC stacking along the [111] cubic axis in the left lead to ABABAB
stacking along the [0001] hexagonal axis in the right lead (blue, yellow, and red spheres represent Ga, P, and In atoms). (c) TBR as a function of inter-
face temperature for the two crystal-phase interfaces obtained using the T(E) from panels (a) and (b). Data points show the TBR computed from
NEMD, which includes anharmonic effects at the interface. The uncertainty in the estimate of the TBR from NEMD, arising from the fluctuating
character of the temperature profile, is 9.6 × 10−11 m2 K W−1 and 5.9 × 10−10 m2 K W−1 for GaP and InP, respectively.

Table 1 TBR at 300 K of the homointerfaces studied in this work, com-
pared to the values of representative III–V and group-IV
heterointerfaces

Interface R300K
i [m2 K W−1]

GaPphase 4.26 × 10−10

GaPtwin 3.54 × 10−10

InPphase 3.76 × 10−9

InPtwin 9.58 × 10−10

Siphase 2.89 × 10−10

Sitwin 2.39 × 10−10

GaN–AlN46 3.33 × 10−9

Si–Ge43 3.77 × 10−9

Fig. 2 (Top) Absolute value of the difference between the transmission
of the ZB and the WZ leads, ΔTZB/WZ(E), for GaP and InP plotted in
Fig. 1. (Bottom) Definite integral from E = 0 of the differences depicted
in the top panel.
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respect to GaP, as discussed in detail in ref. 8. Nonetheless, it
is already clear that this qualitative analysis will not be appli-
cable to the case of twin boundaries where, no matter the com-
pound, the transmissions of the perfect leads are identical by
construction.

Within the NEGF scheme, the interface is described at the
harmonic level and phonon–phonon scattering processes are
neglected. In a bulk material anharmonicities result in resis-
tive collisions, i.e. Umklapp scattering, and are the main cause
for the finite value of the thermal conductivity in solids. For
an interface, conversely, anharmonic processes can increase
the conductance by opening new transmission channels, ana-
logously to the case of inelastic electron tunneling
spectroscopy.47,48 This is easily illustrated considering the lim-
iting case in which the leads have misaligned phonon gaps: a
phonon of energy ħω1 of one of the leads cannot be trans-
mitted across the interface if the other lead has no available
states at that energy. With anharmonicities in play, on the
other hand, three-phonon process such as ħω1 + ħω2 → ħω3

and ħω1 → ħω2 + ħω3 become possible at the interface and
increase the probability of transmission. Our NEMD simu-
lations, which naturally account for anharmonicities of all
orders, allow us to quantify the influence of the effect just
described by comparing the results with the NEGF calculations
carried out using the same potentials. It must be kept in
mind, however, that within NEMD the atoms move classically
following Newton’s equations of motion, so in the low-temp-
erature regime where the effects of quantum statistics are rele-
vant these results should only be taken qualitatively.

Such a comparison is presented in Fig. 1(c). The good
agreement between NEGF and NEMD for the GaP crystal-phase
junction indicates that in this case anharmonicities at the
interface do not play an important role and the interface
thermal resistance decreases only marginally when they are

included. A similar agreement has been recently reported for
PbTiO3 domain walls.49 The behavior of the InP crystal-phase
interface, on the other hand, is quite different: at T > 300 K
we find that the TBR is five times lower than the prediction
of the harmonic approximation and of the same order of
the one of GaP. The much larger significance of anharmonicity
in InP can be probably traced to the higher degree of mis-
match between the ZB and WZ phases at the harmonic level in
the regions most relevant for thermal transport, as discussed
in previous paragraphs based on the results presented in
Fig. 2.

Twin boundaries in GaP and InP

Although twin boundaries are known to occur in bulk polycrys-
talline samples,50–53 their use in the context of NWs, where
they can be arranged parallel to each other and with a well
defined periodicity4,5 gives rise to very special systems, and a
few isolated reports54,55 hint at the possibility to extend such
arrangements to bulk systems. Here the crystal phase is the
same on the two sides of the interface, but the ZB structure
undergoes a rotation of 60° and forms a twin boundary planar
defect.

We find very low TBRs for both GaP and InP twin interfaces,
closely resembling the results obtained for the crystal-phase
interface of GaP. Specifically, the values of the TBR at T >
100 K are approximately 5 × 10−10 m2 K W−1 (see Fig. 3).
Besides the relevance that they have for applications, the
results obtained with the twin interfaces are important
because they directly challenge common phenomenological
models for the calculation of the TBR such as the acoustic mis-
match model (AMM) or the diffuse mismatch model (DMM),
either within the Debye approximation56 or in the full-band

Fig. 3 Transmission through a (a) GaP and (b) InP twin boundary interface. The harmonic transmission functions of the perfect, infinite leads are
shown in the side panels. The ball-and-stick models show the change from ABCABC to CBACBA stacking along the [111] cubic axis in the left and
right leads (blue, yellow, and red spheres represent Ga, P, and In atoms). (c) TBR as a function of interface temperature for the two twin boundary
interfaces obtained from the T(E) of panels (a) and (b).
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formalism.57,58 Both of these models derive the TBR from the
mismatch of the vibrational properties of the materials
involved. In a twin boundary, however, the phonon dispersions
on the two sides of the interface are the same. Therefore the
AMM would predict a zero TBR, in disagreement with our
results, which yield a small, but finite value. Incidentally, we
observe that the twin homojunction is the prototype of a flat
interface, where the AMM should provide more accurate
results. The DMM, on the other hand, would yield a nonzero
TBR, but it would have no way to discriminate between a twin
interface and a virtual interface with truly zero resistance, i.e.,
one separating two halves of a fully homogeneous sample con-
sidered as different regions. This is a known computational
artifact of the DMM.

For a closer look at the scattering properties of the twin
boundary, we have analyzed some local properties of the inter-
face itself. In Fig. 4 we plot the average nearest-neighbor
distance, the on-site and the nearest-neighbor harmonic IFCs
moving across the interface. As expected, in the case of the
crystal-phase interface these magnitudes change from a ZB to
a WZ bulk value and the spatial extent of this transition is a
good estimate of the thickness of the interface.43,59,60 In the
case of the twin boundary the bulk values on either side are
the same, but all these magnitudes feature a bump at the

interface, an indication of the small, but non-negligible relax-
ation of the atomic structure. Phase field crystal methods have
been shown to be able to capture the effects of a finite inter-
face thickness and of the related strain in semiconductor
systems.61 We argue that our results can be used to inform one
of such phase field models, which can then be used for com-
putationally lighter simulations.

To get additional insight into the microscopic origin of the
thermal resistance at a twin interface, we also analyze the
detailed transmission function in twinned InP. There is a clear
one-to-one correspondence between phonon modes at both
sides, and indeed the overall phonon transmissions of both
leads are exactly identical. However, although the 2D Brillouin
zones from which q∥ is sampled are equivalent, they are not
identical because the respective mode polarization vectors are
rotated by a 60° angle. This is well illustrated by Fig. 5(a),
where we plot the phonon dispersion of both leads for a
specific low-symmetry q∥ value, (qx, qy) = (cos(π/8), sin(π/8)).
Since q∥ is conserved in the scattering process, this becomes a
one-dimensional scattering problem between effective leads
with different phonon spectra due to the rotation of the mode
polarizations. The less-than-perfect transmission found for
this value of q∥, which we present in Fig. 5(b), is a clear reflec-

Fig. 4 (a) Nearest-neighbor distance, (b) on-site IFC and (c) nearest-
neighbor IFC as a function of the position along the transport direction
for a crystal-phase interface and a twin boundary in InP. The on-site IFC
is computed as the Frobenius norm of the Jacobian of the forces of

atom m with respect to its own displacement,
@Fm
@rm

����
����
F

, where m is an

In atom; similarly, the nearest-neighbor IFC is defined as
@Fm
@rn

����
����
F

, where

n is a P atom and a first neighbor of m such that zm < zn.

Fig. 5 (a) Phonon dispersion of both leads in an InP twin interface and
(b) transmission for (qx, qy) = (cos(π/8), sin(π/8)). (c) Detailed transmission
for the same q∥: the numbers of rows and columns are equal to the
number of modes in each lead at each sampled frequency, annotated in
red; the color of each square gives the energy transmission coefficient
between each pair of modes according to the color code on the right-
hand side. Therefore, and for instance, at E = 1.84 meV there are no pro-
pagating modes, at E = 5.53 meV there are two modes on each side with
rather low transmission, and at E = 13.82 meV there is a single mode
with near ideal transmission.
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tion of this fact. If we look at how modes incident on the inter-
face from the left can be transmitted to the right lead, it
becomes even more apparent that, even when there is only one
vibrational mode available at each side at a particular energy,
the coupling between them is far from ideal. To a certain
extent this can be understood in terms of the overlap between
the rotated phonon polarizations.

These two effects –the structural distortion localized at the
interface and the rotation of the polarization vectors– are the
physical reasons behind the TBR of the twin boundary. It is
useful to compare it with the TBR of a simple stacking defect
such as ABCABC|AB|ABCABC, i.e. an all-ZB system with a
missing layer. In this interface there is no rotation of the polar-
ization vectors between the leads, which are identical, so all
the scattering must come only from the local distortion at the
interface. The resulting TBR, plotted in Fig. 3 for the case of
InP, is slightly larger than the one of the twin boundary, indi-
cating that in this case a larger local distortion (the interface
region is thicker than in the twin boundary) can have, on its
own, an effect comparable to the more complex scattering at a
twin boundary. Indeed, these results are a useful reminder of
the fact that, while it is certainly true that homointerfaces are
flat and have no chemical intermixing, they do nonetheless
have an effective thickness, and that distances between atomic
planes (and thus interatomic forces) are altered within a finite,
if narrow, spatial region.

Crystal-phase interfaces and twin
boundaries in Si

The formation of WZ segments in III–V NWs is today well
understood, and is known to be directly correlated to the

wetting angle of the catalytic droplet during growth.62 In the
case of group-IV semiconductors, on the other hand, the
mechanisms are different and interfaces between cubic (3C)
and hexagonal (2H) phases have been obtained through shear
stress,18,63,64 at NW kinks65,66 or taking advantage of the cata-
lytic properties of magnetite nanocrystals.67 Consequently, the
level of control of the positioning of hexagonal segments is
considerably lower than what can be achieved in III–V NWs.
Nevertheless, isolated and non-periodic cubic–hexagonal inter-
faces in Si and Ge NWs are observed68 and thus it is interest-
ing to study phonon transport across these interfaces as well.
Similar considerations can be made for twin boundaries that
have been reported in Si NWs69,70 and that can be positioned
with increasingly deterministic precision.71,72

The transmission and TBR for a crystal-phase interface
between 3C- and 2H-Si and for a twin boundary are shown in
Fig. 6. We obtain a remarkably low thermal resistance associ-
ated to both the twin boundary and the crystal-phase interface.
The values are only slightly lower than those obtained for GaP
and InP in previous sections, which can be somewhat surpris-
ing given that the additional contribution to interface mis-
match coming from the misalignment of polar In/Ga–P bonds
is obviously absent in Si. It must be taken into account,
however, that the level of ionicity of GaP and InP is relatively
low, with those bonds being mostly covalent. The similar
values allow us to reasonably speculate that the geometrical
mechanism behind the TBR (interfacial readjustment and
rotation of the 2D Brillouin zone plus the polarization vectors)
have a certain degree of universality.

These results have been obtained with a carefully optimized
NN potential that gives phonon dispersions in excellent agree-
ment with DFT. For comparison we also calculate T(E) and
the TBR using the IFCs computed with the Tersoff potential.30

Fig. 6 Transmission through a Si (a) phase and (b) twin boundary interface. The harmonic transmission functions of the perfect, infinite leads are
shown in the side panels. The ball-and-stick models show the change from ABCABC to CBACBA stacking along the [111] cubic axis in the transition
from the left to the right lead. We plot the results obtained with both the optimized NN potential (continuous lines), that yields phonon dispersions
with ab initio accuracy, and the Tersoff potential (dashedlines). (c) TBR as a function of interface temperature for the two interfaces obtained from
the NN-potential results for T(E) of panels (a) and (b).
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As can be seen, neither the T(E) of any of the leads nor that of
a system with an interface are well reproduced by the Tersoff
potential, which in particular overestimates the phonon band-
width by as much as 10 meV. These results point to the need
of a well tested potential that provides phonon dispersions in
good agreement with DFT benchmarks in order to obtain
reliable results for the phononic properties. Nevertheless, we
note that, due to a cancellation of errors in the three T(E), the
estimate of the TBR computed from the Tersoff potential is
reasonably accurate, reinforcing the idea of some relatively uni-
versal geometric effects in play as stated above.

Multiple interfaces and interference
effects

The discussion in this paper is formulated in terms of the
transmission of a single interface. Multiple interfaces can in
principle create interference effects, and it has been specu-
lated that they could constitute the basis for phononic meta-
materials with tunable vibrational properties19 and thermal
conductivities.73,74 Although an exhaustive study of crystal-
phase and twinning superlattices is beyond the scope of this
work, as a test on the method we have examined the inter-
ference effects in a double-interface setting. To this end, we
have considered phonon transport across two twin boundaries
separated by 27 In–P layers (∼9 nm) and in Fig. 7 we plot the
transmission T(E) of this double barrier for the same q∥ of
Fig. 5. In the same figure we also plot the same result for the
case of the isolated twin boundary for comparison.

As can be seen, the addition of a second barrier does not
necessarily imply a marked decrease of the transmission. This
is a known behavior in the harmonic regime in the limit of
large reflection coefficients: if a phonon is efficiently stopped
by an interface, adding a second identical interface will not
have a marked effect on the overall transmission. More impor-
tantly, however, we observe as well that several antiresonances

appear throughout the transmission spectrum, an evidence
that the two interfaces give rise to destructive interference
between the incoming and the reflected waves. These results
suggest that if we added more barriers, i.e. twin boundaries,
the antiresonances would result in forbidden bandgaps, just
like it is observed with heterointerfaces. In other words, on a
qualitative level twinning superlattices can behave like conven-
tional superlattices, as also hinted by the NEMD simulations
of Porter and coworkers.75

However, these considerations are valid only in the purely
coherent and harmonic regime, where it is assumed that
phonons retain their coherence while traveling from one inter-
face to the next. As a matter of fact, it has been demonstrated76

that, as far as thermal transport is concerned, phonon scatter-
ing by different periods of a superlattice can be treated as inco-
herent. This assertion is strongly supported by the accuracy and
predictive value afforded by calculations based on that hypoth-
esis. Moreover, regarding forbidden regions, the realization of
phononic metamaterials for thermal transport applications is
hindered by the extremely long wavelength of the relevant
phonons. Whether twinning superlattices can mitigate these
effects is still an open question. Thus, we argue that a more rea-
listic description of heat transport in twinning superlattices
with multiple interfaces calls for a theoretical approach where
phonons are scattered elastically at the interfaces, according to
the detailed transmission discussed in this work, and predomi-
nantly inelastically in between.33 Experimental measurements
will also be crucial to shed light on these issues.

Conclusions

In summary, we have carried out an atomistic theoretical study
of phonon scattering at crystal-phase interfaces and twin
boundaries, both of which are commonly observed in NWs
and constitute the building blocks for crystal-phase and
twinning superlattices, respectively. We have computed and
analyzed the TBR showing that (i) in twin boundaries it is
much lower than in typical (i.e. heterogeneous) semiconductor
interfaces; (ii) in crystal-phase interfaces it can be as low as in
twin boundaries, but in general it depends on the mismatch
between the phonon dispersions of the two polytypes involved
and anharmonicity can lower it at higher temperatures; (iii) in
the elusive case of the twin boundary, it originates from a com-
bined effect of the local structural distortion at the interface
and the rotation of the polarization vectors. We have showed
that phenomenological models often used to estimate the TBR
cannot provide a description of scattering in these subtle
interfaces, not even at a qualitative level. Finally, we have
discussed the implications for superlattices, showing that
nothing prevents homointerfaces to host wave interference
effects similarly to those predicted in heterointerfaces.
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