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Fast, quantitative and high resolution mapping of
viscoelastic properties with bimodal AFM†

Simone Benaglia, Carlos A. Amo and Ricardo Garcia *

Quantitative mapping of viscoelastic properties of soft matter with a nanoscale spatial resolution is an

active and relevant research topic in atomic force microscopy (AFM) and nanoscale science characteriz-

ation. The AFM has demonstrated its accuracy to measure the energy dissipated on a sample surface with

an atomic-scale resolution. However, the transformation of energy dissipation values associated with

viscoelastic interactions to a material property remains very challenging. A key issue is to establish the

relationship between the AFM observables and some material properties such as viscosity coefficient or

relaxation time. Another relevant issue is to determine the accuracy of the measurements. We demon-

strate that bimodal atomic force microscopy enables the accurate measurement of several viscoelastic

parameters such as the Young’s modulus, viscosity coefficient, retardation time or loss tangent. The para-

meters mentioned above are measured at the same time that the true topography. We demonstrate that

the loss tangent is proportional to the viscosity coefficient. We show that the mapping of viscoelastic pro-

perties neither degrades the spatial resolution nor the imaging speed of AFM. The results are presented

for homogeneous polymer and block co-polymer samples with Young’s modulus, viscosity and retar-

dation times ranging from 100 MPa to 3 GPa, 10 to 400 Pa s and 50 to 400 ns, respectively. Numerical

simulations validate the accuracy of bimodal AFM to determine the viscoelastic parameters.

1. Introduction

The understanding, characterization and mapping of the visco-
elastic properties of soft matter at the nanoscale level is an
active area of research in polymer science, nanolithography,
mechanobiology and force microscopy.1–12 The development
of novel nanolithographies demands a fast and high resolution
characterization of the viscoelastic properties of polymer
resists.12,13 In mechanobiology, there is some evidence that
supports the influence of the cell’s viscoelastic processes in its
physiology.14–17 However, the interpretation of the AFM data in
terms of the viscoelastic parameters of the sample is quite
challenging. Among other issues, there is no established and
generally accepted framework to measure the viscoelastic pro-
perties from AFM experiments.1,6,8,16–21

Bimodal AFM provides a very fast, high resolution and accu-
rate method to map the elastic properties of polymers and
biomolecules.22,23 It has been applied to determine with very
high spatial resolution the elastic modulus of a large variety of
materials and macromolecules such as antibodies24 and other
proteins,25–27 DNA,28,29 cells,30,31 bone microconstituents,32

lipid bilayers,33,34 self-assembled monolayers,35,36 2D
materials37 or organic semiconductor devices.38 This tech-
nique can be operated in air or liquid.

Here we demonstrate that bimodal AFM operated in the
amplitude modulated-frequency modulated configuration
(AM-FM) provides fast, high spatial resolution and quantitative
maps of the viscoelastic properties of several polymer samples.
Young’s modulus, viscosity coefficient, retardation time and
loss tangent maps are recorded simultaneously with the true
topography of the surface. In particular, we map polymer sur-
faces with retardation times in the 50 ns to 400 ns range. By
comparing the bimodal AM-FM data with numerical simu-
lations, we estimate both the accuracy and the validity of the
method to determine the viscoelastic parameters of a soft
matter sample.

The first section of the paper is devoted to introduce the
theory that enables the transformation of the observables into
viscoelastic properties. The second section illustrates the capa-
bilities of the bimodal AM-FM to map a variety of properties
such as the Young’s modulus, viscosity coefficient, retardation
time or loss tangent of the polymer samples. We discuss the
robustness of the method to determine the viscoelastic para-
meters with respect to the operational values of the bimodal
AFM feedback. High spatial resolution (sub-10 nm) maps of
the viscoelastic properties of a block co-polymer sample are
presented. The third section provides a discussion on the accu-
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racy of the bimodal AM-FM to map the viscoelastic response of
a soft matter sample. This discussion includes some consider-
ations on the use of the 3D Kelvin–Voigt model and the influ-
ence of the tip radius on the fittings.

2. Theoretical model
2.1 Theory of the bimodal AM-FM for viscoelastic forces

The bimodal AM-FM involves the simultaneous excitation of
two mechanical resonances (modes). An amplitude modu-
lation (AM) feedback keeps the amplitude of the first mode at
a fixed value A1. This feedback provides the topography of the
surface. A frequency modulation (FM) feedback keeps the reso-
nant frequency of the second mode shifted by Δf2 with respect
to the free (unperturbed) resonant frequency of the second
mode f02.

26,39 Bimodal AFM operation could involve the exci-
tation of flexural22,40,41 and/or torsional modes;42,43 however,
in what follows we will be restricted to the use of the flexural
resonances of the microcantilever.

From the elastic beam equation of a rectangular cantilever,
it has been demonstrated that the motion of the individual
excited modes can be approximated by44

ki
ð2πf0iÞ2

z̈i þ ki
2πf0iQi

żi þ kizi ¼ Fi cos 2πfitþ FtsðtÞ ð1Þ

where fi, f0i, Qi, ki and Fi are, respectively, the driving fre-
quency, the free resonant frequency, the quality factor, the
stiffness and the driving force of the i-th mode and Fts is the
tip–sample interaction force. The vertical motion of the tip
(deflection) is decomposed into two components oscillating at
the resonant frequencies,

zðtÞ ¼ z0 þ z1ðtÞ þ z2ðtÞ
� A1 cosð2πf1t� ϕ1Þ þ A2 cos 2πf2t� π

2

� � ð2Þ

where z0, z1 and z2 are, respectively, the static, first and second
mode deflections; Ai is the oscillation amplitude of mode i;
and ϕ1 is the phase shift of the first mode.

The amplitude of the first mode is set to a fixed value (set-
point amplitude) A1 which is lower than the free amplitude
A01. The amplitude A2 and the phase shift ϕ2 of the second
mode are kept constant via the internal FM feedbacks to
ensure resonance conditions (ϕ2 = π/2). To facilitate the deduc-
tion of analytical expressions, we assume that the value of A2 is
much smaller than the value of A1 and z0 is negligible with
respect to both A1 and A2.

Fig. 1 depicts some of the excitation and detection schemes
used in bimodal AM-FM along with the main observables, A1,
ϕ1, and Δf2 and the driving force of the second mode F2.

26–28

To relate the observables with the tip–sample force we apply
the virial Vi and energy dissipation Edis equations

44–48 to some
of the excited modes

V1 ¼ f1

ð1=f1
0

FtsðtÞz1ðtÞdt ð3Þ

V2 ¼ f2

ð1=f2
0

FtsðtÞz2ðtÞdt � ðA22=4πÞ
ð1=f1
0

F ′tsðtÞdt ð4Þ

Edis1 ¼
ð1=f1
0

FtsðtÞż1ðtÞdt: ð5Þ

The above equations can be expressed in terms of the
observables without knowing the interaction force by integrat-
ing the equation of motion (eqn (1)) over a period46,49

V1 ¼ ðk1A1A01=2Q1Þcos ϕ1 ð6Þ

V2 ¼ �k2A22Δf 2=f 02 ð7Þ

Edis1 ¼ πk1A1=Q1ðA1 � A01 sin ϕ1Þ: ð8Þ

We note that all the parameters and observables included
in eqn (6)–(8) except for ϕ1 and Δf2 are set at the beginning of
the experiment. This makes the bimodal AM-FM very efficient
because just two data points per pixel are needed to obtain the
nanomechanical parameters.

The next step is to solve eqn (3)–(5) in terms of the para-
meters of a specific tip–surface force Fts. Labuda et al.50 have
solved these equations for a force expressed as

Fts ¼ 0; δ , 0
αδβ; δ � 0

�
ð9Þ

where δ is the deformation; α is a coefficient that depends on
the tip geometry, the sample Young’s modulus and the
Poisson coefficient; and β is a coefficient that depends on the
tip geometry. The deformation δ is considered zero whenever

Fig. 1 Scheme of bimodal AM-FM for mapping viscoelastic properties.
The microcantilever is driven simultaneously at the first two flexural
resonances. An amplitude modulation feedback (AM) acting on the first
mode is used to track the sample topography. A frequency modulation
feedback (FM) acting on the second mode provides spatial variations of
the frequency shift Δf2. A theoretical model transforms the observables
into the viscoelastic parameters of the tip–sample interaction force.
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z1 is smaller than zc (mean tip–sample height). Otherwise, it is
calculated as

δðtÞ ¼ 0; z1 , zc
z1 � zc; z1 � zc

�
ð10Þ

The above expressions are the general elements of bimodal
AFM theory. In what follows we demonstrate that eqn (3)–(5)
are solved analytically for a viscoelastic force of the type

Fts ¼ αδβ þ λδμdδ=dt ð11Þ
where λ is a coefficient that depends on the tip geometry and
viscosity and μ is a coefficient that depends on the geometry.
Specifically, we find that V1, V2 and Edis1 (A1 ≫ A2) can be
expressed as

V1 ¼ � 1
π

ðδmax

0
ktsðδÞ

ffiffiffiffiffiffiffiffi
2A1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δmax � δ

p
dδ ð12Þ

V2 ¼ � A22

2π

ðδmax

0
ktsðδÞ 1ffiffiffiffiffiffiffiffi

2A1
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δmax � δ
p dδ ð13Þ

Edis1 ¼ �2
ðδmax

0
gtsðδÞ

ffiffiffiffiffiffiffiffi
2A1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δmax � δ

p
dδ ð14Þ

where kts = dFts/dδ = αβδβ−1 is the interaction stiffness, gts =
λω1δ

μ is an effective damping coefficient (ω1 = 2πf1) and δmax is
the maximum deformation.

Let’s assume that the tip–surface force for a parabolic tip of
radius R takes the form of

Ftsðδ; δ̇Þ ¼ ð4=3ÞEeff

ffiffiffiffiffiffiffiffi
Rδ3

p
þ 2ηcom

ffiffiffiffiffiffi
Rδ

p
δ̇ ð15Þ

1
Eeff

¼ 1� νt2

Et
þ 1� νs2

Es
ð16Þ

where Et and Es are, respectively, the tip and sample Young’s
moduli; νt and νs are, respectively, the tip and sample
Poisson’s coefficients; and ηcom is the compressive viscosity
coefficient. In rheology it is more common to use the shear vis-
cosity coefficient η (ηcom = 3η).16

The combination of Hertz contact mechanics and the
mechanical system formed by a spring in parallel with a dash
pot is called the 3D Kelvin–Voigt (3D K–V) model (eqn (15)).8,16

We have solved the integrals included in eqn (12)–(14) for the
3D K–V model,

V1 ¼ � 1
4
Eeff

ffiffiffiffiffiffiffiffiffiffiffi
2A1R

p
δmax

2 ð17Þ

V2 ¼ �Eeff

ffiffiffiffiffiffiffiffi
R
8A1

r
A22δmax ð18Þ

Edis1 ¼ � π
2

ffiffiffiffiffiffiffiffiffiffiffi
2A1R

p
ηcomω1δmax

2: ð19Þ

Then, the deformation, the effective Young’s modulus and
the viscosity coefficient can be expressed as

δmax ¼ A22

A1

� �
V1
V2

� �
¼ ðA1k1=2Q1k2Þ cos ϕ1=ðΔf2=f02Þ ð20Þ

Eeff ¼ 4
ffiffiffi
2

p
k1Q1=

ffiffiffiffiffiffiffiffi
RA1

p� �
ðk2=k1Þ2ðΔf2=f02Þ2= cos2 ϕ1 ð21Þ

ηcom ¼ ð2πω1Þ�1EeffEdis1=V1: ð22Þ
These expressions enable the bimodal AM-FM to generate

images of the true topography of the surface at the same time
that it generates maps of the Young’s modulus and viscosity
coefficient. The step-by-step deduction of the above equations
is provided in the ESI.†

The quantity Edis1/V1 coincides with the definition of the
loss tangent (tan ρ)4,51,52

tan ρ ¼ ω1
ηcom
Eeff

¼ ω1τ ð23Þ

where τ is the retardation time from the Kelvin–Voigt model. To
the best of our knowledge, eqn (23) provides the first explicit
link between the loss tangent and a material parameter (ηcom).

2.2 True and apparent topography images

It is known that the force exerted by the tip on a soft matter
surface produces a deformation that could affect the determi-
nation of its height features.53–56 Thus, an image coming
directly from the topographic feedback has to be considered as
an image of the apparent topography of the surface (ha). This
effect is commonly ignored in AFM because during imaging, the
deformation of the sample is entangled with the deflection
signal associated with the topography. However, the bimodal
AM-FM enables the direct determination of the deformation
induced by the force applied by the tip (eqn (20)). Then, the true
topography can be obtained by applying the following equation,

htrueðx; yÞ ¼ haðx; yÞ þ δmaxðx; yÞ: ð24Þ

3. Materials and methods
3.1 Polymer samples

The polystyrene (PS) sample (Bruker test sample) with a
nominal Young’s modulus value of 2.7 GPa is used to calibrate
the bimodal AM-FM method (Fig. S1†). The measurements are
also performed on a polyolefin elastomer (LDPE sample
HarmoniX training sample, Bruker) with an estimated Young’s
modulus value of around 0.1 GPa.

The block copolymer is a poly(styrene-block-methyl-
methacrylate) (PS-b-PMMA) synthesized as a thin film by self-
assembling over a layer of poly(styrene-random-methyl-
methacrylate) (PS-r-PMMA). The protocol used to make the block
copolymer thin film is described elsewhere.57 The block copoly-
mer organizes in a lamellar geometry with a pitch of 30 nm.

3.2 Spatially-resolved viscoelastic maps

The bimodal AFM measurements were performed using a
Cypher VRS (Asylum Research Inc.) that enable the control of
the temperature and the relative humidity. The experiments
were conducted at room temperature (Troom ≈ 25 °C) in a N2

atmosphere. The measurements were done with Asp1 in the 50
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to 100 nm range, while A2 was set in the 0.5 to 1.5 nm range.
The fast scan rate was 3 Hz.

PPP-NCH (Nanosensors) microcantilevers with f01 =
324.783 kHz, k1 = 43.2 N m−1, Q1 = 532, f02 = 2009 kHz, k2 =
2269 N m−1 and f01 = 331.434 kHz, k1 = 54.8 N m−1, Q1 = 596,
f02 = 2050 kHz, k2 = 2857 N m−1 have been used to image the
LDPE as shown in Fig. 2–4. PPP-FM (Nanosensors) cantilevers
with f01 = 77.250 kHz, k1 = 3.2 N m−1, Q1 = 206, f02 =
490.283 kHz, k2 = 166 N m−1 and with f01 = 68.070 kHz, k1 =
2.77 N m−1, Q1 = 208, f02 = 432.333 kHz, k2 = 142 N m−1 have
been used to characterize the block copolymer and the
polystyrene samples, respectively.

The force constant of the first mode was calibrated by using
the multiple reference calibration method.58 This method
avoids the mechanical contact with the sample during the cali-
bration. It is implemented in the software of the Cypher VRS as
GetReal™ tool. In the bimodal AM-FM, the calibration of the
force constant of the second mode is a critical step.27,57 The
second mode of the cantilevers was calibrated by assuming the
stiffness–frequency power law relationship, k2 = k1( f2/f1)

ζ2, where
ζ2 is an experimental calibration parameter.58

Mapping the sample’s viscoelastic properties requires the
measurements to be performed in the tip–sample repulsive
regime.59 To meet this condition ϕ1 must always stay below 90°.
During the bimodal AM-FM operation ϕ1 and Δf2 are recorded
simultaneously with the tracking of the apparent topography
A1 = Asp1. Thus, these observables are used to derive the nano-
mechanical parameters δ, Eeff, ηcom, tan ρ and τ.

The experimental data have been processed by assuming a
paraboloid tip. For the LDPE polymer we have assumed radii of
11 nm (PPP-NCH, Fig. 2) and 12 nm (PPP-NCH, Fig. 3 and 4)
while for the block copolymer we have assumed R = 2 nm
(PPP-FM).

It has been shown that the adsorption of water on a
polymer surface could influence the values of some nano-

mechanical properties, for example, the loss tangent.52 We
have confirmed the above observation by measuring the nano-
mechanical parameters of PS-b-PMMA with and without N2

flow (ESI†). The Young’s modulus is not very sensitive to
changes in the RH (from 0 to 30%). On the other hand, the vis-
cosity coefficient is increased by increasing the RH. To avoid
this effect, the experiments have been performed in a dry N2

atmosphere, with a gas pressure of 0.5 bar.

4. Results and discussion
4.1 Bimodal AM-FM of the polymer (LDPE)

We use LDPE as a test sample to determine the accuracy of the
method for measuring the Young’s modulus of polymers.10,23

This sample has a nominal Young’s modulus of 0.1 GPa.

Fig. 2 Apparent, deformation and true topography of a polymer blend.
(a) Apparent topography. (b) Deformation. (c) True topography. The
bottom panels show the cross-sections across the lines marked in the
top panels. The measurement parameters are A01 = 87 nm, A1 = 51 nm,
f01 = 324.783 kHz, k1 = 43.2 N m−1, Q1 = 532, A2 = 0.5 nm, f02 = 2009
kHz, k2 = 2269 N m−1, R = 11 nm.

Fig. 3 Nanomechanical maps of a LDPE polymer sample. (a) Young’s
modulus. (b) Viscosity coefficient. (c) Loss tangent. (d) Retardation time.
The bottom panels show the cross-sections obtained across the dashed
lines marked in the nanomechanical maps. The blue regions show the
values that lie within a 5% window from the average value obtained from
the bimodal AM-FM maps. The above images have been obtained with
the bimodal AM-FM parameters listed in Fig. 4. A tip radius of 12 nm has
been used to fit the data.
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Unfortunately, there is no equivalent test sample to calibrate
the viscosity coefficient.

Fig. 2a shows the apparent topography of the polymer. The
topographic image shows a flat sample with height variations
of 1–3 nm. Fig. 2b shows the image of the deformation caused
by the tip during the capture of Fig. 2a (Fmax = 30 nN). The
deformation is quite uniform across the image, ∼9.5 nm. The
near constant value of the deformation across the surface indi-
cates a homogeneous mechanical response. Fig. 2c shows the
true topography of the polymer surface after processing the
data using eqn (24). We note that the true topography image
has a higher spatial resolution than the apparent topography
image. This is a bimodal effect due to the dependence of the
deformation on the parameters of both models (eqn (20)).

The bimodal AM-FM provides the maps of several pro-
perties, such as the Young’s modulus, viscosity coefficient,
loss tangent or retardation time (Fig. 3). The Young’s modulus
map (Fig. 3a) shows a homogeneous material characterized by
0.11 ± 0.02 GPa. This value is very close to the nominal value of
the LDPE (0.1 GPa). The viscosity coefficient map (Fig. 3b)
remains practically constant across the sample (37–40 Pa s). The
bimodal AM-FM provides spatially-resolved maps of the retar-
dation times and the loss tangent (Fig. 3c and d). These maps
also confirm the nanomechanical homogeneity of the LDPE. To
the best of our knowledge Fig. 3d shows the first spatially-resolved
map of the retardation times on a polymer. The cross-sections
across the polymer are flat (bottom panels). The above parameters
have been deduced by assuming a tip radius of 12 nm.

The robustness of the bimodal AM-FM has been tested by
studying the dependence of the nanomechanical properties on
the operational parameters (A1 in the topography feedback).
The images shown in Fig. 3 and 4 have been taken by reducing
the set-point amplitude A1 approximately 3 nm in every
100 nm of the slow scanning direction. This gives rise to the
stripe-like structure shown in Fig. 4a (top panel) or the stair-
case shown in the bottom panel. Similar stripes (top panels) or
staircases (bottom panels) are observed in other observables
such as ϕ1 and Δf2 (Fig. 4b and c), the virial V1 (Fig. 4d) or the
energy dissipated (ESI†).

The dependence of the observables, virials and the energy
dissipated on the feedback parameters just underlines the fact
that these parameters or quantities are not intrinsic properties
of the material. However, the nanomechanical parameters of
the sample such as the Young’s modulus, viscosity coefficient
or retardation time are unaffected by these changes (Fig. 3).
This result is an indication of the absence of artifacts in the
measurements. We underline that the nanomechanical maps
shown in Fig. 3 have been obtained by changing the A1 as is
indicated in Fig. 4a.

4.2 High spatial resolution viscoelastic maps

To demonstrate the capabilities of the bimodal AM-FM to
generate high spatial resolution maps of viscoelastic pro-
perties, we have measured a poly(styrene-block-methyl-
methacrylate) (PS-b-PMMA) thin film. The diblock copolymer
arranges in an ordered lamellar structure alternating PS and
PMMA domains with a pitch of 30 nm.13

Fig. 5 shows the apparent topography, the deformation and
the true topography of the block co-polymer. In the apparent
topography image (Fig. 5a), the domains of a component are
raised to about 0.3–0.4 nm with respect to the domains of the
other component. The Young’s modulus map (see below) pro-
vides the identification of the domains in terms of the polymer
components. The raised features are ascribed to PMMA while
the lower features are associated with PS. However, the height
difference shown in Fig. 5a does not correspond to the true
height difference of the unperturbed polymer surface because
the deformation on the PS domains is larger than that on the
PMMA domains (EPS < EPMMA). Both PMMA and PS domains are
deformed by the force exerted by the tip, respectively, 12.2 nN

Fig. 4 Bimodal AM-FM observables. (a) Set point amplitude of mode 1.
The value of Asp1 has been changed 3 nm approximately every 100 nm
in the slow scanning direction (vertical axis). (b) Phase shift of the first
mode. The map shows the changes due to the change in A1 and reflects
the conservative and dissipative contribution of the tip–sample inter-
actions. (c) Frequency shift (Δf2). The variations in Δf2 reflect the elastic
response of the LDPE and the changes of the main feedback. (d) Map of
the virial of the first mode. The cross-section shows a step-like
trend associated with the changes in A1. The measurement parameters
are A01 = 54 nm, f01 = 331.434 kHz, k1 = 54.8 N m−1, Q1 = 596, A2 =
0.5 nm, f02 = 2050 kHz, k2 = 2857 N m−1, R = 12 nm.
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(PMMA) and 12.9 nN (PS). The deformation measured on PS is
of 1.9 nm while that on PMMA is of 1.6 nm (Fig. 5b). Fig. 5c
shows the true topography of the block co-polymer.

Fig. 6 shows the maps of the viscoelastic parameters
acquired simultaneously with the topography. The Young’s
modulus (Fig. 6a), viscosity coefficient (Fig. 6b) and retar-
dation time (Fig. 6c) maps reproduce the patterns observed in
the topography. The alternating PS and PMMA domains gene-
rate an oscillation in the values of Young’s modulus, viscosity
coefficient and retardation time. For the PS domains, Eeff,
η and τ are, respectively, 2.1 ± 0.1 GPa, 418 ± 100 Pa s and
0.19 ± 0.04 µs while for the PMMA domains the values are
2.6 ± 0.1 GPa, 186 ± 81 Pa s and 0.08 ± 0.03 µs. In particular,
the retardation time shows an oscillatory behavior alternating
PS (190 ns) and PMMA (80 ns) domains.

4.3 Accuracy of bimodal AM-FM to determine viscoelastic
parameters

The accuracy of the bimodal AM-FM to determine viscoelastic
parameters can be classified into two different issues. The first

issue addresses the validity of the virial and energy balance
expressions used in bimodal AFM theory. The second issue
addresses the use of the 3D Kelvin–Voigt model and the
analytical expressions associated with it to describe the pro-
perties of a real polymer sample.

The first issue could be considered settled because
different numerical simulations and simulators have already
validated the use of the approximations involved in the appli-
cation of the energy balance and virial equations in AFM.60–62

Regarding the second issue, it is well known that the
Kelvin–Voigt model does not describe properly the stress relax-
ation of a viscoelastic material under a fixed strain. In
addition, the implementation of the Kelvin–Voigt model for
AFM requires an ad hoc assumption about the contact area.
We have assumed the contact area changes as in Hertz contact
mechanics.16 However, the practical issue is to determine the
effect that these limitations have on the quantitative descrip-
tion of the viscoelastic properties of a given polymer sample.

A bimodal AFM experiment implies the application of a
time-dependent force that causes a time-dependent defor-
mation. The deformation is dominated by the frequency of the
first mode. Thus, a bimodal AFM experiment is very far from a
stress relaxation experiment performed at a fixed strain (defor-
mation). In a stress relaxation experiment, the Fourier trans-
form of the deformation has a large number of frequency com-
ponents. In the linear viscoelastic regime, single frequency
deformations are well described by the K–V model. Finite
element simulations show that for a paraboloid tip the contact
area has a near Hertzian dependence with an indentation
during the approaching section of the oscillation.8 In a visco-
elastic material, the contact area disagrees with Hertz’s theory
when the tip is moving away from the sample. The discrepancy
between the contact areas increases by increasing the indenta-
tion. Thus, the source of error associated with the contact area
could be reduced by using relatively small indentations. Fig. 2
and 5 show that the indentation on the softer polymer (LDPE)
is 10 nm, on PS is 1.9 nm and on PMMA is 1.6 nm. These
deformations could be considered small for a viscoelastic
material.

The accuracy of the bimodal AM-FM to determine visco-
elastic parameters can be tested by using numerical
simulators.60,61 In Fig. 7 we compare the values of the energy
dissipated by the tip measured on the LDPE for different
amplitude ratios (A1/A01) with the values computed by using
the parameters (ELDPE = 0.11 GPa, ηLDPE = 38 Pa s) deduced
from bimodal AM-FM theory. The curves show a good agree-
ment between the experimental values and the theory. The
relative error in the determination of the energy dissipated
with the theory is below 3%. We remark that the experimental
determination of the energy dissipated by the tip on the LDPE
polymer is exact as long as the oscillation remains sinusoidal.
This expression (eqn (5)) does not involve any model of the
tip–sample viscoelastic interaction. To illustrate that the agree-
ment is not fortuitous we have plotted the energy dissipated
curves obtained by using two different viscosity coefficients,
one 10% higher and one 10% lower than the one deduced

Fig. 5 Apparent, deformation and true topography of a PS-b-PMMA
block co-polymer. (a) Apparent topography. (b) Deformation. (c) True
topography. The bottom panels show the cross-sections across the
dashed lines marked in the top panels. A01 = 90 nm, A1 = 55 nm, f01 =
77.250 kHz, k1 = 3.2 N m−1, Q1 = 206, A2 = 1.3 nm, f02 = 490.283 kHz,
k2 = 166 N m−1, R = 2 nm.

Fig. 6 Nanomechanical maps of a PS-b-PMMA block co-polymer. (a)
Young’s modulus. (b) Viscosity coefficient. (c) Retardation time. The
stiffer domains (PMMA) show a lower viscosity coefficient and a faster
response time. The bottom panels show the cross-sections across the
lines marked in the top panels. The above images have been obtained
simultaneously with those of Fig. 5. A tip radius of 2 nm has been used
to deduce the parameters.
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from the theory. Fig. 7 shows that the experimental values lie
between these boundary energy dissipation curves. Another
bimodal configuration (FM-FM) has mapped viscoelastic pro-
perties of polymers.23 The AM topographic feedback is more
stable than FM topographic feedback against changes in the
interaction force regime (attractive/repulsive). This makes
bimodal AM-FM easier to implement and operate.

We are far from claiming that the 3D Kelvin–Voigt model
and the analytical expressions derived from it could be applied
without any restriction. Our results could be summarized in
two main points. First, we provide a self-consistent method to
determine the accuracy of any viscoelastic measurement per-
formed by bimodal AFM. This method compares the experi-
mental values of the energy dissipation or the virial with the
results obtained with numerical simulations that use the visco-
elastic parameters determined by bimodal AFM theory as
inputs. Second, we have shown that the 3D Kelvin–Voigt model
explains the nanoscale viscoelastic properties of some polymers.

It is hard to compare local and bulk viscoelastic properties
because the properties of the polymer region probed by AFM
could be affected by surface relaxation processes and interphase
interactions. These effects could be negligible in bulk measure-
ments. Some considerations by Raman and co-workers9 and
Proksch et al.51 offer additional insights into this issue.

4.4 Tip radius

The tip radius R is a parameter that appears explicitly in the
interaction force model (eqn (15)). Its value must be known in
order to determine the nanomechanical properties of the
sample with the bimodal AM-FM method. Several methods
have been proposed to determine the tip radius, ranging from
electron microscopy images63 to the in situ characterization by

AFM.64 The first approach is time consuming and, more often
than not, implies the irreversible damage of the tip, in particu-
lar for sharp tips. In situ AFM methods based on studying the
transition between attractive and repulsive regimes depend on
the ambient conditions. The measurement could also modify
the tip radius.

Here, we apply a phenomenological approach that involves
two complementary estimations of the tip radius. First, the
spatial resolution obtained from the nanomechanical map is
used to estimate the tip radius (R1 ≈ resolution/2). Second, the
effective tip radius has to be larger than the indentation
applied in the nanomechanical map (R2 ≥ δ). Then, we choose
the maximum of the above values as the tip radius. This value
should either be very close or coincide with the value that pro-
vides the best fit with the experimental data.

5. Conclusions

Bimodal AFM has expanded the characterization of surfaces at
the nanoscale by providing high resolution maps of several
viscoelastic parameters. The bimodal AM-FM configuration
enables the simultaneous acquisition of the topography, the
elastic modulus, the viscosity coefficient, the retardation time
and the loss tangent of a sample without introducing
additional limitations on the imaging acquisition rate. We
have developed the theory of bimodal AM-FM to transform the
observables into the viscoelastic parameters in terms of the 3D
Kelvin–Voigt model. This theory enables the mapping of the
Young’s modulus, viscosity coefficient and retardation time at
the same time that the true topography of the material is
acquired. The accuracy and spatial resolution has been tested
on a homogeneous polymer and a block copolymer sample.
We have shown that the nanomechanical measurements are
very robust with respect to the choice of the feedback para-
meters. We have also provided the first theoretical demon-
stration of the relationship between the loss tangent and an
intrinsic viscoelastic parameter of the sample.

The bimodal AM-FM has several key features that are not
found in other AFM-based mapping methods. First, it is very
efficient. It just requires the recording of two data points per
pixel to generate four different nanomechanical maps. Second,
it measures the deformation generated during imaging in real
time, thus providing the true topography of the sample. Third,
it is fast. The generation of multiple nanoscale maps does not
compromise the imaging speed.

Measuring the viscoelastic properties at the nanoscale
poses several challenging issues that range from the choice of
the linear viscoelastic model to the fact that viscoelasticity is a
frequency-dependent process. We provide a criterion to deter-
mine whether the model and/or the measured viscoelastic
parameters provide a faithful characterization of the sample.
In summary, this contribution completes the characterization
capabilities of bimodal force microscopy by providing a fast,
robust, reliable and high resolution method to measure the
local viscoelastic properties of soft matter.

Fig. 7 Comparison between numerical simulations and experiments on
a LDPE polymer sample. The numerical simulation was performed for a
3D K–V with parameters: Eeff = 111 MPa; ηcom = 38 Pa s. The shaded
region shows the values for the dissipated energy if the viscosity coeffi-
cient is determined with a 10% relative error. The parameters used for
the simulation are listed in Fig. 4.
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