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Spatio-temporal dynamics in graphene

Roland Jago, Raül Perea-Causin, Samuel Brem and Ermin Malic*

Temporally and spectrally resolved dynamics of optically excited carriers in graphene has been intensively

studied theoretically and experimentally, whereas carrier diffusion in space has attracted much less atten-

tion. Understanding the spatio-temporal carrier dynamics is of key importance for optoelectronic appli-

cations, where carrier transport phenomena play an important role. In this work, we provide a micro-

scopic access to the time-, momentum-, and space-resolved dynamics of carriers in graphene. We deter-

mine the diffusion coefficient to be D ≈ 360 cm2 s−1 and reveal the impact of carrier–phonon and

carrier–carrier scattering on the diffusion process. In particular, we show that phonon-induced scattering

across the Dirac cone gives rise to back-diffusion counteracting the spatial broadening of the carrier

distribution.

The time- and momentum-resolved carrier dynamics in gra-
phene is meanwhile well understood,1–7 but there have been
only a few studies on spatio-temporal dynamics and diffusion
in graphene8–10 and other low dimensional materials, such as
carbon nanotubes11 and transition metal dichalcogenides.12–15

Kulig et al. studied15 the exciton diffusion in WS2 and deter-
mined that the diffusion coefficient varies over two orders of
magnitude with respect to the pump fluence. In graphene,
pump–probe experiments performed at relatively high pump
fluences16,17 demonstrated a diffusion coefficient of D =
250 ± 140 cm2 s−1 on a picosecond timescale after optical exci-
tation. The diffusion of photoexcited carriers has been studied
theoretically18 with an effective Boltzmann approach, where
many-particle scattering has been only considered with relax-
ation rates.

However, a full microscopic view on the spatio-temporal
dynamics revealing the interplay between diffusion and momen-
tum- and time-dependent scattering processes is still missing.

Exploiting the density matrix formalism19,20 and the Wigner
representation,21 we provide microscopic insights into the tem-
porally, spectrally, and spatially resolved dynamics of optically
excited carriers in graphene including carrier diffusion, carrier–
light, carrier–phonon, and carrier–carrier scattering processes
on the same microscopic footing, cf. Fig. 1. In particular, we
determine the diffusion coefficient and show that the diffusion
process can be tuned with experimentally accessible knobs,
such as pump fluence, substrate and temperature. Furthermore,
we reveal how carrier–phonon scattering counteracts the
diffusion through efficient scattering across the Dirac cone
resulting in an efficient back-diffusion, cf. Fig. 1(b). Theoretical approach

We consider a graphene sheet under local optical excitation
(red arrows in Fig. 1). The optically excited carriers relax to
lower energies via Coulomb- (orange arrows) and phonon-

Fig. 1 Spatio-temporal carrier dynamics in graphene. (a) Optically
excited carriers in spatial region II diffuse to regions I and III. (b) Many-
particle scattering leads to relaxation in momentum space in each
spatial region. Back-scattering via carrier–phonon processes and the
resulting back-diffusion counteracts the spatial distribution of carriers.
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induced scattering (green arrows). The inhomogeneous optical
excitation creates spatial gradients in the carrier density,
giving rise to diffusion of carriers (purple arrows). To obtain
microscopic access to the spatio-temporal dynamics, we derive
a set of coupled equations of motion for the electron occu-

pation probability ρv=ck ¼ ha†k;v=cak;v=ci, the microscopic polar-

ization pk ¼ ha†kvakci, and the phonon number njq ¼ hb†qjbqji.
Here, the creation and annihilation operators a†kv=c and akv/c

with momentum k are used for electrons in the valence or con-
duction band (v,c), while the hole occupation probability is
given by ρhk = 1 − ρvk. The corresponding phonon operators are

b†qj, bqj with the phonon mode j and the phonon momentum q.

To introduce spatial effects, we transform the occupation
probability into the Wigner formalism.22,23 Here, we
consider fluctuations of the occupation probability ρv=ck;q ¼
ha†k�q=2;v=cakþq=2;v=ci and perform the Fourier transformation
with respect to the momentum difference q resulting in the
Wigner function

f λk ðrÞ ¼
X

q

eiqrρλk;q ð1Þ

with λ = e,h denoting electrons in the conduction band and
holes in the valence band. Note that the Wigner function f λk(r)

is a quasi-probability function, i.e. f λk(r) can be negative.
Nevertheless, integration over r or k gives the actual distri-
bution in momentum space or the carrier density in real

space, i.e. ρλk ¼ 1=A
Ð
dr f λk ðrÞ or nðrÞ ¼ 1=A

X

kλ

f λk ðrÞ with A as

the area of the graphene sheet.
The carrier dynamics is determined by a many-particle

Hamilton operator H, where we take into account the free
carrier and phonon contribution H0, the carrier–carrier Hc–c

and the carrier–phonon Hc–ph interaction accounting for
Coulomb- (orange arrows) and phonon-induced scattering
(green arrows), and the carrier–light coupling Hc–l (red arrows)
that is treated on a semi-classical level. Details on the contri-
butions of the many-particle Hamilton operator including the
calculation of the matrix elements can be found in ref. 1 and 5.

Exploiting the Heisenberg equation of motion, we derive
the equation of motion for the carrier fluctuation ρλk;q. Taking

into account the free-particle Hamilton operator H0 leads to
iℏρ̇λk;q ¼ ðελkþq=2 � ελk�q=2Þρλk;q with the electronic dispersion ελk.

To determine an equation for the Wigner function
we perform a Fourier transformation resulting in

iℏḟ
λ
kðrÞ ¼

Ð
dr′

X

q

ðελkþq=2 � ελk�q=2Þeiqr′f λk ðr� r′Þ. To simplify

this integro-differential equation we expand the Wigner func-
tion to the first order f λk ðr� r′Þ � f λk ðrÞ � r′∇r f λk ðrÞ. By using
r’eiqr‘ = −i∇qe

iqr‘ and shifting the q-derivative to the electron
dispersion via partial integration, the r′-integral depends only
on the exponential function resulting in δk,q, whereby the
zeroth order of the expansion of the Wigner function vanishes.

Finally, the equation of motion for the Wigner function for the
free Hamilton operator reads

ḟ
λ

kðr; tÞ ¼ � 1
ℏ
∇kε

λ
k � ∇r f λk ðr; tÞ: ð2Þ

To derive the equations of motion for the Wigner function,
the polarization and the phonon number with the full
Hamilton operator we make the following assumptions: (i) we
consider diffusion processes in the polarization to be small,
since the latter quickly decays in momentum space and
vanishes directly after the optical excitation.5 In contrast, the
relaxation of carriers occurs on a picosecond timescale which
is comparable to diffusion processes, and therefore the
diffusion term can not be neglected in the equation for the
Wigner function. (ii) We also neglect the phonon diffusion,
since it is expected to be much slower than the electronic
diffusion due to the flat phonon dispersion. (iii) We expect
scattering processes between different spatial positions to be
small compared to the diffusion. Now, using the Heisenberg
equation of motion, we derive the full spatio-temporal
graphene Bloch equations in second-order Born-Markov
approximation

ḟ
λ

kðr; tÞ ¼Γin
kλðr; tÞf̂

λ

kðr; tÞ � Γout
kλ ðr; tÞf λk ðr; tÞ

þ 2Im½Ωvc;*
k ðr; tÞpkðr; tÞ� � ∇kελk

ℏ
� ∇r f λk ðr; tÞ;

ð3Þ

ṗkðr; tÞ ¼ iΔωkðr; tÞpkðr; tÞ � iΩvc
k ðr; tÞf̄ kðr; tÞ; ð4Þ

ṅjqðr; tÞ ¼ Γem
qj ðr; tÞn̂jqðr; tÞ � Γab

qj ðr; tÞnjqðr; tÞ � γphn̄
j
qðr; tÞ ð5Þ

with the abbreviations f̂
λ

kðr; tÞ ¼ 1� f λk ðr; tÞ; f̄ kðr; tÞ ¼ f ek ðr; tÞþ
f hk ðr; tÞ � 1; n̂jqðr; tÞ ¼ njqðr; tÞ þ 1, and n̄jqðr; tÞ ¼ njqðr; tÞ � njq;B

with the initial Bose-distribution for phonons njq;B. The

equations describe the time-, momentum- and space-resolved
coupled dynamics of electrons/holes, phonons, and the
microscopic polarization. The dynamics of electrons in the
conduction band and holes in the valence band is symmetric,
but has different initial conditions for doped graphene
samples. The appearing Rabi frequency is defined as

Ωvc
k ðr; tÞ ¼ i

e0
m0

Mvc
k � Aðr; tÞ with the free electron mass m0, the

vector potential A(r,t), and the optical matrix element Mvc
k =

〈kv|∇k|kc〉. Since we study the carrier dynamics close to the
Dirac point, renormalization effects can be neglected.
Furthermore, we have introduced ℏΔωkðr; tÞ ¼ ðεvk � εck þ
iγkðr; tÞÞ with the electronic dispersion ελk and the dephasing
rate γk(r,t). The time-, momentum- and spatial dependent

dephasing γk(r,t) and in- and out-scattering rates Γin=out
kλ (r,t)

include carrier–carrier and carrier–phonon scattering chan-

nels. The dynamics of the phonon number n j
q(t ) is driven by

the emission and absorption rates1,5 Γem=abs
qj (r,t). The constant

γph is the experimentally determined phonon decay rate.24

More details on the appearing many-particle scattering
and dephasing rates can be found in ref. 1 and 5. In this work,
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we assume that graphene lies on a SiC-substrate and is sur-
rounded by air on the other side. This is taken into account by
introducing an averaged dielectric background constant25

εbg ¼ 1
2
ðεs þ 1Þ, where εs = 9.66 is the static screening constant

of the substrate, while 1 describes the dielectric constant of
air. Furthermore, the internal many-particle screening is taken
into account by calculating the static limit of the Lindhard
equation,19,26 which screens the Coulomb matrix elements.

The derived set of equations resemble the semiconductor
Bloch equations for spatial homogeneous systems (cf. ref. 1
and 5) up to the additional term ∇kελk=ℏ � ∇r f λk ðr; tÞ, which

describes the diffusion of carriers in the direction ∇kελk ∝ ek =
k/|k|. As a result, carriers with different sign in momentum
move in opposite directions generating locally asymmetric
carrier distributions in momentum space and resulting in a

local current jðr; tÞ ¼ � 4e0vF
A

X

kλ

f λk ðr; tÞek with the Fermi vel-

ocity vF. The sum contains both electrons in the conduction
band and holes in the valence band and in a spatially homo-
geneous system, the mean current vanishes.

Spatio-temporal dynamics

Now, we numerically evaluate the spatio-temporal graphene
Bloch equations and investigate the interplay of diffusion and
relaxation processes after optical excitation. We excite carriers
with an optical pulse with a Gaussian profile both in time and
space. We chose typical values for pulse characteristics includ-
ing a temporal FWHM of 115 fs, a spatial FWHM of 265 nm,
an excitation energy of 1 eV and a pump fluence of 1 μJ cm−2.
The temporally and spatially dependent carrier density n(x,t )
is shown in Fig. 2(a). The diffusion of carrriers is reflected in
the broadening of the carrier density in space. Normalizing
the density for each time step, the broadening becomes more
visible (Fig. 2(b)), since phonon- and Auger-driven interband
processes give rise to a reduction of carriers with increasing
time. Fig. 2(c) shows the temporal and spatial distribution of
the electronic temperature. The latter has been determined via
the average kinetic energy per particle. Assuming a Fermi dis-

tribution, one obtains
X

k

εkρk=
X

k

ρk � 2:2kBT . Note that

shortly after the pulse the carrier distribution deviates from an
equilibrium Fermi distribution and therefore the temperature
is there not well defined.

To quantify the diffusion and to estimate the diffusion
coefficient for graphene, we fit the carrier density with a
Gaussian exp(−x2/w2(t )) for every time step. The temporal evol-
ution of the width w(t ) is depicted in Fig. 2(d). It is connected
to an effective diffusion coefficient D via27 w2(t ) = w0

2+ 4Dt
resulting in D ≈ 360 cm2 s−1 for the investigated graphene
sample on a SiC substrate. Our results fit well to the experi-
mentally obtained values17 for the diffusion coefficient of D =
250 ± 140 cm2 s−1. In Fig. 2(e) we show the influence of pump
fluence, substrate and temperature on the diffusion coeffi-

cient. We find that the temperature has the largest impact. The
underlying processes will be discussed later.

So far we have investigated the diffusion behaviour by
taking into account the full carrier dynamics. Now, to under-
stand the fundamental interplay of many-particle scattering
and diffusion processes we study separately the impact of
different scattering mechanisms on the diffusion process, cf.
Fig. 3. We start with the case without any scattering channels
just considering the electron–light interaction. After the
optical excitation, carriers with positive/negative momenta
diffuse in opposite spatial directions according to the
diffusion term in eqn (3). After approximately 100 fs the carrier
separation becomes visible, as the intial carrier density distri-
bution splits into two pronounced peaks of the same width
but with half of the amplitude, cf. Fig. 3(a). Including the
carrier–phonon scattering, we observe a strongly reduced
spatial broadening of the carrier density and no splitting
appears (Fig. 3(a)). Phonon-induced relaxation processes coun-
teract the diffusion via back-scattering across the Dirac cone
and the following back-diffusion (cf. Fig. 1). The impact of
carrier–phonon scattering will be further microscopically
resolved in the next section. Including only the carrier–carrier
scattering, the density diffuses with the same speed as in the
case without any scattering channels (cf. Fig. 3(c)). This is a
consequence of the symmetry of Coulomb matrix elements,
which favor parallel scattering.28,29 Scattering across the Dirac

Fig. 2 Spatio-temporal dynamics. (a) Carrier density n(x,t ) is shown as a
function of time and position after a local optical excitation centered at
x = 0. (b) Carrier density normalized to the maximal density at each time
step to highlight the diffusion of carriers. (c) Carrier temperature defined
via the kinetic energy per particle. (d) The square of the width w of the
spatial distribution is a measure for the diffusion coefficient D. (e)
Diffusion coefficient as a function of different pump fluences, substrates
and temperatures. The x-axis is normalized to the maximal value of the
respective parameter.
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cone is relatively inefficient and back-scattering is even forbid-
den. In contrast to the case without scattering, the spatial
region between the two peaks contains a non-zero density.
This reflects the weak but not vanishing Coulomb scattering
processes bringing carriers from one to the other side of the
Dirac cone.

Carrier–phonon dynamics

To get a thorough understanding of the microscopic processes
governing the spatio-temporal carrier dynamics, we investigate
the spectral and spatial behaviour of the Wigner function for
different times. We start with the interplay of diffusion and
carrier–phonon scattering processes. The optically excited car-
riers scatter via optical phonons to lower energies and form
enhanced carrier occupations separated by the energy of
optical phonons (red regions in Fig. 4(a)). Diffusion processes
lead to a spatial broadening of the carrier distribution and
after approx. 1 ps the carriers have relaxed to lower energies
close to the Dirac point (Fig. 4(b)).

To investigate the impact of diffusion in more detail we
performed the same calculation twice, but in the second
computation we excluded diffusion processes. Illustrating the
difference of both calculations, i.e. fk(x) − fk(x)

nodiff, we can
directly observe the impact of diffusion on carrier–phonon
scattering (Fig. 4(c) and (d)). As already discussed in the theory

section carriers with positive/negative momentum diffuse in
opposite spatial direction. This behaviour is illustrated in
Fig. 4(c), where carriers with positive momentum diffuse from
x < 0 positions (orange spots) to x > 0 positions (red spots).
After 1 ps the carriers have already relaxed to energies close to
the Dirac cone and below the optical phonon energy.
Consequently, the scattering with acoustic phonons becomes
dominant. Due to the flat dispersion of acoustic phonons with
respect to the Dirac cones back-scattering across the Dirac
cone is preferred, such that carriers with positive momenta are
scattered to negative momenta and vice versa (Fig. 1). The
inversion of momenta results in a back-diffusion, such that
the overall carrier distribution stays bunched in space, cf.
Fig. 3(b). The back-diffusion is shown in Fig. 4(d) by the the
multiple sign change in the colored regions (red to orange
to red).

Carrier–carrier dynamics

Now, we investigate the impact of carrier–carrier scattering on
diffusion of optically excited carriers. An important aspect
here is that Auger scattering is efficient giving rise to a carrier
multiplication30–34 that increases the overall carrier density
(note the scale of the color map in Fig. 5 compared to
Fig. 4(a)). This also results in a quick increase of the carrier
distribution close to the Dirac cone already during the optical
excitation (Fig. 5(a)). Since electrons and holes diffuse in the
same direction, the conditions for carrier multiplication are
still satisfied after the diffusion. The directional dependence
(in momentum space) for intraband carrier–carrier scattering

Fig. 3 Impact of scattering channels on diffusion. (a) After optical exci-
tation the carriers on Dirac cone branches with different sign of
momenta diffuse in opposite directions. (b) Carrier–phonon scattering
counteracts the diffusion and the broadening of the distribution due to
back-scattering between Dirac cone branches and the following back-
diffusion (c). (c) Carrier–carrier scattering does not effectively counter-
act the diffusion, since parallel scattering is preferred by the Coulomb
matrix elements. Thus, one can still clearly observe the spatial separation
of carriers with opposite momentum.

Fig. 4 Impact of carrier–phonon scattering. (a), (b) Wigner function is
shown in dependence of space and momentum for two fixed times.
Time 0 ps corresponds to the maximum of the optical excitation pulse.
Note that we plot here the change in the Winger function with respect to
the intial time t0 before the optical excitation, i.e. fk(x,t ) = fk(x,t ) − fk(x,t0).
(c), (d) Illustration of the impact of diffusion by showing the Wigner
function minus the case without diffusion. The overall spatial carrier
distribution becomes broader at larger times due to diffusion.
Backscattering with acoustic phonons leads to additional peaks at lower
energies. Since here the momentum of the carriers is flipped, they
diffuse back resulting in multiple sign changes in (d).
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is determined by the Coulomb matrix element that includes a
form factor proportial to1 1 + eiϕ with the scattering angle ϕ.
This means that parallel scattering (ϕ = 0) is the preferable
scattering channel, and that for the back-scattering (ϕ = π) the
amplitude of the Coulomb matrix element completely
vanishes. As a result, scattering processes across the Dirac
cone that change the sign of the carrier momentum (and lead
to a back-diffusion) are inefficient. As a result, carriers with
positive/negative momenta remain separated with respect to
their spatial position – similarly to the case without any scat-
tering (Fig. 3(a)). Fig. 5(b) illustrates that carriers with positive/
negative momenta are mainly distributed towards positive/
negative spatial positions.

Tuning the diffusion

Now, we can explain the dependence of the diffusion coeffi-
cient on pump fluence, substrate and temperature shown in
Fig. 2(e). We find that the diffusion becomes less efficient with
the increasing pump fluence (blue curve). Here, more carriers
are excited resulting also in an increased number of emitted
phonons. Thus, hot-phonon effects become important, i.e. an
increasing number of phonons can be reabsorbed in back-scat-
tering processes giving rise to additional channels for back-
diffusion. Furthermore, we find that the diffusion coefficient
is nearly independent of the substrate (red curve) entering in
our calculations through the screening of the Coulomb poten-
tial. This is not surprising, since Coulomb-induced scattering
processes have been shown to only play a minor role for the
diffusion of carriers, cf. Fig. 3. Finally, we observe that the
diffusion can be most efficiently tuned by varying the tempera-
tures (orange curve). The lower the temperature, the weaker
the carrier–phonon scattering, the less efficient is back-scatter-
ing and back-diffusion resulting in a considerably increased
diffusion coefficient.

In summary, we provide a microscopic view on the spatio-
temporal carrier dynamics in graphene based on the density
matrix formalism in Wigner representation. We investigate the
interplay of diffusion and many-particle scattering processes
after a local optical excitation. In particular, we determine a

diffusion coefficient of D ≈ 360 cm2 s−1 that agrees well with
recent experimental values. Furthermore, we reveal that
carrier–phonon scattering across the Dirac cone and the
resulting back-diffusion are crucial ingredients to understand
the spatial broadening of the carrier distribution. The
gained insights are important e.g. for graphene-based
photodetectors,35–39 that are governed by the thermoelectric
effect, which relies on spatial temperature gradients.
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