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In multi-modal electron tomography, tilt series of several signals such as X-ray spectra, electron energy-

loss spectra, annular dark-field, or bright-field data are acquired at the same time in a transmission elec-

tron microscope and subsequently reconstructed in three dimensions. However, the acquired data are

often incomplete and suffer from noise, and generally each signal is reconstructed independently of all

other signals, not taking advantage of correlation between different datasets. This severely limits both the

resolution and validity of the reconstructed images. In this paper, we show how image quality in multi-

modal electron tomography can be greatly improved by employing variational modeling and multi-

channel regularization techniques. To achieve this aim, we employ a coupled Total Generalized Variation

(TGV) regularization that exploits correlation between different channels. In contrast to other regulariz-

ation methods, coupled TGV regularization allows to reconstruct both hard transitions and gradual

changes inside each sample, and links different channels at the level of first and higher order derivatives.

This favors similar interface positions for all reconstructions, thereby improving the image quality for all

data, in particular, for 3D elemental maps. We demonstrate the joint multi-channel TGV reconstruction

on tomographic energy-dispersive X-ray spectroscopy (EDXS) and high-angle annular dark field (HAADF)

data, but the reconstruction method is generally applicable to all types of signals used in electron tom-

ography, as well as all other types of projection-based tomographies.

Introduction

Electron tomography using a scanning transmission electron
microscope (STEM) is a versatile tool for the investigation of
nanomaterials in three dimensions down to the single atomic
level.1,2 Insight into the 3D elemental and chemical make-up
of a sample is provided by the spectroscopic signals originat-
ing from inelastic scattering in analytical tomography experi-
ments.3 Energy losses of electrons traversing a thin TEM speci-

men can be measured using energy-filtered TEM (EFTEM)4–7

or electron energy-loss spectroscopy (EELS)8–10 and character-
istic X-rays can be recorded using energy-dispersive X-ray spec-
troscopy (EDXS).11–13 Also, EELS and EDXS signals can be
acquired simultaneously for combined analytical tomography
experiments.14 Over the last few years, analytical tomography
has thereby become an important characterization method in
nanoscale materials science.13,15–18

The 3D resolution of a sinogram is generally limited by the
number of projections which can be acquired in an experiment
and by the achievable tilt range. Reasons for these limitations
are the overall dose the sample can sustain, the accuracy of the
sample positioning mechanism for very small tilt steps, the
geometry of the sample or the sample holder, as well as the
limited time for an experiment. This leads to the situation that
image reconstruction from an electron tomography experiment
usually amounts to solving an ill-posed inverse problem with
more unknown parameters than measurements. Especially for
analytical tomography data, also the signal-to-noise ratio is
very low. Therefore, a priori knowledge and regularization are
essential to find better solutions for a tomographic reconstruc-
tion. In this context sparse recovery has become increasingly
important over the last few years.19–22 In sparse recovery, the
signal of interest is assumed to have sparse representation
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when transformed to a suitable basis. If such a transformation
is possible, minimization of the ℓ1-norm in this domain
enforces sparsity and can lead to an accurate solution.

The most important type of sparsity in electron tomography
is sparsity of the image (or volume) gradient.19,23,24 Known as
Total Variation (TV)25 minimization, ℓ1-minimization of the
image gradient leads to an image (or volume) with locally con-
stant regions, separated by sharp interfaces. For materials
science samples, it can often be assumed that well separated
phases exist within a sample, which is why TV minimization
has found a range of applications in electron tomography.26–29

It has been shown that TV minimization can be especially
favorable for analytical electron tomography experiments,
where usually only limited and noisy data are available.14,30

Two major limitations can be identified with current TV
minimization approaches and their application in analytical
tomography. First, the underlying model of TV minimization
assumes that the sample only contains sharp interfaces
between different phases, severely restricting the range of
materials that can be analyzed using TV minimization. All
types of gradual changes between different sample regions,
such as diffusion at interfaces, are typically not correctly recov-
ered. Second, in analytical tomography and other multi-modal
tomography experiments, different signals are acquired at the
same time, containing complementary information. But in
most approaches this is not exploited but rather each signal is
reconstructed independently. Until recently, there was only
one attempt to link the information of different signals,31

where the intensity of the HAADF signal was expressed as a
linear combination of EDXS signals and reconstructed with a
conventional reconstruction algorithm.

Here we present an approach for resolving these issues for
multi-modal tomography. We apply coupled Total Generalized
Variation (TGV)32–34 regularization, which allows for both
sharp interfaces and gradual intensity changes in the recon-
struction and exploits inter-channel correlation. This yields a
joint multi-channel reconstruction of HAADF and EDXS data.
We demonstrate our approach on phantom data and on an Al-
5 wt% Si alloy with 50 ppm Na and 6100 ppm Yb,14 where the

precipitation of Yb and Si takes place at the nanoscale, but it
is generally applicable to analytical electron tomography of all
types of nanostructured materials. The basic concept of multi-
modal STEM tomography is depicted in Fig. 1. Several tilt
series are acquired at the same time in the microscope. In the
joint reconstruction all tilt series are used together to obtain a
joint multi-modal reconstruction.

We note that in two recent, independent studies,35,36 a
coupled Total Variation approach was proposed to link data
and create smooth reconstructions. While these studies over-
come the second limitation of existing approaches as men-
tioned above, the usage of TV regularization still limits their
applicability to piecewise constant densities with sharp inter-
faces. However, a major benefit of three-dimensional local
elemental distributions lies in analyzing local concentration
variations. While the compositions of well separated phases
are often accessible already by 2D investigations after appropri-
ate sample preparation, local variations are always masked due
to projection. A recent example is the unveiling of elemental
concentration variations within spherical precipitates in an
AlMgScZr-alloy.17 In such situations it would not be possible
to use TV regularization. Beyond overcoming this drawback, a
second novelty of our approach is that we developed – and
make publicly available37 – a Python38/OpenCL39-based
implementation for all components of the reconstruction
algorithm, which is crucial in particular for 3D reconstructions
as it significantly reduces the computation time. A graphical
user interface connected to the code allows for simple and
efficient execution. In particular, we developed a custom, GPU-
based implementation of the forward operator and its adjoint,
ensuring, in contrast to other existing implementations,
numerical adjointness of the two, which is in particular
crucial for the convergence of iterative minimization
algorithms.

We also note that TGV regularization for both single- and
multi-channel data has been demonstrated to work well and to
be superior to TV regularization in various applications.40–45

In particular, in the context of joint magnetic resonance (MR)
imaging and positron emission tomography (PET), multi-

Fig. 1 Basic principles of multi-modal STEM tomography. (a) Simultaneous acquisition of several tilt series (EDXS/EELS+HAADF). (b) Joint recon-
struction of all tilt series.
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channel TGV regularization was shown to allow for improved
recovery of quantitative measurements compared to single-
channel approaches.46 Also theoretical results on well-posed-
ness and stability for multi-channel regularization are avail-
able.47 Building on the existing code for MR reconstruction,40

a first application of TGV in the context of two-dimensional
single-channel electron tomography was also presented in a
conference proceedings paper48 and shown to be superior to
TV regularization.

Results
The main principles of multi-modal TGV reconstruction

The proposed tomographic reconstruction framework is based
on a convex variational method employing volumetric coupled
second order Total Generalized Variation (TGV) regularization,
and the Kullback–Leibler (KL) divergence as a discrepancy
measure. Given some measured multi-channel‡ data
f = ( f 1, …, f C), a reconstruction u = (u1, …, uC) is obtained as a
solution to the convex minimization problem

min
u�0

XC
c¼1

μcDKL Tcuc; f cð Þ
" #

þ TGVα
2 uð Þ: ð1Þ

Here, DKL ũ; f̃
� �

:¼ Ð ũ� f̃ logðũÞ corresponds (up to con-
stants and non-negativity constraints) to the Kullback–Leibler
divergence, which is an appropriate data fidelity measure in
the presence of Poisson noise. The operators T c map each
image channel to the corresponding data space and comprise
a slice-wise Radon transform and a possible change of resolu-
tion. For the sake of simplicity we assume that for c = 1, …, C
the forward operators are identical, i.e. T c = T, although the
theory is not limited to such restrictions. The regularization
parameters μc ensure the trade-off between data fidelity and
regularization for each channel. The functional TGVα

2 is given
as

TGVα
2 uð Þ ¼ min

w
α1 k ∇u� wjfrob k1 þ α0 k

�� ��Ewjfrob k1 ; ð2Þ

where ∇u denotes the Jacobian of the multi-channel image
u, w is a matrix field with the same dimensions as ∇u and Ew
denotes a symmetrized Jacobian of w. The norms |·|frob are
pointwise Frobenius matrix and tensor norms and k·k1
denotes the one-norm, i.e., the sum of moduli over all image
voxels. For solving the minimization problem (1), we employ a
duality-based algorithm for which we developed a Python38/
OpenCL39 implementation. Further details of the algorithm
and the reconstruction approach are provided in the section
Materials and methods.

We can identify two main features of the proposed coupled
TGV regularization functional: first, the functional itself opti-
mally balances between a penalization of the first and second
order derivatives. Choosing the auxiliary variable w to be
locally zero or equal to ∇u, it is possible to penalize either the
one-norm of ∇u or the one-norm of E∇u, where E∇u corres-
ponds to the Hessian of u. For this reason the proposed
method can be expected to recover both sharp interfaces and
gradual intensity changes. Second, the pointwise matrices and
tensors resulting from differentiation of u and w are coupled
with a Frobenius norm, i.e., the two-norm over all entries. This
enforces joint sparsity of the corresponding quantities; in par-
ticular, the edge set of each channel can be expected to have
small support and to largely coincide with the ones of the
other channels.

Reconstruction of phantom data

To illustrate the capability of the joint TGV algorithm, we first
test it in an artificial example. For this purpose we created a
multi-channel phantom object. The phantom is inspired by
the sample investigated in our experiments and is assumed to
consist of three elements (Yb, Si and Al), with both abrupt and
gradual concentration changes in the sample. For this
phantom, we calculate the sinograms of EDX signals for Yb, Si
and Al and of the HAADF signal assuming typical experimental
parameters for an analytical tomography experiment and add
Poisson noise to the calculated sinograms (see the Materials
and methods section). To investigate how a full 3D implemen-
tation of the reconstruction algorithm compares to a 2D
implementation, we replicate the same slice 60 times rotating
each slice slightly compared to the previous to obtain a 3D
volume with changes along all three dimensions. Fig. 2 shows
the phantom and the sinograms with and without noise. For
each slice, sinograms are calculated with a size of 305 pixels
over a range of 180° with steps of 5° (see the Materials and
methods section for more details of the phantom).

For reconstruction, we compare the standard method
SIRT49 with TV and TGV regularization, where for the latter
two we provide the results for 2D slice-wise and volumetric 3D
regularization as well as uncoupled and coupled regularization
of the different channels. The SIRT reconstructions were
obtained using the Astra toolbox50,51 and for the TV and TGV
results, we used different variants of our reconstruction algor-
ithm presented in the Materials and methods section.
Reconstruction parameters for all methods are provided in ESI
Table 1.†

In Fig. 3 we provide the reconstruction results, where three
orthogonal slices for each method for both the HAADF and the
EDXS signals are compared to the original phantom (Fig. 3a).
The SIRT reconstruction (Fig. 3b) of the low-noise HAADF data
is quite acceptable, showing only some typical artifacts stem-
ming from the limited number of projections. Due to the low
signal of the EDXS data however, these reconstructions are
dominated by the Poisson noise of the sinograms and hardly
anything can be discerned.

‡ It should be noted that as one channel we denote one type of dataset to be
reconstructed, such as the HAADF signal or a single EDXS elemental map,
meaning if we consider sinograms for HAADF, EDX aluminum, EDX silicon and
EDX ytterbium, then C = 4. This should not be confused with spectral channels
in EDXS or EELS.
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Introducing variational regularization reduces the impact of
noise on the reconstruction, but it can be observed that the
results strongly depend on the chosen regularizer. In an
uncoupled 2D TV reconstruction (Fig. 3c) severe staircasing
artifacts (i.e., artificial piecewise constant regions) are present;
these artifacts are removed by using the TGV2 norm (Fig. 3d),
but in both these reconstructions small features in the sample
can completely disappear due to the low signal-to-noise ratio
of the sinograms.

This situation can be significantly improved by coupling the
reconstructions for both TV (Fig. 3e) and TGV2 (Fig. 3f). With
the transfer of information between the channels the presence
and shape of smaller features become clear also in the recon-
structions of EDXS data. In the TGV2 reconstruction, both sharp
and gradual concentration changes can be recovered and also
in the TV reconstruction, staircasing artifacts are reduced.

By linking all slices in the third spatial dimension, the 3D
implementation of the algorithm is even more robust to noise
for both the uncoupled (Fig. 3g & h) and the joint reconstruc-
tion (Fig. 3i & j). The 3D joint reconstruction methods make
full use of data correlation, along all three spatial dimensions
as well as between the different channels and therefore give
the best reconstruction for both TV and TGV2. With TGV2, con-
stant areas and hard transitions are equally well reconstructed
as with TV, but, by promoting piecewise linear functions in

addition to sharp interfaces, TGV2 is superior to TV when it
comes to gradual intensity changes. In the TGV2 reconstruc-
tion all but some of the very smallest features can be
recovered.

These trends in improvement can also be quantified by con-
sidering the corresponding peak signal-to-noise ratios between
the original phantom images and the reconstructions, as
shown in Table 1. We see, for example, that the PSNR of the
ytterbium reconstructions strongly benefits from the coupling
of channels both in 2D and 3D. Also, all channels greatly
benefit from the change from 2D to 3D. Note that, even
though visually one can observe qualitative improvements with
TGV compared to TV, both methods behave similarly in terms
of PSNR. This may be explained using the fact that PSNR is
not well suited to quantify such qualitative differences, but
also by the fact that the parameters for the reconstruction of
Fig. 3 were selected for visually optimal results. Indeed, redu-
cing the amount of regularization slightly can be expected to
yield an improvement in terms of PSNR for all methods, but
would decrease the visual image quality. Nevertheless, we see
that also in terms of PSNR, the improvement obtained with
the proposed coupled 3D TGV reconstruction is quite signifi-
cant compared to 2D uncoupled reconstructions or the SIRT
method. In this context, we also refer the reader to the ESI† of
this paper, where a mean-to-standard-deviation evaluation of
our method on 100 different noise realizations also revealed
that a significant improvement was obtained with TGV both
for the mean over all reconstructions from different noise
realizations and for the standard deviation.

Experimental reconstruction

In an analytical tomography experiment we acquired tilt series
from a needle-shaped sample prepared from an Al-5 wt% Si
alloy with 50 ppm Na and 6100 ppm Yb. HAADF STEM data
and EDXS spectrum images were acquired every 4° with a pixel
size of 0.76 nm. HAADF data and elemental maps of Yb, Si
and Al at different tilt angles are shown in Fig. 4.

Reconstructions of the HAADF and EDXS data using the
SIRT method as well as uncoupled and coupled TGV regulariz-
ation are shown in Fig. 5, where for the SIRT method we used
100 and 20 iterations for the HAADF and EDXS data, respect-
ively, and we refer the reader to the section Materials and
methods for the parameter choice for TGV. Fig. 5a depicts a
conventional SIRT reconstruction and Fig. 5b an uncoupled
TGV2 reconstruction. For both the HAADF and the EDXS data
the quality improvements of TGV reconstruction are evident.
In the HAADF reconstruction of the shown slice, two bright
features are visible, and in the larger one, dark enclosures are
present. These are already visible in the SIRT reconstruction,
but are much clearer in the TGV2 reconstruction. Furthermore,
in the TGV2 reconstruction, it becomes evident that at the
interfaces of the bright features, both abrupt and gradual tran-
sitions are present at different locations. For the reconstruc-
tions of the EDXS data, TGV2 significantly reduces the impact
of noise on the reconstruction, but smaller features, such as
the dark enclosures of the HAADF image, are not visible in the

Fig. 2 Multi-channel 3D phantom: (a) HAADF slices along three
orthogonal directions, (b) HAADF sinogram without noise and (c) with
noise (peak signal-to-noise ratio (PSNR): 55 dB). (d) EDX slices, (e) EDX
sinograms without noise and (f ) with noise (PSNR for Yb: 7.77 dB, for Si:
9.25 dB, for Al: 18.21 dB). Yb is shown in green, Si in red and Al in blue.
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EDXS data neither in the SIRT reconstruction nor in the
uncoupled TGV2 reconstruction. As Yb is by far the heaviest
element present in the sample, HAADF contrast is governed by
the local Yb concentration, and therefore at the locations of
the enclosures, the EDXS signal of Yb should decrease.

This issue can be resolved in the joint TGV2 reconstruction
depicted in Fig. 5c. Due to the coupling, the reconstructions of
the elemental maps show much better defined interfaces and
transitions. It is now evident that the dark enclosures visible
in the HAADF image correspond to areas with a low concen-

Fig. 3 Reconstructions of a phantom from noisy projection data. In the images, Al is depicted in blue, Si in red and Yb in green. (a) Original
phantom, (b) SIRT reconstruction, (c) 2D TV reconstruction without coupling, (d) 2D TGV2 reconstruction without coupling, (e) 2D coupled TV
reconstruction, (f ) 2D coupled TGV2 reconstruction, (g) 3D TV reconstruction without coupling, (h) 3D TGV2 reconstruction without coupling, (i) 3D
coupled TV reconstruction, and ( j) 3D coupled TGV2 reconstruction.

Table 1 Peak signal-to-noise ratio in dB of the phantom reconstructions depicted in Fig. 3

SIRT TV uncorr. 2D TV coupled 2D TV uncorr. 3D TV coupled 3D

HAADF 19.05 34.56 34.59 35.15 35.05
Ytterbium 2.72 6.22 10.14 10.71 13.42
Aluminum 8.26 14.83 15.80 18.42 18.78
Silicon 3.19 9.17 9.94 12.09 13.18

TGV uncorr. 2D TGV coupled 2D TGV uncorr. 3D TGV coupled 3D

HAADF 35.10 35.06 35.21 35.23
Ytterbium 7.92 10.74 11.40 14.09
Aluminum 14.66 15.25 18.03 18.28
Silicon 9.13 9.85 10.98 12.44
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tration of Yb and a high concentration of Si. This is a result of
the coupling of the signals, as the transition locations
present in the HAADF signals are transferred to the recon-
structed elemental maps. In the coupled reconstruction it can
also be observed that gradual transitions between different
areas are present at some of the interfaces between Yb-rich
and Si-rich regions and near the edge of the sample, where
beam damage during sample preparation plays a role. In con-
trast, all interfaces between Yb-rich regions and the Al-matrix
are abrupt.

It should be noted that for both the TV and TGV2 recon-
struction, regularization parameters have been chosen to
weight the impact of the norms. A comparison of the effect of
different regularization parameters for experimental data is
given in Fig. 6. In Fig. 6a the regularization parameter for the
HAADF data is varied, while in Fig. 6b the parameter for the
HAADF data is kept constant, and the parameters for the EDXS
data are changed by the same factor. By visual comparison of
different parameters, good parameters can be chosen, which
do not lead to a loss of information, while minimizing the
impact of noise on the reconstruction. In the section Materials
and methods we expand in more detail on how to choose
these parameters. Note that also for SIRT and similar
methods, a parameter (typically the number of iterations)
must be chosen for each channel. The impact of SIRT para-
meters is depicted in ESI Fig. 3.† In this context, and in con-
trast to SIRT, one should also note that the number of iter-
ations for our method does not play the role of an additional
parameter but rather just needs to be chosen sufficiently high
such that convergence is ensured.

Fig. 7 shows several slices through the linked reconstruc-
tion of all signals and a volume rendering of the different
signals. As the HAADF signal is governed by the local Yb-con-
centration, a close correlation between these signals can be
observed. By linking the reconstructions, the Yb-elemental
map becomes well defined and shows almost the same fea-
tures and transitions as the HAADF reconstruction, where Yb-
rich precipitates are visible. These precipitates are also visible
in the Si-elemental map, showing a higher Si-concentration

than the matrix and in the Al-elemental maps, where they
appear dark, indicating a low Al concentration. In the Si- and
Al-elemental maps a second type of precipitate with a high
concentration of Si and a moderate concentration of Al is
visible.

Discussion

In both simulations and experiments, we could observe that
TGV2 reconstruction is well suited for reconstructing gradual
transitions inside a sample, in addition to sharp interfaces.
Thereby it extends TV reconstruction, making sparse recon-
struction applicable to a wider range of samples. In the investi-
gated sample such gradual transitions are present between Yb-
rich and Si-rich precipitates.

Linking different signals in the reconstruction significantly
improves the quality of analytical STEM reconstructions by
transferring morphological information present in the HAADF
STEM data to the analytical data and in between the analytical
datasets.

Since this transfer is a key feature of our approach, we want
to quickly illustrate its inner workings. For simplicity, assume
that we have only two channels and consequently the recon-
struction approach reduces to

min
u1;u2ð Þ¼u�0

μ1DKL Tu1; f 1
� �þ μ2DKL Tu2; f 2

� �þ TGVα
2 uð Þ;

i.e. we look for u with a low corresponding value, improperly
referred to as “cheap”. Note that due to the nature of TGVα

2 it
is cheaper for TGVα

2 to align edges or slopes in the two
different channels at common positions. However, this might
come at the expense of the reconstruction fitting the data less,
making the data terms more expensive. Thus a compromise
between fitting and regularity might be ideal, and the concrete
behavior therefore depends on various factors.

Let us assume that f 1 contains far less noise than f 2. Then
one would naturally choose μ1 greater than μ2, as then f 1 is
more reliable and thus we make deviation from f 1 more expen-

Fig. 4 (a) HAADF STEM projections and (b) sinograms of the HAADF STEM signal at three different heights as indicated by dashed lines in (a). (c)
Projections of Yb, Si and Al EDXS signals at different tilt angles and (d) sinograms of the Yb, Si and Al EDXS signals at three different heights as indi-
cated by dashed lines in (c). The individual signals of Yb, Si and Al are shown in the ESI Fig. 2.†
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sive. Therefore, the approach finds u1 fitting f 1 well, and
rather adjusts u2 to obtain common features. This is exactly
the effect we observed between the HAADF and Yb reconstruc-
tions in the experimental data, where Yb was strongly adjusted
to HAADF, but HAADF remained unchanged and in particular
was not negatively impacted.

On the other hand, if both channels have the same noise
level, and consequently the weights are chosen to be of similar
magnitude, deviation from data is equally expensive for both
channels, leading to a more balanced compromise in adjust-
ing the reconstructions to obtain common features. This, for
example, happens in the reconstruction of the experimental

Fig. 5 Reconstruction of HAADF data and Yb, Si and Al elemental maps. (a) Uncorrelated SIRT reconstruction, (b) uncorrelated TGV reconstruction,
and (c) joint TGV reconstruction.
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data at the edges between Al and Si, leading to better defined
edges for both channels.

Of course, if attaining common features comes at too
high a cost, in particular if there actually are no common
features in reality, the algorithm will not force common
features. So no adjustment appears where it makes no sense to
adjust.

In its current implementation, the algorithm will work well
for all types of samples which fully remain in the field of view
at all tilt angles and is robust to a limited tilt range, cf. ESI
Fig. 4.† As such, the algorithm is also readily applicable to
samples on a thin-film support, for example, nanoparticles.
Only if the sample extends beyond the field of view, problems

may arise, similar to other reconstruction algorithms such as
SIRT.

The algorithm can be readily applied to any type of signal
fulfilling the projection requirement; in particular, its appli-
cation to EELS data or to combined EDXS/EELS datasets is
straightforward.

For the material, the observed gradual transition at the
interface between Yb-rich and Si-rich precipitates indicates
that a side by side nucleation of the Yb and eutectic Si par-
ticles might happen. The diffusion interface between Yb and
Si leads to stoichiometry changes (i.e. gradual transitions) of
both phases depending on the solute and/or solid diffusion of
Yb atoms.

Fig. 6 Comparison of different regularization parameters for TGV reconstructions of the experimental data: (a) for the HAADF data and (b) for the
EDXS data. In (b), μHAADF = 0.1 for all reconstructions and for the central image C = (μAl, μSi, μYb) = (0.0024, 0.0014, 0.001).

Fig. 7 Different slices through correlated reconstructions of the HAADF signal, Yb-, Si- and Al-elemental maps and 3D volume rendering.
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Conclusion

Without the TV-induced bias towards piecewise constant
solutions, TGV2 reconstruction achieves high-quality results –
and is therefore applicable – for a wide range of materials
and will help in understanding their morphology, compo-
sition and functionality. The presented linkage of different
signals is an ideal approach for obtaining most information
out of the available data and can be used for any type of
signal used for tomographic reconstruction in a TEM, but the
approach is not limited to electron tomography, but can be
applied to every type of projection-based tomography. In
analytical electron tomography, optimized usage of the avail-
able data is mandatory, as the quality and quantity of data
which can be acquired in an analytical tomography experi-
ment are severely limited by potential beam damage and
acquisition time.

Materials and methods
Numerical simulations

In this chapter we give a more detailed description of the
phantom data shown in the section Reconstruction of
phantom data. To demonstrate the functionality of the joint
TGV reconstruction algorithm, we created a multi-channel
phantom object. This phantom consists of three channels,
which we attribute to the atomic fraction cA of Yb, Al and Si,
and has an original size of 2048 × 2048 pixels, with the pixel
size being set to 0.1 nm. To obtain a realistic estimation of the
number of detector counts for both the EDXS signal and
the HAADF signal, we calculated local signal creation
probabilities.

For the EDXS signal, we used

IA ¼ ρ � t �mA � De

ζA
ð3Þ

with the local density ρ, the sample thickness t, the local con-
centration of the element A mA (mass fraction), the electron
dose De and the zeta-factor for the element A ζA.

52 To calculate
the local density, we weighted the elemental densities of Yb
(ρYb = 6.9 g cm−3), Al (ρAl = 2.7 g cm−3) and Si (ρSi = 2.3 g cm−3)
by their local atomic fraction. The thickness t equals the
phantom pixel size of 0.1 nm.

The dose De was calculated for an electron current of Ie = 2
nA, a pixel dwell time of tpx = 2 ms and the elemental charge
of q = 1.602 × 10−19 C using

De ¼ Ie
tpx � q : ð4Þ

For the zeta-factors, we used ζSi ¼
500
4

kgm�2 for Si, ζAl ¼
500
4

kgm�2 for Al and ζYb ¼
240
4

kgm�2 for Yb. Zeta-factors for

Si and Al were measured for our microscope; the zeta-factor for
Yb is an estimation based on theoretical k-factors for the inves-
tigated elements.

To obtain an estimate of the HAADF signal, we used tabu-

lated values of the differential cross section
@σ

@Ω
for elastic scat-

tering from the NIST database,53 integrating them over the
angular detector range [θmin,θmax] with

54,55

σ θmin ;θmax½ � ¼ 2π
ðθmax

θmin

@σ

@Ω
sin θdθ: ð5Þ

For the inner and outer detector angles, we used θmin =
94.9 mrad and θmax = 188 mrad, which was measured in our
system for the Fischione HAADF detector at a camera length of
58 mm.

For each element A, the scattering factor fA was calculated
as

fA ¼ e�
NA
mA
�cA �σA �ρt ð6Þ

with the Avogadro constant NA = 6.022 × 1023 mol−1, the
atomic mass mA, the local atomic fraction cA and the scattering
cross section σA for the element A, as well as the local density ρ
and the pixel size t.

The total HAADF signal was calculated using the scattering
factors for all elements and the electron dose De according to

IHAADF ¼ Deð1� f Al � f Si � f YbÞ: ð7Þ
The electron dose is calculated from eqn (4) with Ie = 2 nA

and a dwell time of tpx = 2 ms. To account for detector
efficiency, we reduce the HAADF signal by a factor of 0.7.

Finally, the phantom data are downscaled from 2048 × 2048
pixels to 305 × 305 pixels using bilinear interpolation, corres-
ponding to a pixel size of 0.67 nm, close to the experimental
pixel size. After downscaling, the pixel values are multiplied by
a factor of 0.67 to account for the larger thickness of each pixel.

Electron tomography experiments

In this section, we give a more detailed description of the
experimental data used in the Experimental reconstruction
section. The investigated sample stems from an Al-5 wt% Si
alloy with 50 ppm Na and 6100 ppm Yb; a similar sample has
been previously analyzed by analytical electron tomography.14

From this material a needle-shaped sample containing Yb-
and Si-rich precipitates is prepared using a dual-beam focused
ion beam/scanning electron microscope (FIB/SEM) instru-
ment. STEM images are acquired on a probe-corrected FEI
Titan3 G2 60-300 microscope operated at 300 kV and equipped
with a FEI Super-X four quadrant silicon drift detector (SDD)
EDXS system. EDXS spectrum images were acquired every 4°
between −74° and +78° at a pixel size 0.76 nm with 276 × 296
pixels. The pixel time was 2 ms, leading to a frame time of
4 min 36 s. The tilt range was limited by the sample holder
available at the time of the experiment (a Fischione 2020
Advanced Tomography Holder). Elemental maps of the Al and
Si K-lines and of the Yb L-lines are extracted from the EDXS
spectrum images. For this purpose, the background is fitted
with a Kramers model56 and Gaussian peaks are fitted at all
peak positions.
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Data preprocessing

For the variational reconstruction to work efficiently, the raw
sinogram data f need to be consistent with the model.
Therefore, the data require suitable preprocessing, and failing
to do so could result in artifacts in the reconstructed images.
In the ESI† we also discuss the effect of model inconsistencies,
which may arise for HAADF STEM data.

To correct for sample drift during spectrum image acqui-
sition, the spectrum image is corrected using a linear drift
model (constant speed and direction). Drift parameters are cal-
culated by minimizing the difference between the HAADF data
acquired during SI (Spectrum Image) acquisition and the fast
scan image acquired before. The calculated parameters are
used to correct all SI data.57 Alignment of the tilt series is
done using the HAADF STEM data. For alignment in the direc-
tion of the tilt axis, common-line alignment is applied,58 in
the direction perpendicular to the tilt axis the center of mass
of each projection is used for alignment and for tilt axis align-
ment, rotational centers are calculated based on the center of
mass.59 The alignment parameters calculated for the HAADF
STEM data are applied to all datasets. Drift correction and
alignment are done using MATLAB.

Further pre-processing steps can be done using the Python
software presented here. Intensity fluctuations can appear
between different tilt angles. There are two main sources for
these effects: partial shadowing of the detector and residual
diffraction contrast. To reduce intensity variations between
different projections, we rescale all projections to be non-nega-
tive and to have a common mean. This also compensates for
partial shadowing of the EDXS detectors. Additionally, projec-
tions with very strong diffraction contrast, containing unsatis-
factory information, are removed completely.

To correct for non-zero signal values in background regions
with no mass (e.g. due to Gaussian noise stemming from the
electronics), the corresponding pixels are masked via thresh-
olding and their values are set to zero. A detailed investigation
of the impact of data inconsistencies is provided in the ESI.†

Variational modeling

In this section we provide details of the proposed variational
model for electron tomography reconstruction, which com-
prises the solution of (1). For an easier understanding, we
describe the reconstruction of a single signal first.

Forward model. In our electron tomography measurement, a
focused electron beam is directed at the sample orthogonal to
a fixed imaging plane, and raster scanned over the region of
interest in the sample. For the HAADF signal, the number of
electrons scattered to a specific annular range is measured,
while for EDXS maps, characteristic X-rays for specific
elements are measured for each position of the electron beam.
For each beam position, this corresponds to measuring (at
least approximately) the density of either a single element
(EDXS) or a weighted sum of all elements (HAADF) integrated
along the line of the electron beam that intersects the
sample orthogonally to the imaging plane. Then, the imaging

plane is rotated and the experiment is repeated for several tilt
angles.

Mathematically, this setup can be described as follows:
given an angle θ [ S1 (the unit sphere in R2), the imaging
plane is defined as Pθ = {(x, y, z)∈R3|(x, y)·θ = 0} and, for given
parameters s and z describing the horizontal and vertical
offset, respectively, the measurement line Ls,θ,z orthogonal to
this imaging plane is given as Ls,θ,z: = {(x′, y′, z′)∈R3|(x′, y′)·θ⊥ =
s, z′ = z}, where θ⊥ = (θ1, θ2)

⊥: = (θ2, −θ1) is a clockwise rotation
of θ by 90°. The measurement Tu(s, θ, z) for the parameters
(s, θ, z) of a density described by u:R3 → R is then given as the
integration of u over the measurement line Ls,θ,z, i.e.,

Tu s; θ; zð Þ :¼
ð

Ls;θ;z

u:

For any fixed height z, this corresponds to the 2D Radon
transform60 of the density u in the plane Pz = {(x, y, z)∈R3|
x, y∈R}. Thus, the measurement operator T corresponds to
a slice-wise Radon transform where the image space is
parameterized by the height z, the normal of the imaging
plane θ and the position in the plane s. The tomographic
reconstruction problem then corresponds to solving the
equation

Tu ¼ f

for given sinogram data f = f (s, θ, z). In a practical realiz-
ation, both the measured data and the unknown density
are defined on a discrete grid and we employ a discrete
Radon transform that is based on a weighted sum of points
close to the line of integration as follows: for discrete posi-
tion parameters (s, θ, z), we define the Radon transform of
a discrete density u as

Tu s; θ; zð Þ ¼
X

x;yð Þ: x;yð Þ�θ?�sj j,Δs

1� x; yð Þ � θ? � s
�� ��

Δs

 !
u x; y; zð Þ;

ð8Þ

where the sum is taken over all positions (x, y) in the dis-
crete pixel grid. We note that, naturally, this is not the only
possible discretization,61 but we chose this one since it
comprises a suitable balance between approximation
accuracy and computational effort. In particular, it allows a
very efficient computation of the numerically exact adjoint
operation (backward projection) which will be required in
the optimization algorithm. This is of particular impor-
tance, as a non-exact adjoint can significantly hinder
optimization both in convergence speed and in accuracy;
see the ESI.†

Noise model. For both the HAADF and the EDXS signal, the
main contribution to noise, especially at low count rates,
comes from the counting of electrons or X-rays at the detector,
which follows Poisson statistics.62,63 Additionally, the signal
can also be affected by Gaussian noise stemming from the
electronics. Omitting Gaussian noise (see also the section Data
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preprocessing for related preprocessing steps), the noise on
the data is typically assumed to be Poisson distributed.

Hence, from a Bayesian perspective, the appropriate data
discrepancy term in a variational model is the Kullback–
Leibler divergence,64 which is for non-negative densities ũ, f
(up to constants) given as

Df
KL ũð Þ ¼ DKL ũ; fð Þ ¼

ð
ũ� f logðũÞ; ð9Þ

where we use the convention 0 log(0) = 0 and −a log(0) = ∞ for
a > 0. For discrete measurements, the integral is replaced by a
sum.

Regularization. In order to achieve a regularized inversion
of the Radon transform corresponding to the forward oper-
ator of an electron tomography experiment, we incorporate
the Total Generalized Variation (TGV)32,33 as a regularization
term. The TGV functional realizes an ℓ1-type penalization of
higher order derivatives via a cascadic decomposition of the
unknown. Such a procedure preserves the advantage of the
popular Total Variation (TV) functional25 of allowing recon-
struction of sharp interfaces while overcoming its defects,
particularly its tendency to foster piecewise constant density
distributions (the staircasing effect ). TGV can be defined for
an arbitrary order of differentiation k∈N and for k = 1
coincides with the TV functional. In this work, we employ the
second order TGV functional for regularization (k = 2), which,
for a single-channel image (or volume) u and parameters
α0, α1∈(0, ∞), is given as

TGVα
2 uð Þ ¼ min

w
α1 k ∇u� wj j k1 þ α0 k jEwjfrob k1 ; ð10Þ

where w is a vector field and Ew ¼ 1
2 ð∇wþ ð∇wÞTÞ denotes the

symmetrized Jacobian matrix. The pointwise norms |·| and
|·|frob are the standard Euclidean vector norm and the
Frobenius matrix norm, i.e., the root of the sum of squares of
all entries of the vector or matrix, respectively.

Thus, TGVα
2 minimizes the norm of the gradient while

allowing subtraction of a function w, but penalizing this via
the norm of the symmetrized Jacobian of w. In particular, in
areas with constant u, w can be chosen equal to 0, and in areas
with constant ∇u, meaning u is linear, w can be chosen equal
to ∇u, such that those areas do not contribute to the TGVα

2

functional. Therefore, in reconstructions, TGVα
2 promotes

piecewise linear solutions, which allow sharp edges to remain
intact while allowing linear density gradients, hence maintain-
ing the advantages of TV while overcoming its defects.

A discretization of TGVα
2 is defined according to (10) with

the discrete ℓ1 norm, the pointwise Frobenius norms of a
vector and a matrix given in the standard way, and
discretized differential operators. Denoting by U = RN1×N2×N3

the space discrete volumetric densities, the discretized gradi-
ent ∇: U → U3 and symmetrized Jacobian E : U3 ! U6 are
defined for u∈U and w∈U3, respectively, as ∇u =
((∇u)1, (∇u)2, (∇u)3), where

ð∇uÞ1 ¼ δ1þu; ð∇uÞ2 ¼ δ2þu; ð∇uÞ3 ¼ δ3þu

and as Ew ¼ ððEwÞ1; ðEwÞ2; ðEwÞ3; ðEwÞ4; ðEwÞ5; ðEwÞ6Þ where

ðEwÞ1 ¼ δ1�w1; ðEwÞ2 ¼ δ2�w2; ðEwÞ3 ¼ δ3�w3;

ðEwÞ4 ¼ δ1�w2 þ δ2�w1

2
;

ðEwÞ5 ¼ δ1�w3 þ δ3�w1

2
;

ðEwÞ6 ¼ δ2�w3 þ δ3�w2

2
;

and

δ1þ; δ2þ; δ3þ : U ! U and δ1�; δ2�; δ3� : U ! U

are the standard forward and backward finite difference oper-
ators with respect to the 3 space dimensions, using pixel repli-
cation at the boundary. Note that for Ew we store each off-diag-
onal entry only once and, to account for that, count off-diag-
onal entries twice in the evaluation of the Frobenius norm of
Ew.

Discrete single-channel model. With the TGV functional in
(10), the forward operator in (8) and the discrepancy term in
(9), we formulate the reconstruction of a single channel
volumetric image as the following convex minimization
problem:

min
u�0

μDKL Tu; fð Þ þ TGVα
2 uð Þ: ð11Þ

Problem (11) balances the discrepancy between the Radon
transform Tu and the data f with the TGVα

2(u) regularization,
weighted by the regularization parameter μ > 0.

Discrete multi-channel model. In order to jointly recon-
struct density information and elemental maps and to take
advantage of complementary information in these datasets,
we propose a joint TGV regularization method for multi-
channel data. To achieve this aim, we define the extension of
TGV for multi-channel data, as introduced in previous
studies,34,65 by regarding multiple images with a common
resolution as one multi-channel image u = (u1, u2, …, uC) and
setting

TGVα
2 uð Þ ¼ min

w
α1 k j∇u� wjfrob k1 þ α0 k jEwjfrob k1 : ð12Þ

Note that here, the operators ∇; E are applied channel-
wise, hence ∇u − w is a matrix field, Ew is a tensor field
and we use pointwise Frobenius norms for both of them.
This corresponds to an ℓ1/ℓ2-type penalization and pro-
motes joint sparsity of both ∇u − w and Ew, and in particu-
lar promotes joint sparsity of the edge sets of all channels.
We note that in other studies,46 a similar regularization has
been proposed for the joint reconstruction of MR and PET
data, where a nuclear-norm based coupling of the first
order derivatives was carried out. While the authors
reported a slight improvement by using the nuclear norm,
the performance was comparable to a Frobenius-norm
based penalization and for the sake of simplicity, we
employ the latter.

Nanoscale Paper

This journal is © The Royal Society of Chemistry 2019 Nanoscale, 2019, 11, 5617–5632 | 5627

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

8 
Fe

br
ua

ry
 2

01
9.

 D
ow

nl
oa

de
d 

on
 1

/2
3/

20
26

 5
:3

2:
39

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c8nr09058k


With this multi-channel extension of TGV, we propose the
following joint reconstruction model for multi-channel data as
an extension of (11):

min
u ¼ u1; . . . ; uCð Þ

uc � 0 8c ¼ 1; . . . ;C

XC
c¼1

μcDKL Tcuc; f cð Þ
" #

þ TGVα
2 uð Þ: ð13Þ

Here, different data discrepancies are used for the different
measured data sets denoted by f c and each μc weights data
fidelity and regularization for the c-th channel. Solving (13)
balances the joint regularity of all channels imposed by TGVα

2

with the individual channel discrepancies, thus promoting
joint edge sets while jointly reconstructing the individual
channels. The operators T c model the measurement operation
for each channel and comprise the Radon transform as
described above. In this context, we also note that in our
experiments all data sets were acquired and reconstructed with
the same resolution. Since acquisition of HAADF data is typi-
cally much faster than EDXS, an alternative would be to
acquire the HAADF signal with a higher resolution and recon-
struct all channels at this high resolution. This can be realized
in our model by including an additional subsampling operator
in the EDXS channels after the Radon transform and would
allow a joint reconstruction and zooming of EDXS data.

It is worth mentioning that our method can, of course, also
be used to include more information such as EELS data, from
which one can expect a further improvement due to additional
information present in the data. This will be highly beneficial
in cases where elemental maps from EELS data have a better
signal-to-noise ratio, or if, for example, valence states are
mapped by EELS. We note, however, that assuming the
forward operators for EDXS and EELS signals to coincide, such
a coupled reconstruction is equivalent to first taking the
(weighted) average of the EDXS and EELS signal for each
material and then carrying out a reconstruction using the aver-
aged data for the different materials together with the HAADF
data.

Numerical solution

In this section we present the derivation and implementation
of a solution algorithm for (13), of which the single-channel
setting (11) is a special case. For further reference, we note
that Graptor – our Python/OpenCL38,39 implementation of the
algorithm – as well as a script reproducing all experiments of
the paper is available online.37,68 Due to the non-differentiabil-
ity of the objective functional, we employ a first order primal-
dual algorithm66 to solve (13). In order to do so, the problem
needs to be reformulated as a saddle-point problem to which
the primal-dual algorithm is applicable. To achieve this aim,
we first note that TGVα

2 can be re-written as

TGVα
2 uð Þ ¼ min

w
R ∇u� w; Ewð Þ;

with R(φ,ψ): = α1k|ϕ|frobk1 + α0k|ψ|frobk1. Also, the constraint uc

≥ 0 for all c can be replaced by adding the functional ID uð Þ to
the energy in (13), where D ¼ fu ¼ ðu1; . . . ; uCÞ j uc �

0 for all cg and for any set M we denote IM uð Þ ¼ 0 if u∈M and
IM uð Þ ¼ 1 else. Denoting by g* the convex conjugate of a func-
tion g, defined as

g* vð Þ ¼ sup
ξ

v; ξð Þ � g ξð Þ;

with (v, ξ) being the scalar product, i.e., the sum of the point-
wise products of all entries of v and ξ, we can then rewrite (13)
as

min
u¼ u1;...;uCð Þ

XC
c¼1

μcDKL Tuc; f cð Þ þ TGVα
2 uð Þ þ ID uð Þ

, min
u¼ u1;...;uCð Þ

min
w

XC
c¼1

μcDKL Tuc; f cð Þ

þ R ∇u� w; Ewð Þ þ ID uð Þ
, min

x¼ u;wð Þ
max

z¼ p;q;rð Þ
ðKx; zÞ � R* p; qð Þ

þ ID uð Þ �
XC
c¼1
ðμcDf c

KLÞ* rcð Þ:

ð14Þ

Here, the variables p∈UC×3, q∈UC×6 are the dual variables
corresponding to TGVα

2, r = (r1, …, rC)∈VC is a dual variable
corresponding to the data terms, and

Kx ¼ K u;wð Þ ¼ ð∇u� w; Ew; Tu1; � � � ;TuCÞT : ð15Þ

Hence, problem (13) is equivalent to

min
x¼ u;wð Þ

max
z¼ p;q;rð Þ

ðKx; zÞ � F* zð Þ þ H xð Þ; ð16Þ

where F* summarizes the conjugate functionals in (14) and
H xð Þ ¼ H u;wð Þ ¼ ID uð Þ. With the notion of proximal map-
pings, i.e.,

proxg;γ zð Þ ¼ argmin
ξ

g ξð Þ þ k ξ� z k22
2γ

;

the iteration steps of the primal-dual algorithm66 employed for
the saddle-point problem (16) for (x, x̄, z) are

zþ  proxF*;σ z þ σKx̄ð Þ
xþ  proxH;τ x� τK*zþð Þ
x̄  2xþ � x
x; zð Þ  xþ; zþð Þ:

8>><
>>: ð17Þ

Here, K* denotes the adjoint operator of K and, as a direct
computation shows, the proximal mapping of F* decouples
component-wise and can be given as

proxF*;σ p; q; rð Þ ¼ projα1 pð Þ;projα0 qð Þ; prox
μcDf c

KLð Þ*;σðr
cÞ

� �C

c¼1

 !
;

where for any ν > 0 and any discrete spatial coordinate x,

ðprojvðrÞÞðxÞ ¼ rðxÞ=maxð1; jrðxÞjfrob=vÞ;
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which corresponds to a projection to the set {r||r(x)frob ≤ ν for
all x}. The proximal mapping of the data terms is given as

prox
μcDf c

KLð Þ*;σ rcð Þ ¼ rc �
rc � μc þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrc � μcÞ2 þ 4σμcf c

q
2

;

while the proximal mapping of H corresponds again to a pro-
jection and is given as

proxH;τ xð Þ ¼ proxH;τ u;wð Þ ¼ projD uð Þ;wð Þ
with projD uð Þ ¼ max ðu; 0Þ;

where the maximum is taken point- and component-wise. We
also refer the reader to a related study46 for further details of
these derivations. For the sake of simplicity, we use the nota-
tion

T*r ¼ ðT*r cÞCc¼1
where T*r c denotes the backprojection of r c.

In summary, we can see that, due to our particular reformu-
lation, all iteration steps of Algorithm (17) can be computed
explicitly and fast. Furthermore, convergence of the iterate x to
a global optimum of (13) can be guaranteed.66 A more explicit
formulation of the algorithm can be found in Algorithm 1
below.

Algorithm 1 TGV regularized ET reconstruction

1: function TGV-ET RECONSTRUCTION ( f, α, μ)
2: (T, f ) ← normalize (T, f )
3: u ← T*f, ū ← u, w ← 0, w̄ ← 0, p ← 0, q ← 0, r ← 0
4: Choose σ > 0 and τ > 0 such that στkKk2 < 1
5: repeat
6: p ← projα1(p + σ(∇ū − w̄))
7: q projα0 qþ σEw̄ð Þ
8: rc  prox

μcDf c

KLð Þ* ;σðr
c þ σðTūÞcÞ, for c = 1, …, C

9: uþ  projD u� τ ∇*pþ T*rð Þð Þ
10: wþ  w� τ �pþ E*qð Þ
11: (ū, w̄) ← 2(u+, w+) − (u, w)
12: (u, w) ← (u+, w+)
13: until Stopping criterion fulfilled
14: return renormalize (u)

There, the normalization of the operator T and the corres-
ponding data f in line 2 aims at obtaining an operator with a
norm of approximately 1 and data on similar scales, as we
found this to improve convergence speed. In order to do so, we
estimate the operator norm of T by power iteration,67 divide T
by this estimate and rescale the data f c of all channels to the
range [0, 1]. Note that, by the nature of the Kullback–Leibler
discrepancy, these rescaling operations only affect the choice
of the regularization parameter but not the solution set and
are reverted with the renormalization step at the end of the
algorithm. With rescaled T, the norm kKk can be estimated
from above via straightforward computations by

ffiffiffiffiffi
17
p

, allowing
σ and τ to be chosen such that στ < 1/17. Although within this
constraint, the choice of στ is arbitrary in principle and, in
fact, can influence the convergence speed of the algorithm sig-
nificantly,44 we experienced good convergence behavior with

the straightforward choice σ ¼ τ ¼ 1ffiffiffiffiffi
17
p , which was used for

all experiments.
As the stopping criterion for Algorithm 1, we used a rather

high, predetermined number of 5000 iterations for the experi-
mental and 2000 iterations for the phantom reconstructions
such that no relevant change in the iterates was observed
beyond this point. A more elaborate stopping criterion that, in
some cases, allows to compute the difference of the value of
the objective functional to the optimal value could be based
on the primal-dual gap of the problem.44 However, this would
require some additional computations during the algorithm
and for the sake of simplicity and speed, we hence used a fixed
number of iterations.

In order to further accelerate the computations, we devel-
oped an implementation in Python38 via OpenCL39 for multi-
core CPUs and Graphical Processing Units (GPUs), which
allows for highly parallel execution of all major computations.
This is of particular relevance for the forward and backward
projections, which are major contributors to the compu-
tational effort needed for Algorithm 1 and can be executed
completely in parallel, leading to significant speedups.

Tables 2 and 3 illustrate the time required for reconstruc-
tion on a computer with an Nvidia(R) GeForce(R) GTX
980 graphic card and an Intel(R) Xeon(R) CPU E5-2690 pro-
cessor in order to show the computational effort.

Regarding the memory requirement, we note that our
method in 3D essentially requires to hold, for each channel, 13
variables of image size and two variables of the data size in
memory (ignoring temporary storage for computations). In
comparison, TV regularization using the same algorithm
essentially requires a memory that is 4 times the image size
and two times the data size.

Table 2 Reconstruction time in seconds with Algorithm 1 as a function
of the number of slices, channels and iterations. Reconstruction of slices
with N × N pixels from N × Nϕ dimensional sinogram data, where Nϕ =
39 denotes the number of projections and the number of detectors is N
= 296

Number of slices 10 30

Iterations 500 2000 5000 500 2000 5000

1 Channel 3.03 14.79 86.93 8.13 31.84 109.19
4 Channels 10.98 43.27 126.87 46.51 145.08 346.17

Table 3 Reconstruction time in seconds with Algorithm 1 as a function
of the size of data with a single channel and 10 slices. Reconstruction of
slices with N × N pixels from the N × Nϕ dimensional sinogram

Iterations 500 2000 5000

Nϕ = 39, N = 296 3.03 14.79 86.93
Nϕ = 39, N = 872 22.92 93.51 235.90
Nϕ = 155, N = 872 59.80 261.65 660.78
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Parameter choice. Here we comment on our parameter
choices for the presented experiments and provide a guideline
on how to choose parameters in practice. For the TGV para-
meters α = (α0, α1), we note that only the ratio α0/α1 is relevant
and balances between the first and second order smoothness.
Here, the choice α = (4, 1) is known to be rather robust and to
yield reasonable results; hence it can be left unchanged for
different applications of our method (as was done for all
experiments of the paper).

The choice of the regularization weights μ = (μ1, …, μC) is
more crucial and depends for instance on the noise level of
the different measurements, the image resolution and the
number of measured angles. Generally, decreasing those para-
meters leads to increasingly regular and smoothed reconstruc-
tions but reduces details, while increasing them provides more
details but also increases noise. Nevertheless, as can be
observed in Fig. 6, our method is rather robust against subop-
timal choices of μ and hence a rough tuning of those para-
meters should suffice to achieve good results in practice.

A general guideline for choosing those parameters in multi-
spectral electron tomography applications is given as follows,
where the measurement setup of the paper is used as example.
Since the HAADF density data usually contain far less noise
than EDXS data, one can first choose the parameter μc corres-
ponding to the HAADF signal, either using our method to first
reconstruct only the HAADF signal separately or using some
rough, fixed guess for the other parameters.

For the choice of μc for the EDXS channels, remember that
these values should roughly correspond to the (unknown)
noise levels present in each channel and that channels with
similar amounts of noise, e.g., with similar electron counts,
should be handled with similar parameters. Motivated by this
observation, a heuristic that one can use is to reduce the
choice of different μc to the choice of a single parameter ν by
setting μc = νξc, where ξc = max( f c). This second, single para-
meter ν can then again be chosen by visual inspection.

Using this strategy for our experimental data, we first fixed
μHAADF = 0.1. Computing the max( f c) then resulted in a ratio
of μAl : μSi : μYb = 2.4 : 1.4 : 1 and choosing the parameter ν

again by visual inspection finally led to the parameters for the
EDXS maps given as (μAl, μSi, μYb) = (0.0024, 0.0014, 0.001). A
comparison of different settings for the EDXS parameters
using this ratio is given in Fig. 6b.

For the parameters used in the reconstruction of the
phantom data shown in Fig. 3, we refer the reader to ESI
Table 1,† where we used visual comparison of results to deter-
mine the parameters.

Finally, we also refer the reader to the ESI† for more infor-
mation on the parameter choice and the performance of our
method in the case of limited angle tomography.
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