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nanoparticles suspended in aqueous solutions†
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Suspensions of nanoparticles (NPs) in aqueous solutions hold promise in many research fields, including

energy applications, water desalination, and nanomedicine. The ability to tune NP interactions, and

thereby to modulate the NP self-assembly process, holds the key to rationally synthesize NP suspensions.

However, traditional models obtained by coupling the DLVO (Derjaguin, Landau, Verwey, and Overbeek)

theory of NP interactions, or suitable modifications of it, with the kinetic theory of colloidal aggregation

are inadequate to precisely model NP self-assembly because they neglect hydration forces and discrete-

size effects predominant at the nanoscale. By synergistically blending molecular dynamics and stochastic

dynamics simulations with continuum theories, we develop a multi-scale (MS) model, which is able to

accurately predict suspension stability, timescales for NP aggregation, and macroscopic properties (e.g.,

the thermal conductivity) of bare and surfactant-coated NP suspensions, in good agreement with the

experimental data. Our results enable the formulation of design rules for engineering NP aqueous suspen-

sions in a wide range of applications.

Introduction

In the last few decades, dispersions of nanosized colloids have
received considerable attention in a large variety of engineer-
ing applications. Indeed, the addition of nanoparticles (NPs)
to base fluids has demonstrated excellent promise by extend-
ing the technological frontiers in water treatment,1,2

drug delivery,3,4 nanomedicine,5,6 energy storage,7 and heat
transfer.8–13 Nevertheless, numerous experimental and theore-
tical challenges associated with coupling the macroscopic pro-
perties, like thermal conductivity and viscosity, with the nano-
scale input parameters of nanoparticle suspensions (nano-sus-
pensions), such as NP size, particle volume fraction, and par-
ticle surface chemistry, limit their rational design aimed at
specific applications.14 In this paper, we present a multi-scale
model which is able to predict the dynamic behavior of NPs
dispersed in aqueous solutions, thereby bringing us closer to
delineating guidelines for modulating the stability and aggre-
gation of nano-suspensions.

Preventing or modulating the aggregation (or self-assembly)
of NPs dispersed in fluids has been a primary focus to ensure
the stability of nano-suspensions in chemical, energy, and
biomedical applications.3,15 On the other hand, the self- or
driven-aggregation of nanoparticles into mesoscopic structures
has allowed the exploration of advanced materials with tai-
lored optical, electronic, thermal, and magnetic properties.16,17

For example, a multi-step growth of gold and silver nano-
particles from supersaturated aqueous suspensions has led to
promising progress in catalysis and structural biology.18

Further, tuning the shape and size of gold colloidal nanocrys-
tals, in combination with the adjustment of surfactant concen-
tration, allowed the formation of supercrystals for molecular
transport, sensing, and catalysis.19 Moreover, the self-assembly
of polydisperse silica nanoparticles in aqueous dispersions
has been utilized to yield coexisting crystals with different
structures and functionalities.20 Finally, the generation of
nanoparticle-chain morphologies in more dilute suspensions
has demonstrated an enhancement of the overall thermophysi-
cal properties, thereby encouraging the use of nano-suspen-
sions in the energy field.12,21 Nevertheless, with respect to
both improving the stability and promoting self-assembly, the
role of nanoparticle interactions is salient in terms of altering
the aggregation process, and thereby, the overall macroscopic
properties of the assembled meso-structures and disper-
sions.22,23 Experimental efforts on the targeted design of nano-
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suspensions have been largely lacking in the absence of a
deeper understanding of the influence of NP surface chemistry
on the stability of NP suspensions.24 In addition, the lack of a
comprehensive model has impeded the tailored use of nano-
suspensions. Therefore, from a modeling standpoint, both the
inter–NP interactions and the dynamics of the dispersed NPs
need to be carefully considered to ensure a reliable prediction
of the topology of the assembled nanostructures, and the
resulting macroscopic properties. In classical colloid science,
the Derjaguin, Landau, Verwey, and Overbeek (DLVO)
theory25,26 is a useful modeling approach to theoretically
predict the interaction energy between particles suspended in
solution. Although the classical DLVO and some adaptations
of it, like the charge renormalization theory,33 are considered
adequate to describe colloidal interactions in the long range
regime, the neglect of hydration effects,27 solvent polariz-
ation,28 NP surface phenomena,29,30,32 and the finite size of
ions,34 lead to incorrect predictions of the interaction energy
when the surface–surface particle distance goes below two
nanometers.43 For these reasons, computational strategies
should be adopted to develop a deeper fundamental under-
standing of the inter–particle potential and related NP aggrega-
tion. Concerning the dynamics of dispersed NPs, a variety of
simulation techniques have been utilized to study the aggrega-
tion of colloids.35,36 Monte Carlo (MC) simulations are primar-
ily used to model the kinetics of aggregation in both the
Diffusion-Limited Cluster Aggregation (DLCA) and the
Reaction-Limited Cluster Aggregation (RLCA) regimes.37,38

However, in these approaches, the particle dynamics is always
affected by the sticking probability, neglecting the detachment
and rearrangement of aggregates due to thermal motion.
Moreover, they often rely on traditional continuum theories,
such as the DLVO theory, to evaluate the collision frequency
function. With the above background in mind, the availability
of a predictive multi-scale model would allow us to uncover
the critical links between nanoscale and mesoscale phenomena,
and to facilitate the controlled engineering of nano-suspensions.

In this paper, we present a novel multi-scale model to
describe the aggregation, self-assembly, and network for-
mation of nanoparticles in aqueous solutions. Specifically, we
introduce a modeling tool where molecular dynamics (MD)
and stochastic dynamics (SD) simulations are synergistically
combined to predict the timescale of NP aggregation, the
nano-suspension stability, and the overall macroscopic pro-
perties. The proposed multi-scale model is developed in three
stages. Firstly, MD simulations are utilized to describe inter-
facial phenomena occurring at the nanoparticle–solution inter-
face. In particular, bare and surfactant-coated alumina NPs are
modeled to investigate surfactant adsorption mechanisms and
hydration effects at the NP–water interface. Secondly, the
potentials of mean force (PMF) obtained from atomistic simu-
lations are evaluated to account for the nonadditivity of ato-
mistic interactions, including hydrophobic phenomena, hydro-
gen bonding, capillary action, and other forces that may con-
tribute to the self-organization of the NPs in aqueous solu-
tions.23,39 Although some papers have explored, through MD

simulations, the morphology and structure of surfactants at
the solid–liquid interface,41 few studies have elucidated the
role of interfacial phenomena on the interaction mechanisms
between both bare and coated nanoparticles.29,40 Thirdly, to
significantly speed-up the simulations, each nanoparticle,
either bare or coated, is mapped to one bead, and the calcu-
lated PMFs are used as coarse grained (CG) two-bead poten-
tials to carry out SD simulations of dispersed NPs. Although
using a many-body potential would certainly be more accurate,
such a potential would risk being environment-dependent and
would need to be parametrized based on the NP concen-
tration. This pose limitations on the transferability of such a
many-body potential to model a broad spectrum of NP suspen-
sions. Further, a detailed cluster analysis has clarified the
effect of NP aggregation in the evaluation of thermophysical
properties of the suspensions, such as, the thermal
conductivity.

In the present study we utilize the described multi-scale
approach to model four distinct alumina NP suspensions
possessing different degrees of stability, namely, we selected
the following suspended NPs: (i) neutral bare nanoparticles
(BNPs) of Radius = 2 nm, (ii) sodium dodecyl sulfate (SDS)-
coated nanoparticles (CNPs) of Radius = 2.41 nm, (iii) dodecyl
trimethyl ammonium bromide (DTAB)-CNPs of Radius =
2.45 nm, and (iv) BNPs of Radius = 0.85 nm with a uniform
surface charge of −0.346 C m−2 and [NaCl] = 0.01 M. While
samples (i), (ii), and (iii) are thoroughly described in the main
text of the paper, the MD simulations corresponding to
sample (iv), including the PMF calculation, is detailed in the
ESI.† Although we consider specific classes of NPs and coat-
ings, the multi-scale approach developed in this paper can be
readily extended to other NP suspensions, providing a model-
ing tool to formulate guidelines for the rational design of
nanoparticle suspensions.

Methods
Molecular dynamics simulations of neutral bare nanoparticles

The procedure to generate the atomic coordinates of a single
spherical alumina BNP having radius of 2 nm is described in
the ESI.† Briefly, the alumina unit cell was first replicated
along the three Cartesian axes, and a spherical particle of
desired radius was then created by omitting all the atoms
external to a sphere of the chosen radius. The surface chem-
istry of the BNP was then altered to simulate suspensions at
different pH values. Specifically, one neutral NP and one
charged NP were considered. For the neutral BNP of 2 nm
radius, the alumina atoms were modeled as uncharged
Lennard–Jones (LJ) spheres with bonded and nonbonded para-
meters taken from the CLAYFF force field.54 Note that in simu-
lating nanoparticles which interact through a LJ potential we
seek to reproduce the extreme condition of a suspension exist-
ing at the isoelectric point (IEP), whose pH is equal to 9.1 for
alumina in aqueous solution.21 On the other hand, for the
charged BNP, we altered the surface chemistry by adding
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hydroxyl groups and modifying the surface partial charges (see
the ESI† for further details).

To investigate the interactions between two uncharged
BNPs, the PMF was calculated at various center of mass (com)
separation distances (D), from 3.9 nm to 5 nm. Specifically,
21 configurations were initialized by translating one BNP
along the z axis with increments of 0.05 nm. This broad
window allowed us to analyse the complete spectrum of inter-
action forces, from the highly-repulsive regime (D = 3.9 nm) to
the weak-potential regime (D = 5 nm), where the average force
between the NPs is close to zero, as illustrated in the ESI.† In
each of the 21 configurations, the two alumina NPs were cen-
tered in a box of 12 × 12 × 30 nm3, and their positions were
restrained by freezing the alumina atoms. MD simulations
were carried out using GROMACS 5.1.4.55 Lennard–Jones inter-
actions were treated with a cut-off distance of 1.3 nm, and the
standard geometric-mean mixing rule was implemented for
unlike atoms. Molecular dynamics simulations were first per-
formed in vacuum: after minimizing the energy of the system,
the MD simulations were carried out for 100 ps in the
Canonical NVT ensemble, where a V-rescale thermostat59 was
applied to equilibrate the temperature at 300 K, with τt = 0.1 ps
as the time constant. Water molecules, represented by the
SPC/E model,56 were then added to each simulation box. The
bond lengths and angles in the water molecules were con-
strained using the SETTLE algorithm,57 and the Particle-Mesh
Ewald (PME) summation method was used to compute long-
range electrostatic interactions in Fourier (reciprocal) space,58

while the Coulomb interactions in real space were modeled
with a cut-off of 1.3 nm. The energy of the solvated system was
first minimized and the resulting ensemble was equilibrated
in two separate stages: (i) 300 ps of isochoric–isothermal (NVT)
equilibration at 300 K using the V-rescale thermostat,59 with τt
= 0.1 ps, and (ii) 200 ps of isothermal–isobaric (NPT) equili-
bration at 1 bar, using the Berendsen barostat60 with τp = 2 ps.
Subsequently, simulations were carried out, for 1.5 ns, in the
NPT ensemble with a Nosé–Hoover thermostat61 (T = 300 K
and τt = 0.2 ps), and a Parrinello–Rahman barostat62 with a
τp = 2 ps time constant. The mean forces, F(z), were calculated
in each setup by analysing the last 1 ns of the trajectories. The
PMF was finally computed by numerically integrating, accord-
ing to the trapezoidal scheme, the time-averaged forces exerted
to maintain the two BNPs at various D values. Specifically,

PMFðDÞ ¼
ðD
Dend

FðzÞdz; ð1Þ

where z is the reaction coordinate, and Dend is the com dis-
tance where PMF(Dend) is equal to zero. It is worth noticing
that the PMFs calculated in this content are not corrected by
the entropic effect due to the rotation of the NPs because of
the solvent (2kBT ln(z)).55 In fact, such term is implicitly
included in the stochastic dynamics simulations where the
PMFs are used.63 The errors in the simulated PMF profile
were estimated based on the errors in the forces obtained
using the block-averaging method, while accounting for the

integration process.64 The PMF in vacuum was also evaluated
in the case of vibrating BNPs, and a comparison with frozen
BNPs is presented in the ESI.†

Molecular dynamics simulations of surfactant coated
nanoparticles

In order to simulate the self-assembly of surfactants on
alumina NPs in aqueous solution, two separate simulation
boxes of 10 × 10 × 10 nm3 were considered, one for SDS and
the other for DTAB CNPs. In the former case, 84 molecules of
SDS were randomly arranged within 5 nm from the center of
mass of a single BNP, having a radius of 2 nm and centered in
the box. In the latter case, 100 molecules of DTAB were used to
model the adsorption process on a second alumina particle of
the same size. The number of surfactant molecules was
initially estimated based on the ratio between alumina BNP
surface and the surface area of the tails.65 However, because of
the strong adhesion and packaged configuration of surfactants
with themselves, the initial number of SDS and DTAB mole-
cules was then adjusted and increased up to 84 and 100 mole-
cules respectively to completely cover the bare NP surface and
get isotropic CNPs. Such procedure has avoided the formation
of patchy CNPs, thereby assuring the equivalent angular posi-
tion of the CNPs when computing the PMF. The same simu-
lation protocol was used for the two boxes. In particular,
Packmol package66 was used to setup the surfactant molecules
in the vicinity of the BNP as previously described, and the
GROMACS 5.1.4 package55 was utilized to carry out the MD
simulations. The OPLS-AA force field67 was used to model the
surfactant molecules. The alumina NPs were described as par-
ticles interacting with a LJ potential in order to reduce the
computational expense associated with the PMF calculations.
The total energies of the SDS and the DTAB CNPs were first
minimized in vacuum, and subsequently, SPC/E56 water mole-
cules were added to fill the two boxes. The SDS and the DTAB
molecules were assumed to completely dissociate in water.
Therefore, Na+ and Br− counterions were added to the SDS and
the DTAB boxes, respectively, to fully neutralize the two
systems. A second step of energy minimization was sub-
sequently carried out on the two solvated systems. The equili-
bration of the entire setups was reached by adding to the pro-
tocol described for the BNP case an additional equilibration
run of 4 ns in the NPT ensemble, coupling the temperature to
a Nosé–Hoover thermostat,61 and coupling the pressure to a
Parrinello–Rahman barostat.62 During the three equilibration
stages, the surfactant molecules were restrained at their
initial configurations using a harmonic potential (with a
force constant of 1000 kJ mol−1 nm−2), and the alumina
particle was frozen. The restraints were then removed to simu-
late the self-assembly process of the surfactant molecules on
the NPs, which was carried out for 45 ns at 300 K and 1 bar.
The temperature and the pressure were maintained constant
under the isothermal–isobaric ensemble (NPT), implementing
a Parrinello–Rahman barostat62 with τp = 2 ps, and a Nosé–
Hoover thermostat with τt = 0.2 ps.61 Periodic boundary con-
ditions were applied in all three directions, and the parallel
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version of the LINCS algorithm68 was used to constrain the
H-bonds on the surfactant carbon atoms. Lennard–Jones and
Coulomb interactions were cut-off at 1.3 nm, and the Particle-
Mesh Ewald (PME) summation method was used to compute
long-range electrostatic interactions. It is worth noting that
both the nature of the solvent and the surface chemistry of the
NP play a crucial role in the adsorption process, clearly altering
the orientation of the surfactant molecules at the interface. In
our specific case, for example, the absence of hydroxyl groups
on the alumina surface promotes a preferential organization,
where the surfactant hydrophobic tails reside on the solid
surface and the surfactant hydrophilic charged heads point
towards the water phase. The resulting configurations of both
SDS and DTAB CNPs were then used to compute the PMFs
between two identically CNPs at various center of mass separ-
ation distances (D), from 4.9 nm to 8 nm. 31 configurations
were created by translating one CNP along the z axis with an
increment of 0.1 nm. In each of the 31 configurations, the pair
of CNPs was centered in a box of 12 × 12 × 30 nm3, and their
centers of mass were fixed by freezing the alumina core atoms.
To be consistent with the self-assembly MD simulations, the
same water model and force fields were used for the PMF cal-
culations. Moreover, a similar protocol was followed to equili-
brate the system at 300 K and 1 bar. As before, the restraints
on the surfactant molecules were removed after the equili-
bration process. The actual MD simulations were carried out
in the NPT ensemble using a Nosé–Hoover thermostat61 with a
0.2 ps time constant, and a Parrinello–Rahman barostat62 with
a 7 ps time constant. 10 ns of trajectories, including 4 ns of
equilibration and 6 ns of actual production run, were obtained
for each separation distance D, and the mean forces were
calculated by analysing the last 4 ns (see the convergence of
PMF calculation in the ESI†). To visualize the configurations of
CNPs at the last time step, Fig. 2(b) and (c) illustrate two reci-
procal positions of nanoparticles for both SDS and DTAB coat-
ings, respectively. Similar to the PMF between two BNPs, the
PMFs of surfactant-coated NPs were evaluated by numerically
integrating the D-dependent interaction forces (eqn (1)). The
standard deviations were estimated using the block-averaging
method on the force errors while accounting for the inte-
gration process.64

Calculations of the classical DLVO-based potentials

The classical DLVO theory assumes that the interaction energy,
U, between two spherical particles of radius R can be well
approximated by two additive contributions, namely U(D) =
UvdW(D) + UEDL(D), which refer to van der Waals (vdW) and the
Electric Double Layer (EDL) interactions, respectively. Because
of the small size of the NPs and because of the zero surface
charge of the BNP, the DLVO theory corresponding to two
interacting BNPs was computed by utilizing the following
expression of non-retarded van der Waals contribution:43

UvdWðDÞ ¼ �H
6

2R2

D2 � 2Rð Þ2 þ
2R2

D2 þ log
D2 � 2Rð Þ2

D2

 !
; ð2Þ

where H, the Hamaker constant for alumina in water, is equal
to 31.6 kJ mol−1,43 and D is the center-to-center separation dis-
tance. However, in the case of CNPs, the vdW interactions were
modified by the presence of the surfactant adsorbed layers,
and an appropriate modification of the UvdW expression was
considered. Specifically, the non-retarded van der Waals poten-
tial is given by the approximate expression:43

UvdWðDÞ ¼UvdW Hsjwjs;D
� �� 2UvdW Hajsjw;D

� �
þ UvdW Hajsja;D

� �
;

ð3Þ

where the various UvdW(D) expressions were computed using
eqn (2), and Hs|w|s, Ha|s|w, and Ha|s|a are the Hamaker con-
stants corresponding to two interacting infinite planar sur-
faces separated by a distance D, across a specific medium. In
particular, alumina (a), surfactants (s), and water (w) were con-
sidered for the calculation, and the corresponding values of
the Hamaker constants are reported in Table 1.

Note that, in each case, the NP radius is increased by the
thickness of the surfactant layer considered, as reported in
ref. 43. The classical DLVO theory, including both van der
Waals and electrostatic potentials, was used to theoretically
describe the interaction potential energy between two CNPs.
Specifically, in addition to eqn (3), we applied the following
expression to evaluate the Electric Double Layer (EDL) poten-
tial energy between two identical spheres:69

UEDLðDÞ ¼ 4πR2ε0εrYðDÞ2 kBT
e

� �21
D
log 1þ e�κ D�2Rð Þ
� �

; ð4Þ

where kB is the Boltzmann constant, T is the absolute tempera-
ture, ε0 and εr are the dielectric permittivity of vacuum and
water, respectively, e is the electronic charge and κ is the

inverse of the Debye–Hückel screening length, namely κ ¼

1=λd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ρiðzeÞ2
� �

= ε0εrkBTð Þ
q

being ρi and z the number

density of ion species i and its valence, respectively. The func-
tion Y(D) in eqn (4) is given by:69

YðDÞ ¼ 4 expð�κðD� 2RÞ=2Þ
tanh expð�κðD� 2RÞ=2Þ � tanh zeψ0

4kBT

� �	 
 ; ð5Þ

where ψ0 is the surface potential and is obtained after solving
the Grahame equation.43 All the input parameters used to
compute the DLVO potential are provided in the ESI.† Note

Table 1 Hamaker constant for media 1 and 3 interacting across
medium 2 (H1|2|3) at room temperature.43 The Hamaker constant of
dodecane is used to approximate those of the SDS and the DTAB
coatings

1 2 3 H1|2|3 [kJ mol−1]

α-Al2O3 (a) Water (w) α-Al2O3 (a) 31.6
Dodecane (s) Water (w) Dodecane (s) 2.65
α-Al2O3 (a) Dodecane (s) α-Al2O3 (a) 16.14
α-Al2O3 (a) Dodecane (s) Water (w) 6.53
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that eqn (4) is expected to be accurate from moderate to high
surface potential, ψ0, for modest to large κR and for all separ-
ation κ(D − 2R), and therefore, it can be used in our analysis
(see Table S3 in the ESI† for the specific values of Debye–
Hückel screening length and CNP radius).

A number of improvements to the DLVO theory have been
made to overcome the limitations associated with the Poisson–
Bolzmann (PB) model,32,34 and to include steric effects of
charged species adsorbed at the NP interface.44 An extended
body of literature, for example, has been dedicated to the use
of the linearized PB theory with renormalized effective electro-
static interaction parameters.33 Extension of the classical
DLVO theory have been also formulated to predict the inter-
action energy between CNPs in aqueous solution.31 Some
examples of the modified classical DLVO theory are reported
in the ESI.†

Stochastic dynamics simulations

To implement the effective inter–NP potential using stochastic
dynamics simulations, the PMF curves were first fitted to an
analytical expression, as reported in the ESI.† Thereafter, the
resulting curves were translated into tabular potentials for
input in GROMACS.55 To this end, the dynamics of the sus-
pended NPs in aqueous solution was modeled by combining
the PMF curves with the Langevin equation,70 namely:

mi
d2ri
dt2

¼ �miγi
dri
dt

þ Fi riðtÞð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2miγikBT

p
rGi ; ð6Þ

where mi is the mass of NPi, ri is its position at time t, kB is the
Boltzmann constant, T is the absolute temperature, rGi is the
Gaussian distributed noise, and γi is the friction coefficient
associated with the stochastic collisions of the nanoparticle,
NPi, with the molecules constituting the solvent.

Based on the range of the inter–particle potential, during
the SD simulations, the cut-off radius applied to the force field
was fixed at 7 nm and 9 nm for BNP and CNP suspensions,
respectively. Each SD simulation started by applying the stee-
pest descent algorithm to minimize the energy of the system,
consisting of 2000 randomly distributed NPs. The production
run was then carried out in the NVT (T = 300 K) ensemble with
an integration time step equal to 0.1 ps. In order to compare
the characteristic time scales associated with NP aggregation,
we evaluated the formation times of the biggest and longest-
lived clusters present in the nano-suspensions considered.
First, the size of the biggest NP clusters was monitored and
the biggest clusters were identified along the trajectories.
Second, to determine if the largest cluster was also the
longest-lasting, we indexed the NPs inside the aggregate along
the trajectory and we checked if its size remained constant for
at least 0.1 ms, which is larger than the average rate of aggrega-
tion in the last steps of the dynamics. Finally, the formation
times of these selected clusters were classified. Note that this
study was carried out starting from t = 0.02 ms, thus neglecting
the initial regime where the dynamics are characterized by fast
aggregation kinetics. Moreover, for each NP cluster, we con-
sidered a fluctuation of ±8% of its original size, because of the

thermal motion of single-dispersed NPs which continuously
attach and detach from the aggregates.

Thermal conductivity calculations

The most widespread strategy to theoretically predict the
thermal conductivity of the NP suspensions is based on the
Maxwell–Garnett (MG) effective medium theory.71 Although
this theory is suitable for low volume fraction, well-dispersed
particle suspensions, it yields inaccurate predictions when the
particles aggregate. Since the aggregation has been recognized
to play a crucial role in the thermal properties of nano-suspen-
sions21,46 the Bruggeman (BG)72 and the Hamilton–Crosser
(HC) models73 were also developed to incorporate the for-
mation of clusters in colloidal suspensions. However, their
major limitations lie in: (i) the definition of the inter–particle
potential (generally based on the classical DLVO theory), and
(ii) considering a constant value for the typical fractal dimen-
sion parameter describing the shape of the clusters formed.46

Regarding assumption (ii), the identification of a unique
fractal dimension parameter is potentially inaccurate.37,74

Indeed, as shown in Fig. S5(a) of the ESI,† clusters having
various shapes and sizes can form in a generic suspension,
where both compact and more elongated clusters can coexist.
Here, based on the above considerations, we adopt a more
advanced adaptation of the BG model21 for incorporation of
the results from our cluster analysis. Note that the following
thermal conductivity calculations were only carried out in the
presence of aggregation and hence for nano-suspensions of
uncharged BNPs. First, for each nano-suspension with volume
fraction Φ, we expressed the concentration of particles inside
(in) the aggregates as follows:

Φin ¼ Ra

Rp

� �df�3

; ð7Þ

where Rp is the single-dispersed particle radius, Ra is the
cluster radius, and df is the fractal dimension parameter of the
cluster, namely:

df ¼ logðRaRpÞ Na; ð8Þ

where Na is the number of NPs in each single aggregate. Using
the cluster analysis presented above, based on SD simulations,
we evaluated Na and Ra, and then computed Φin and df for
each cluster in the suspension using eqn (7) and (8), respect-
ively. Subsequently, we utilized the BG model to evaluate the
thermal conductivity, kai, of aggregate i as follows:

21

Φini

kp � kai
kp þ 2kai

� �
þ 1�Φinið Þ kbf � kai

kbf þ 2kai

� �
¼ 0; ð9Þ

where kbf = 0.6069 W mK−1 is the thermal conductivity of the
base fluid (bf), which here is water at 300 K, and kp = 46 W
mK−1 is the alumina particle thermal conductivity. Given that
Nc is the number of clusters in the selected nano-suspension,
we assumed Nc fictitious suspensions, each consisting of iden-
tical aggregates and having an aggregate volume fraction equal
to Φai = Φ/Φin. The overall thermal conductivity of the ith ficti-
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tious nano-suspension, kNSi, was then predicted using the MG
model:21

kNSi ¼ kbf
kai þ 2kbf þ 2Φai kai � kbfð Þ
kai þ 2kbf �Φai kai � kbfð Þ

� �
: ð10Þ

Finally, by averaging the kNSi over the total number of ficti-
tious nano-suspensions, we evaluated the overall thermal con-
ductivity, kNS, as follows:

kNS ¼
PNc

i¼1
kNSi

Nc
: ð11Þ

Results and discussion
Nanoscale interfacial phenomena

Molecular dynamics simulations were carried out to investi-
gate both bare and coated alumina NPs in aqueous solutions.
In order to obtain coated nanoparticles (CNPs) in aqueous
solutions, extensive all-atom simulations were utilized to
model the adsorption of sodium dodecyl sulfate (SDS) and
dodecyl trimethyl ammonium bromide (DTAB) on the neutral,
bare α-Al2O3 NPs considered above. Equilibrium snapshots of
the simulated, final configurations of the bare nanoparticle
(BNP) and the CNPs are shown in Fig. 1(a–c), where the water

molecules are not shown for clarity. As these figures illustrate,
the hydrophobic tails of both SDS and DTAB tend to wrap
around the alumina NP in order to minimize their contact
with water, while the charged hydrophilic heads project out-
wards from the alumina surface due to their tendency to be
solvated by water. The radial distribution functions (g(r)s) of
the SDS and DTAB residues, namely the g(r)s of the center of
mass positions of both surfactant tails and heads around the
com of an alumina BNP (see Fig. 1(d)), demonstrate the well-
ordered distribution of the DS− ions and the DTA+ ions.
From the plots of g(r) in Fig. 1(d) one can rigorously identify
the thickness of the coating, which is less than 1 nm for the
two CNPs. Here, two distinct regions can be noticed: the
former corresponding to the first picks closest to the BNP
surface, and the latter coinciding with the second picks located
at D > 2.5 nm. After a qualitative comparison between the g(r)s
in Fig. 1(d) and the snapshots in Fig. 1(b and c), one can intui-
tively correlate the first and second pick of the g(r)s with the
distribution of the surfactant tails and heads respectively. A
more quantitative description and validation of the SDS and
DTAB conformational structure is provided in the ESI.†
However, a minor difference can be noticed between the g(r)s
in Fig. 1(d). Specifically, the DTA+ ions present a less confined
and packed configuration than that of DS− ions. The slight
difference in the distributions of SDS and DTAB (see Fig. 1(d))
was further corroborated by computing, for each CNP, the

Fig. 1 Selected configurations of bare (BNP) and surfactant coated nanoparticles (CNPs) in aqueous solutions. Equilibrium molecular dynamics
simulation snapshot of: (a) a neutral BNP, (b) a DTAB CNP, and (c) an SDS CNP after 45 ns of surfactant self-assembly simulations. Color code: cyan,
carbon atoms; white, hydrogen atoms; red, oxygen atoms; yellow, sulfur atoms; light blue, nitrogen atoms; silver, aluminium atoms. The sodium and
bromide counterions are colored in blue and pink, respectively. Water molecules are not shown for clarity. (d) Radial distribution functions (g(r)) of
SDS and DTAB residues (com positions of surfactant tails and heads) around the center of mass of an alumina BNP. (e) Radial distribution function
(g(r)) of water in the proximity of both bare and coated NPs. Note that the BNP has a radius of 2 nm.
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Lennard–Jones (LJ) interaction energy between the surfactants
and the alumina NP. After averaging the resulting LJ inter-
action energy over the number of adsorbed surfactant mole-
cules, we found an attractive interaction energy of −35.6 ±
3.8 kJ mol−1 and −27.7 ± 3.6 kJ mol−1 per single SDS and
DTAB molecule, respectively. In fact, although SDS and DTAB
have the same C12 tail length, the sulfur and the oxygen atoms
in the SDS head have deeper potential wells (i.e., LJ ε values)
than the nitrogen atom and the CH3 groups in the DTAB head,
thereby increasing the adhesion of SDS relative to that of
DTAB onto the NP surface. Not surprisingly, this result indi-
cates that the surfactant chemical structure plays a key role in
altering the extent of surfactant adhesion onto the NP surface,
which in turn, determines the atomic configurations of the
surfactant coatings. Further analysis was pursued on water
layering (hydration effects) in the vicinity of the BNP and
CNPs. Specifically, we computed the radial distribution func-
tions (g(r)s) of water around the NP surfaces, and the results
are presented in Fig. 1(e). The first density peak in the distri-
bution of water on the BNP surface (green curve in Fig. 1(e)) is
greatly lowered around the CNPs (red and blue in Fig. 1(e)),
where a hydrophobic-surface-like distribution function of
water is observed. However, the charged surfactant heads lead

to the formation of a weak layered structure of water, which is
more pronounced in the case of the SDS CNPs (red curve in
Fig. 1(e)) than in the case of the DTAB CNP (blue curve in
Fig. 1(e)). The observed difference between the SDS and the
DTAB cases can be understood by calculating the number of
hydrogen bonds established between water molecules and the
considered surfactant heads. Following Luzar approach,42 we
counted roughly 6.8 ± 0.4 hydrogen bonds between a single
SDS head and water molecules. On the other hand, the pres-
ence of the CH3 groups around the charged nitrogen in the
DTAB head prevents the formation of hydrogen bonds with the
water molecules, thereby weakening the structured distri-
bution of water at the DTAB CNP–liquid interface.

Nanoparticle potential of mean force calculations

The equilibrated atomistic configurations of the bare and
coated NPs were considered to elucidate the average inter-
action potential energy between the NPs at the nanoscale.
Firstly, the PMF between the uncharged BNPs in water was
computed (see the green curve in Fig. 2(d)). To highlight the
effect of the solvent on the inter–particle potential, the PMF
was also calculated in vacuum (see the black curve in
Fig. 2(d)). In both water and vacuum, the alumina NPs exhibit

Fig. 2 Potentials of Mean Force (PMF). (a–c) Representative PMF simulation snapshots in the xz plane obtained by varying D between: (a) two
neutral BNPs, (b) two DTAB CNPs, and (c) two SDS CNPs. (d) Simulated PMFs in water (green dots) and in vacuum (black dots) between the BNPs
shown in (a). The fitting of the PMF in water (the green curve in (d)) is detailed in the ESI,† and the predicted DLVO interaction potential energy (see
eqn (2)) corresponds to the dashed black curve. (e) Simulated PMFs as a function of D for two DTAB CNPs (blue dots) and for two SDS CNPs (red
dots). The fitting of the PMF data corresponding to the solid red line (for the SDS CNPs) and to the solid blue line (for the DTAB CNPs) are detailed in
the ESI.† The classical DLVO theory prediction (obtained as DLVO = UvdW(D) + UEDL(D) using eqn (3) and (4)) for two SDS CNPs is shown by the
dashed black curve. ΔE indicates the difference of the free energy barrier resulting from the DLVO prediction and the MD data.
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an attractive potential for 4 < D < 4.2 nm, where D is the NP
center-to-center separation distance (see Fig. 2(a)). However,
the screening effect provided by the water molecules weakens
the attractive interaction energy. This is particularly evident
around the primary minimum, located at D = 4.05 nm:
although no water molecules are expected to be present here,
close to the NP–NP contact point (D = 4 nm), the curvature of
the NP surface allows water molecules to be located in the 3D
gaps directly above and below the contact point. This, in effect,
screens the van der Waals attraction between the BNPs leading
the PMF in water to be less attractive than in vacuum
(compare the green and black curves at the minimum in
Fig. 2(d)). When D > 4.2, such screening effect on the PMF
competes with the repulsions exerted by the water layers con-
fined between the BNP surfaces. This contribution, referred to
as the hydration effect,27,43 is attributed to the structuring of
water at the interface. In fact, the first repulsive peak of the
PMF in water at D = 4.3 nm corresponds to the first denser
region of the radial distribution function of water around the
BNP (see the green curve in Fig. 1(e) at r = 2.3 nm). More in
general, the PMF profile in water for D > 4.2 nm retraces the
oscillatory behavior of the solvent distribution in proximity of
the BNP (see the green curve of Fig. 1(e)). Secondly, the PMFs
between SDS CNPs and DTAB CNPs in water were computed,
and are shown, as a function of D, in Fig. 2(e). To this end, the
equilibrated MD configurations resulting from the self-assem-
bly simulations of SDS, or DTAB, on alumina NPs in water
were considered as the initial set-up to evaluate the PMFs. For
the SDS CNPs, the PMF vs. D profile exhibits a long-range
repulsive behavior, extending from 5 nm to 8 nm with a
maximum value of around 171.6 kJ mol−1 at D = 5 nm (see the
red curve in Fig. 2(e)). For the DTAB CNPs, the PMF vs.
D profile also shows a long-range repulsive behavior, overlap-
ping the SDS PMF data for D > 5.2 nm (see Fig. 2(e)). However,
some differences are observed between the PMF profiles
corresponding to the SDS CNP and the DTAB CNP cases.
Firstly, a stronger repulsive potential is felt by the DTAB CNPs
for D < 5.2 nm. As discussed above, the DTA+ ions exhibit a
weaker adhesive potential than the DS− ions on the alumina
NP surface allowing the DTAB heads and portions of the tails
to freely fluctuate in the surrounding aqueous solution (see
Fig. 2(b)). On the other hand, the DS− ions adopt a more
structured morphology upon wrapping the NP surface (see
Fig. 2(c)). Therefore, as D decreases, the compression of the
fluctuating tails promotes a strong entropic repulsion, which
is more pronounced in the case of the DTAB CNPs. Another
difference between the PMF curves in Fig. 2(e) is in the extent
of hydration repulsion induced by the confined water mole-
cules at the interface. We have already pointed out that the
chemical and structural features of the SDS NP coating facili-
tate interactions with water molecules at the interface, thereby
leading to the formation of more hydrogen bonds and an
associated denser hydration layer. On the other hand, a more
hydrophobic-like-structure is observed in the radial distri-
bution of water around the DTAB NP coating (see Fig. 1(e)). As
a result, we can state that the origin of the entropic repulsion

between DTAB CNPs is mainly due to fluctuating tails rather
than the hydration effects.

In order to compare our simulation results with theoretical
predictions based on the classical DLVO theory, Fig. 2(d) and
(e) show the simulated and the predicted PMFs vs. D profiles.
Although the Hamaker constant used in the evaluation of the
DLVO potential is medium dependent, Fig. 2(d) clearly high-
lights the inability of the DLVO theory to model the inter–par-
ticle interaction in water for D < 4.6 nm. This substantiates the
need to carry out atomistic MD simulations to correctly model
the inter–particle interactions at the nanoscale. A complete,
classical DLVO theory, which includes both attractive van der
Waals and repulsive electrostatic interactions is instead con-
sidered to theoretically describe the interaction potential
energy between charged SDS and charged DTAB CNPs (see the
Methods section for additional details). As shown in Fig. 2(e),
the simulated PMFs (the red and blue curves) and the classical
DLVO theory prediction (the black dashed curve) agree very
well for D > 7 nm, where the discrete nature of the aqueous
medium, the finite hydrated radii of the sodium and bromide
counterions, and the repulsions due to the overlap of surfac-
tant tails can be neglected. On the other hand, the classical
DLVO theory prediction significantly deviates from the simu-
lated PMFs when the NP center-to-center separation distance
is less than 7 nm (see Fig. 2(e)). Specifically, when D < 7 nm,
the combined effect of the DS− and the DTA+ heads, the Na+
and Br− counterions, and the water molecules produce a
highly repulsive PMF, which is beyond 200 kJ mol−1 in the
case of the DTAB coating (see the blue curve in Fig. 2(e)).
Further, the free energy barrier difference, ΔE = 90.6 kJ mol−1,
between the simulated PMF and the predicted DLVO inter-
action potential for two SDS CNPs clearly shows that the classi-
cal DLVO theory is extremely inadequate to describe the inter-
actions of soft-matter-coated NP surfaces. Moreover, any exten-
sion of the continuum DLVO theory44 reveals strong limit-
ations in its ability to reproduce the actual inter–particle
potential (see Fig. S9 in the ESI†).

Rational behind the multi-scale model and the stochastic
dynamics simulations

To summarize and compare the central results of the simu-
lated PMFs, the free energy barriers E corresponding to the
first repulsive peaks of the PMFs of the 4 types of alumina NPs
considered (neutral BNP, charged BNP, SDS CNP, and DTAB
CNPs) are shown in Fig. 3(a). Note that, in case of soft repul-
sive potentials between DTAB and SDS CNPs the primary free
energy barrier has been considered as the maximum value of
the PMF in the range of short NP separation distance, namely
for 4.8 nm < D < 5.2 nm. The bar graph in Fig. 3(a) highlights
how the electric surface charges and the addition of surfac-
tants contribute to an increase in the free energy barrier, E,
thereby suggesting a reduced rate of aggregation of NPs. To
simulate the dynamics of suspended NPs, we carried out SD
simulations, based on the inter–particle PMFs simulated
above. Specifically, a bottom-up approach was pursued, where
as shown in Fig. 3(b), each NP was mapped into a single isotro-
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pic bead and the PMF was used as the effective pair potential
between NPs in solution to accurately reproduce the net force,
Fi, acting on a single NPi during its dynamics (see eqn (6)).
This multi-scale approach represents one of the most accurate
ways to bridge nanoscale phenomena and mesoscale behavior,
providing an atomistic framework to carry out coarse-grained
simulations of isotropically interacting NPs. For each NP con-
sidered (neutral BNP, charged BNP, SDS CNP, and DTAB CNP),
SD simulations were carried out by tuning the NP volume frac-
tion, Φ, from 0.125% to 5%. Note that this range of Φ values is
adequate to investigate various regimes of the kinetics of NP
aggregation and stability in nano-suspensions, thereby allow-
ing the formulation of guidelines for the design of engineered
NPs dispersed in aqueous solutions. Moreover, for each NP
volume fraction considered, 3 independent SD simulations
were performed to ensure statistical reliability of the results.
The simulations start with a random distribution of the NPs
and are run for up to 0.8 ms. Fig. 4(a–d), left shows representa-
tive simulation snapshots of four NP suspensions at 0.8 ms.
Fig. 4(a–d), right shows the radial distribution functions (g(r))
corresponding to the four NP suspensions at various volume
fractions. The high free energy barriers encountered in the
SDS CNPs and the DTAB CNPs hinder potential NP aggrega-
tion, leading to well-dispersed suspensions in both cases (see
snapshots in Fig. 4(a) and (b)). Indeed, the radial distribution
functions, g(r), corresponding to the SDS CNPs and the DTAB
CNPs exhibit a gas-like distribution of the dispersed NPs.45

Moreover, the first peaks, located beyond 7 nm from the center
of the reference NP, indicate the absence of any clusters (recall
that the radius of a CNP is <2.5 nm). However, rare and iso-
lated aggregates can be observed at D = 4.8 nm in Fig. 4(a).
This suggests a slightly more favorable condition for aggrega-
tion in the case of SDS CNPs when compared to DTAB CNPs,
as confirmed by the observed reduced free energy barrier in

the PMF for SDS CNPs (see Fig. 3(a)). Fig. 4(c) shows the result-
ing distribution of charged NPs of R = 0.85 nm in aqueous
solution with added [NaCl] = 0.01 M. The equilibrium simu-
lation snapshot on the left suggest that charged NPs are all
unable to overcome the primary potential energy barrier (see
the PMF in the ESI†). Therefore, the coupled effect of the
surface charge density and the hydration repulsion apparently
prevents, at least for this NP radius, NP aggregation, thereby
producing a well-dispersed suspension. However, a quantitat-
ive analysis of the radial distribution function highlights that,
irrespective of the NP volume fraction, the first peak in g(r) is
located at r = 1.7 nm, which corresponds precisely to the dia-
meter of a charged BNP (see Fig. 4(c)). This implies a finite
probability to overcome the primary potential energy barrier,
and to observe two BNPs sticking to each other. Indeed, by
comparing the g(r) in Fig. 4(c) with the previously discussed
cases (see Fig. 4(a and b)), we observe a more liquid-like distri-
bution function of the dispersed charged BNPs. However, both
the enhancement of the NP surface charge density and the
addition of surfactants have shown to be highly effective in sta-
bilizing NP suspensions, consistent with experimental obser-
vations,10,53 thereby qualitatively validating our modelling
approach. On the other hand, when neutral BNPs are dis-
persed in aqueous solution, NP aggregation is prominently
observed (see Fig. 4(d) left side). In this case, the formation of
NP clusters is expected because of the low primary energy
barrier of around 13 kJ mol−1 (see Fig. 2(d)). The distribution
functions of suspended neutral BNPs are reported on the
right-hand side of Fig. 4(d). The highest peaks of the radial
distribution functions occur when r = 4 nm, namely at one
BNP diameter distance, confirming the extremely high prob-
ability to find two BNPs stuck together. Moreover, several
lower peaks indicate the presence of NP aggregates in the
aqueous suspensions. Finally, Fig. 4(d) also shows a decrease

Fig. 3 Rational of the multi-scale model. (a) Free energy barriers, E, corresponding to the simulated PMFs for (i) neutral BNPs of R = 2 nm, (ii)
charged BNPs of R = 0.85 nm and surface charge σq = −0.346 C m−2, (iii) SDS CNPs of R = 2.41 nm, and (iv) DTAB CNPs of R = 2.45 nm. Note that
some details about the evaluation of CNP radius are shown in the ESI.† (b) Graphical schematic of the multi-scale modelling approach implemented
here: first, atomistic simulations are carried out to evaluate the potential of mean force (PMF) between two identical multi-atom NPs, second, each
multi-atom NP is coarse grained (CG) into a single bead, where the PMF previously calculated is used as the bead-bead force field, and third,
stochastic dynamics (SD) simulations are finally carried out.
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in the g(r) values when the volume fraction of the BNPs
increases. This observation sheds light on the configurational
arrangement of the dispersed NPs: when Φ is increased, the
likelihood of radial aggregation decreases, and more elongated
NP clusters are observed. In order to develop a thorough
understanding of the aggregation phenomena in neutral BNP
aqueous suspensions, a cluster analysis was conducted on the
last simulation configuration, precisely at 0.8 ms, when all the
suspensions having different NP volume fractions reached
steady state (see the convergence of the SD simulations in the
ESI†). Notably, the time and length scales attained with the SD
simulations are substantially larger than those attained with
an all-atom description, thereby allowing an accurate predic-
tion of nano-colloidal stability. Fig. 5 left illustrates the distri-
bution of the NP aggregates at (a) Φ = 0.125%, (b) Φ = 0.2%, (c)
Φ = 0.5%, and (d) Φ = 1%. As the simulation snapshots high-

light qualitatively, the aggregation of NPs occurs irrespective of
what the volume fraction of the dispersion is. However, the
size of the NP clusters grows progressively as Φ increases. A
quantitative description of the cluster size distribution is
shown in Fig. 5, right, which displays the number of clusters
(# Clusters) as a function of their size (quantified in terms of
the number of NPs (# NPs)). Firstly, from the histograms in
Fig. 5, right, we observe a reduction in the total number of
clusters formed after 0.8 ms, as the NP volume fraction is
increased over the range considered. Secondly, moving from Φ

= 0.2% to Φ = 1%, the cluster size distributions show a peak
which progressively shifts towards aggregates of bigger size.
For example, when Φ = 0.2%, the majority of the clusters
contain between 21 and 50 NPs, whereas for Φ = 0.5%, the
average size of the aggregates is between 50 and 100 NPs.
When Φ = 1%, three big clusters of more than 200 nano-
particles each are formed. Very tiny aggregates containing less
than 5 NPs are always present, highlighting the possibility of
detachment and rearrangement of NPs because of their
thermal motion. Moreover, we also evaluated the fractal
dimension parameter, df, of the final NP clusters formed in
the nano-suspensions and we found average values of df
between 1.88 and 2.02 (see eqn (8)). Furthermore, for each
volume fraction, we carried out the cluster analysis at several

Fig. 4 Nanoparticle (NP) aggregation state. Right, radial distribution
functions, (g(r)), of suspended (a) SDS CNPs, (b) DTAB CNPs, (c) charged
BNPs, and (d) neutral BNPs at volume fractions Φ = 0.125, 0.5, and 1%.
Additional Φ values are reported in case of (d). Left, NP suspensions
corresponding to Φ = 1% at t = 0.8 ms, where each NP is depicted as a
red dot.

Fig. 5 Nanoparticle (NP) cluster distribution. Cluster analysis of four NP
suspensions after 0.8 ms of stochastic dynamics (SD) simulations. The
corresponding frames for (a) Φ = 0.125%, (b) Φ = 0.2%, (c) Φ = 0.5% (c),
and (d) Φ = 1% are shown on the left. Note that as the particle volume
fraction, Φ, increases, fewer NP clusters with bigger size are formed. The
radius of the BNPs is equal to 2 nm for all the simulated NP suspensions.
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frames along the simulation trajectories, thereby providing a
global picture of the kinetics of NP aggregation. A throughout
description of the time evolution of NP clusters is detailed in
the ESI† and the main outcomes are summarized in Fig. 6. In
order to compare the characteristic time scales associated with
NP aggregation, we reported in Fig. 6 the formation times of
the biggest and longest-lived clusters present in the nano-sus-
pensions considered. Specifically, Fig. 6(a) illustrates the time
elapsed to first observe the formation of the largest cluster,
including retaining its identity for more than 0.1 ms. The
observed trend quantitatively confirms that in a very dilute NP
suspension, a longer time is required to form clusters with
stable dimensions. For example, in a NP suspension with a
volume fraction of 0.125%, the largest cluster reaches a stable
size after around 0.76 ± 0.04 ms (see Fig. 6(a)). On the other
hand, in a suspension with a volume fraction of 1%, 0.448 ±
0.01 ms are sufficient for the largest cluster to reach a stable
size. This observation is intuitively related to the lower col-
lision probability occurring in dilute suspensions. In Fig. 6(b),
we report the equivalent radius of the largest clusters con-
sidered above. Specifically, we estimated the radius of aggre-
gates as half of the maximum distance calculated between all
possible combinations of NPs i and j inside the cluster, that is,
Ra = 1/2 max |ri − rj|, where ri and rj are the position vectors of
the NPs i and j. Fig. 6(b) confirms the enhancement of the NP
cluster size as the NP suspension volume fraction increases. It
is worth noting that NP suspensions having volume fractions
larger than 2% exhibit complete NP aggregation, where a
single cluster was observed after a few μs of SD simulation (see

Fig. S10(c) in the ESI†). This finding clearly defines a design
demarcation between stable and unstable suspensions posses-
sing such physical and chemical features.

Macroscopic properties and comparison with experimental
results

The multi-scale approach developed to model the dynamics of
NPs dispersed in aqueous solutions was finally used to calcu-
late some characteristic thermo-physical properties of the sus-
pensions. Because of the confirmed dependence of the heat
conductive mechanisms in NP suspensions with the NP aggre-
gation status,21,46,47 in this study we focused the attention on
the calculation of the overall thermal conductivity (kNS) of the
nano-suspensions (NS) in case of the neutral BNP close to the
isoelectric point (pH = 9). The viscosity (μNS) and the specific
heat capacity (cp,NS) were also considered, and the results are
shown in the ESI.† By including the cluster size distribution
presented above in the adaptation of the BG model,21 we com-
puted the relative thermal conductivities, (kr = kNS/kbf ) of the
NP suspensions considered in this paper. The results obtained
by the current developed MS model are reported in Fig. 7
with blue dots. A favourable comparison of the predicted thermal
conductivity with the experimental data48–51 provides a pre-

Fig. 7 Comparison of the relative thermal conductivity. Relative
thermal conductivity (kr = kNS/kbf ) of suspended alumina BNPs in water
as a function of the particle volume fraction, Φ. The blue dots, calculated
following the Multi-Scale (MS) model presented in the text, are com-
pared with the experimental data reported in the literature. The green
stars are from ref. 49, the light blue triangles from ref. 51, the yellow
squares from ref. 50, and the orange diamonds from ref. 48. The relative
thermal conductivity values obtained by applying the DLVO theory along
with the theory of kinetic aggregation are shown by the black curves.
The theoretically predicted values of kr are calculated for nano-suspen-
sions at pH = IEP (isoelectric point; solid black line), pH = 5 (dashed
line), and pH = 1 (dotted line). Specifically, we evaluated the relative
thermal conductivity, kNS/kbf, by considering nano-suspensions after
12 hours from the initial monodisperse condition (see ESI† for further
information). The coloured shadows aim to highlight the discrepancy
between the results obtained with the traditional theories (DLVO +
Smoluchowski aggregation) and the thermal conductivity values derived
from experiments and our MS model.

Fig. 6 Time scale of aggregation. (a) Formation-time of the biggest,
and the longest-lasting NP cluster in each NP aqueous suspension
having Φ values ranging from 0.125% to 2%. The error bars were
obtained by averaging the time over a sample of 3 SD simulations for
each volume fraction. (b) Average radii, Ra, of the clusters identified in
(a). Note that the corresponding # of NPs at each Φ are: 99 ± 5 (at
0.125%), 176 ± 40.5 (at 0.2%), 348 ± 35 (at 0.5%), 628 ± 173 (at 1%), and
1480 ± 475.50 (at 2%).
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liminary validation of the MS approach (see coloured dots in
Fig. 7). For the sake of completeness, we also computed the
thermal conductivity of the nano-suspensions considered uti-
lizing the classical DLVO theory as the interaction potential
energy between the NPs, and the Smoluchowski aggregation
theory52 to evaluate the rate of NP aggregation and the cluster
distribution (black curves in Fig. 7). A detailed description of
the thermal conductivity prediction by coupling the previously
mentioned theoretical models is reported in the ESI.† As Fig. 7
demonstrates, the use of the DLVO theory to model the NP
interactions and the assumption of a constant fractal dimen-
sion parameter, df, result in a strong overestimation of the
thermal conductivity prediction. Specifically, the remarkable
enhancement of the thermal conductivity predicted by the
theoretical models (DLVO + Smoluchowski aggregation or
DLVO + SA theory) is mainly due to the underestimation of the
free energy barriers in the net NP interactions (see the DLVO
curves in Fig. 2(d and e)). This consequentially leads to an
increase of the cluster aggregation phenomena and the corres-
ponding thermal conductivity evaluated according to the adap-
tation of the BG model. In addition, the assumption of a con-
stant fractal dimension parameter, df, in the kinetic of aggre-
gation theory also contributes to a sensible variation of kr
between our MS model and the theoretical models (DLVO + SA
theory). In fact, a sensitivity analysis of the BG model adopted
for the thermal conductivity prediction, demonstrates that a
reduction of df from 2 to 1.8 may leads, in case of pH = IEP, to
an increase of 20% in the thermal conductivity values. As a
consequence, assuming a value of df constant and equal to 1.8
(consistently with the DLCA aggregation theory in case of pH =
IEP) may bring to a systematic overestimation of the thermal
conductivity (we remind that the results of our SD simulations
have shown 1.88 < df < 2.02). Moreover, from an analysis of the
data in Fig. 7, we find that the slope of the thermal conduc-
tivity variation with the volume fraction of the NP suspension
is overestimated by about 2000 times by the DLVO + SA theory,
when compared to the proposed MS model. In fact, at a
volume fraction of 1%, the DLVO + SA theory leads to a 100%
overprediction of the thermal conductivity of the NP suspen-
sion, as compared to the proposed MS model, which is in
good agreement with the experimental data. In conclusion, the
MS model developed in this paper allows to precisely evaluate
the fractal dimension parameters (df ) of each cluster, thereby
assuring a coherent description of the NP volume fraction
inside the clusters (Φin), the aggregate volume fraction (Φa),
and the thermal conductivity of the nano-suspensions con-
sidered. Finally, it is worth noticing that, although the experi-
mental values in Fig. 7 refer to alumina nano-suspensions
with various NP radii and solution pHs,48–51 the incorporation
of repulsive energy barriers in the classical theoretical models
(DLVO + SA theory) also reveals a consistent overprediction of
the macroscopic thermal property (dotted, dashed and conti-
nuum black curves in Fig. 7). The influence of the interfacial
thermal resistance on the overall thermal conductivity75 and
additional calculations of macroscopic properties are pre-
sented in the ESI.†

Conclusions

The use of dispersed nanoparticles in aqueous solutions has
been recognized as being extremely beneficial in a wide variety
of applications. However, engineering nano-sized suspensions
remain a challenging task both experimentally and theoreti-
cally. In addition to the experimental issues, modelling efforts
for suspended nanoparticles have unveiled numerous impedi-
ments in terms of reproducing the broad spectrum of multi-
scale phenomena in NP suspensions. In this paper, we pre-
sented a novel multi-scale (MS) approach to reproduce the
dynamics of self-assembly of suspended nanoparticles in aqueous
solutions. We implemented a bottom-up coarse-grained (CG)
method which allows the incorporation of nanoscale phenom-
ena into the dynamics of suspended NPs, thereby bridging the
challenging gap between nanoscopic and macroscopic scales.
Starting from all-atomistic simulations, we evaluated the
potentials of mean force (PMFs) between several NPs in
aqueous solutions. Then, we defined ad-hoc CG force fields to
carry out stochastic dynamics (SD) simulations and predict the
stability of nanoparticle suspensions and the kinetics of the
underlying aggregation processes. The simulated PMFs
between both bare and coated nanoparticles have demon-
strated that the traditional van der Waals and electrostatic
interactions, derived in the context of the DLVO theory, are not
able to model the inter–particle interactions realistically,
underestimating the repulsive free energy barrier, with impor-
tant ramifications in modeling of the self-assembly of NPs.
Moreover, even the more accurate extensions of the continuum
DLVO theory have proven inadequate to describe the NP pair
potential. The combined analysis of the PMF and atomistic
simulations of interfacial phenomena, involving solid, soft,
and liquid matter, shed light on the specific factors influen-
cing the inter–NP interactions, thereby clarifying the multiple,
closely coupled phenomena controlling the interactions
between NPs in aqueous solutions. More specifically, MD
simulations have shown that steric hydration, head-group
overlap, and thermal fluctuations of the surfactant tails
strongly influence the inter–NP interactions, thereby creating a
remarkable inefficiency of the classical DLVO theory. For these
reasons, atomistic-simulation-based strategies are rec-
ommended to compute the interaction potential between NPs,
including correctly capturing the attractive van der Waals and
the repulsive electrostatic interactions, as well as entropic
effects which are particularly important at the nanoscale.

The calculated PMF curves have been used to simulate the
Langevin dynamics of suspended NPs in aqueous media. The
results emphasize the crucial role played by the potential
energy barrier in yielding well-dispersed NP suspensions. Both
the NP surface charge density and the addition of surfactants
have shown great potential to stabilize NP suspensions, as
demonstrated in some reported experimental papers,10,53

thereby qualitatively validating our modelling approach. On
the other hand, in the case of purely attractive interactions,
with a very weak potential free energy barrier, we observed a
rapid aggregation of single-dispersed NPs. Firstly, suspensions
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having higher NP concentrations exhibited a faster aggregation
kinetics. Indeed, by calculating the formation times of the
resulting clusters, we found that moving from Φ = 0.125% to Φ

= 1%, the biggest clusters reached a stable dimension in
0.76 ms and 0.448 ms, respectively. Secondly, through our
cluster analysis, we demonstrated that nano-dispersions pos-
sessing lower particle volume fractions show a higher propen-
sity for stability. In particular, we verified that volume fractions
higher than 2% exhibit a critical condition of stability, thereby
establishing a design threshold for the samples considered.
Finally, our cluster analysis has allowed us to carefully evaluate
the overall thermal properties of the NP suspensions, avoiding
any erroneous assumptions about the shape and size of the
resulting NP aggregates. The results have shown that the
multi-scale model developed here demonstrates the best per-
formance to date in predicting the thermal conductivity when
compared with standard classical models, namely the DLVO
theory and the Smoluchowski aggregation theory. In the
present work we validate the MS model on the basis of the
resulting thermal conductivity of NP suspensions. A more
systematic validation would consist of demonstrating that the
PMF obtained by MD simulations can reproduce the bulk
structure properties of the nano-suspensions. For example,
Small Angle Neutron Scattering (SANS) or Small Angle X-rays
Scattering (SAXS) would offer a valid experimental approach to
recover the three-dimensional arrangement on the nanoscale.
Specifically, in SANS experiments, the scattered intensity
signal, that is the coherent differential scattering cross-section
per unit solid angle (dΣ/dΩ), can be correlated to the static
structure factor. With all of the above in mind, we believe that
the multi-scale framework presented in this paper represents
the first step towards a systematic, rational design of nano-
particle suspensions. Additional effects like the surfactant
passivation, environment pH and solution temperature could
be also considered and included in future works to investigate
with our MS model a wider sampling of nanoparticle
suspensions.
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