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Self-assembly of a silicon-containing side-chain
liquid crystalline block copolymer in bulk and in
thin films: kinetic pathway of a cylinder to sphere
transition†

Fen Liao, a Ling-Ying Shi, *a,b Li-Chen Cheng, b Sangho Lee, b

Rong Ran, a Kevin G. Yager c and Caroline A. Ross *b

The self-assembly of a high-χ silicon-containing side-chain liquid crystalline block copolymer (LC BCP) in

bulk and in thin films is reported, and the structural transition process from the hexagonally packed cylin-

der (HEX) to the body-centered cubic structure (BCC) in thin films was examined by both reciprocal and

real space experimental methods. The block copolymer, poly(dimethylsiloxane-b-11-(4’-cyanobiphenyl-

4-yloxy)undecylmethacrylate) (PDMS-b-P(4CNB11C)MA) with a molecular weight of 19.5 kg mol−1 and a

volume fraction of PDMS 27% self-assembled in bulk into a hierarchical nanostructure of sub-20 nm HEX

cylinders of PDMS with the P(4CNB11C)MA block exhibiting a smectic LC phase with a 1.61 nm period.

The structure remained HEX as the P(4CNB11C)MA block transformed to an isotropic phase at ∼120 °C. In

the thin films, the PDMS cylindrical microdomains were oriented in layers parallel to the substrate surface.

The LC block formed a smectic LC phase which transformed to an isotropic phase at ∼120 °C, and the

microphase-separated nanostructure transformed from HEX to BCC spheres at ∼160 °C. The hierarchical

structure as well as the dynamic structural transition of the thin films were characterized using in situ

grazing-incidence small-angle X-ray scattering and grazing-incidence wide-angle X-ray scattering. The

transient morphologies from the HEX to BCC structure in thin films were captured by scanning electron

microscopy and atomic force microscopy, and the transition pathway was described.

Introduction

The self-assembly of block copolymers (BCPs) has been
intensively investigated because of their ability to provide a
variety of well-defined nanostructures with length scales of a
few nm to over 100 nm, with applications in many
nanotechnologies.1–8 The introduction of a liquid crystalline

polymer into BCPs produces the so-called liquid crystalline
block copolymers (LCBCPs) which can form various hierarchi-
cal nanostructures with advanced functionalities.9–13 The
LCBCPs not only enrich the possible microphase-separated
morphologies but also enhance morphological control via the
complex interplay between microphase separation and LC
ordering.14–17 As an example, the orientation and phase
transition of the liquid crystalline blocks of the LCBCPs
induce changes in the microdomain geometry, which results
in abundant opportunities for order-to-order structural
transitions.18–20 Moreover, compared with conventional coil–
coil BCPs, the LCBCPs may exhibit a stronger driving force for
phase separation under the influence of the LC ordering,21,22

which makes LCBCPs excellent candidates for obtaining useful
nanostructures.

For applications such as nanolithography where small
feature sizes are required, high interaction parameter (χ) block
copolymers are preferred.23 Among various high-χ block copo-
lymers that have been studied, silicon-containing block copoly-
mers including polyhedral oligomeric silsesquioxane- (POSS-),
polyferrocenylsilane- (PFS-), and polydimethylsiloxane (PDMS)
blocks are attractive due to the high etch contrast for robust
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pattern transfer.24–27,28,29 If a silicon-containing block is com-
bined with an organic LC block, the resulting high-χ silicon-
containing LCBCPs are expected to produce hierarchical nano-
structures with small-scale periodicities and with etch contrast
for pattern transfer. Thus, silicon containing LCBCPs may
open fascinating possibilities for the preparation of
nanomaterials.

In order to generate thin film nanotemplates and scaffolds
from block copolymers, the morphology as well as ordering
and orientation control of microdomains in the BCP films is
crucial.30–32 The LCBCPs, e.g. with cyanobiphenyl- and azo-
benzene-side chains, are responsive to magnetic, light and
electric fields as well as thermal and mechanical forces, facili-
tating control over the ordering and orientation of the
microdomains.33–37 For example, the application of external
fields such as photoalignment or magnetic and electric
fields to control the LC orientation of side chain LCBCPs can
induce uniform macroscopic orientation of the
microdomains.15,18–20,38,39 Furthermore, although extensive
studies of the equilibrium morphologies in the thin films of
various block copolymers have been widely reported, the struc-
tural evolution processes of the BCP thin films are still poorly
understood. Knowledge of the ordering pathways and tran-
sition process is a prerequisite both for eliminating kinetically-
trapped defects in BCP thin films40–43 and for understanding
how LC phase transitions could induce order–order
transitions.44–46

Here, we present the self-assembly behavior in bulk and in
thin films of a silicon-containing side-chain liquid crystalline
block copolymer poly(dimethylsiloxane-b-11-(4′-cyanobiphenyl-
4-yloxy)undecylmethacrylate) or PDMS-b-P(4CNB11C)MA,
where the molecular weights Mn of PDMS and P(4CNB11C)MA
are 5.0 and 14.5 kg mol−1, respectively (Fig. 1a). The bulk
phase behavior was investigated by small-angle X-ray scattering
(SAXS) and transmission electron microscopy (TEM), showing
that a hexagonal closepacked structure with sub-20 nm period-
icity formed within a wide temperature range. For 140 nm
thick films the hierarchical nanostructure and the relative
orientation between the smectic LC ordering and the micro-
domains and the structural transitions were investigated using
grazing-incidence small-angle X-ray scattering (GISAXS) and
wide-angle X-ray scattering (GIWAXS) measurements. In
addition, the cylindrical to spherical structural transition and
the transient morphology were observed by SEM and AFM
methods. The results of this study of the thin film behavior of
the high-χ PDMS-b-P(4CNB11C)MA LC block copolymer will
enable applications of this material to nanofabrication and
nanotechnology.

Experimental

The PDMS-b-P(4CNB11C)MA block copolymer was purchased
from Polymer Source Inc. The molecular weights of PDMS and
P(4CNB11C)MA were 5.0 and 14.5 kg mol−1, respectively and
the polydispersity index was 1.15. The volume fraction of

PDMS was calculated to be 27% according to the molecular
weights and the densities of PDMS (0.97 g cm−3) and
P(4CNB11C)MA (1.06 g cm−3).

For the bulk samples for SAXS and TEM experiments, the
block copolymer powder was dissolved in toluene solution
(5.0 wt%) under overnight stirring, and the solvent was evapor-
ated at room temperature for several days. The samples were
then thermally annealed in a vacuum oven (20 Torr) for 48 h at
various temperatures to induce microphase separation.

For thin film preparation, a solution of PDMS-b-P
(4CNB11C)MA with a concentration of 5.0 wt% in toluene was
made. Films with a thickness of 140 nm were spin-coated on
the as-received Si substrates. The film thickness was deter-
mined by a reflectometry system (FilMetrics F20-UV) by
measuring the reflectance spectra within a wavelength range of
300–1000 nm. The films were thermally annealed at different
temperatures under vacuum (20 Torr) for 72 h at each tempera-
ture. Due to the lower surface energy of the PDMS block, thin
wetting layers of PDMS were expected to form at the substrate
surface/film interface and the film/air interface.

Thermal behavior and LC phase transition temperatures of
the block copolymer were characterized using a TA Q2000 DSC
(TA Instruments, USA) at heating and cooling rates of 10 °C
min−1 under a nitrogen flow. The characteristic temperatures
of the polymer were recorded from the second heating run
curve and the second cooling run curve.

To identify the microphase-separated nanostructures of the
block copolymer in bulk, 1D SAXS measurements were carried
out on a Xeuss 2.0 instrument (Xenocs) using Cu Kα radiation
at a wavelength of 0.154 nm. The working voltage and current
were 50 kV and 0.6 mA, respectively. The scattering profiles of
SAXS were recorded with a q range from 0.042 to 2.21 nm−1.

Fig. 1 (a) The chemical structure of the PDMS-b-P(4CNB11C)MA side
chain LC block copolymer, and (b) the DSC curves of this BCP in the
second heating scan (red) and in the second cooling scan (black) with a
scanning rate of 5 °C min−1.
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The scattering vector q is defined as q = 4π/λ[sin θ], where the
scattering angle is 2θ, and the d-spacing (d ) is given by 2π/q.
The phase morphologies of bulk samples were observed by
TEM (FEI, USA) at 200 kV. 80–100 nm thick sections for TEM
characterization were ultra-microtomed from a sample
embedded in epoxy resin and were collected on carbon-coated
400-mesh copper grids.

The GISAXS and GIWAXS measurements on the thin films
were performed at the Complex Materials Scattering (CMS,
11-BM) beamline of the National Synchrotron Light Source II
at Brookhaven National Laboratory. X-ray energy was set to
13.5 keV, and the beam size was adjusted to 200 µm horizontal
by 50 µm vertical. SAXS data were collected using a pixel-array
detector (Dectris Pilatus 2M) positioned 5.090 m downstream
of the sample; WAXS data were collected using a fiber-coupled
CCD detector (Photonic Sciences) positioned 0.231 m down-
stream. Conversion to q-space was performed using a standard
sample (silver behenate) for calibration. We define qz to be the
vertical (film normal) direction, and qx to be the orthogonal
horizontal (in-plane) direction.

The morphologies of the BCP thin films were characterized
ex situ by a Zeiss Merlin high resolution scanning electron
microscope (SEM) at 3 kV and a Veeco metrology nanoscope V
atomic force microscope (AFM) with a dimension of 3100 in
the tapping mode. The thin films for the SEM and AFM
characterization were first subjected to a two-step reactive ion
etching (Plasma-Therm 790) composed of 50 W CF4 plasma at
15 mTorr for 8 s to remove the PDMS wetting layer on the
surface and 90 W O2 plasma at 6 mTorr for 20 s to selectively
etch the P(4CNB11C)MA matrix, leaving oxidized PDMS micro-
domains on the substrates.

Results and discussion
Liquid crystalline phase behavior and microphase separation
behavior in bulk

The PDMS-b-P(4CNB11C)MA block copolymer is a side chain
liquid crystalline block copolymer with a chemical structure as

shown in the scheme of Fig. 1a. We first conducted DSC
measurement to characterize the thermal and liquid crystal-
line phase behavior of the LCBCP. As shown by the DSC curve
in Fig. 1b, the block copolymer underwent two transitions
during the second heating run (red curve) and during the
second cooling run (black curve). The baseline shifts at around
49 °C in the DSC trace in the heating cycle correspond to the
glass transition (Tg) of the P(4CNB11C)MA block, and the
endothermic peak at 120 °C with an enthalpy change of 3.65 J
g−1 is attributed to the phase transition of P(4CNB11C)MA
from the smectic-A LC phase to the isotropic liquid phase
(TLC-iso). During the cooling cycle, the reverse isotropic liquid
to the smectic phase transition (Tiso-LC) of the P(4CNB11C)MA
block occurred at 117 °C with the enthalpy change of the
exothermic peak of 3.86 J g−1, and the Tg peak appeared at
46 °C.

The microphase separation of the PDMS-b-P(4CNB11C)MA
block copolymer in bulk was investigated by SAXS and TEM
experiments. Firstly the bulk samples, as-cast and annealed at
115 °C, were characterized by SAXS under ambient conditions.
As shown in Fig. 2a, the SAXS profile of the as-cast sample
only had one scattering peak at 0.360 nm−1, corresponding to
a d-spacing of 17.5 nm. The SAXS profile of the sample after
annealing at 115 °C had two diffraction peaks with a scattering
vector ratio of 1 :√3. The peak position of the primary scatter-
ing maximum shifted to q* = 0.317 nm−1 corresponding to a
d-spacing of 19.8 nm. Hence the annealing increased the
periodicity of the nanostructure, and the intensity of the
primary reflection peak became stronger which indicated the
formation of a better ordered nanostructure, attributed to the
mobility of the LC block above the Tg. TEM was used to
confirm the morphology of the bulk sample. In the TEM
images, the darker features are the PDMS microdomains and
the brighter ones are the P(4CNB11C)MA microdomains, due
to the higher electron density of the silicon-containing
block.47 As shown in Fig. 2b, the as-cast sample presented a
hexagonal (HEX) cylindrical pattern of PDMS with a periodicity
of 17.5 nm. Better ordered HEX morphologies were observed
in the annealed sample as indicated by the section of the hex-

Fig. 2 (a) SAXS profiles of the PDMS-b-P(4CNB11C)MA as-cast (black curve) and after annealing at 115 °C (red curve); and the TEM images of the
sample after drying from solution (b) and after thermal annealing at 115 °C (c) with the insets showing higher magnification images. The area indi-
cated by the yellow arrow indicates microdomains sectioned along the hexagonal column direction and that indicated by the white arrow indicates
microdomains perpendicular to the column axis of the HEX structure.
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agonal packed pattern perpendicular to the column axis and
the section along the column axis in Fig. 2c. As shown in the
inset of Fig. 2c, the row-to-row distance of the PDMS cylinders
from the TEM was about 19.5 nm, which was consistent with
the values obtained from SAXS.

In situ SAXS with heating was then carried out to examine
the structural transition of the PDMS-b-P(4CNB11C)MA block
copolymer as the LC phase transformed to the isotropic state
on heating. As shown in Fig. 3, the SAXS profiles of the
samples measured at 70, 100, and 110 °C had two diffraction
peaks with a scattering vector ratio of 1 :√3. The d-spacing
and the scattering intensity of the primary scattering peak con-
tinuously increased and the half peak width decreased as the
temperature increased. Measurements at 120, 150, 180 and
200 °C showed a sharper primary scattering peak and a higher
reflection peak at √7q*, and a further peak at 2q* was
observed at 150 °C. Therefore, the microphase-separated nano-
structure remained in the HEX structure when the
P(4CNB11C)MA block transformed to the isotropic phase.

The plots of the d-spacing value and the reciprocal of the
maximum scattering intensity of the first-order diffraction
(Im

−1) as a function of temperature are shown in Fig. 3c. The
d-spacing and the Im increased quickly with temperature up to
120 °C, and then the values stabilized for higher temperatures.
The d-spacing increase with increasing temperature up to
120 °C is attributed to chain extension which maximizes chain
conformation entropy, and an increased LC ordering from the
as-cast disordered chains that occurs above the glass transition
temperature. Above 120 °C, the cyanobiphenyl LC groups of
P(4CNB11C)MA entered the isotropic phase, but the polymer
chain maintained its extended conformation and the
d-spacing did not change much in this temperature range. The
chain conformations of the block copolymer as cast, in the
temperature range Tg < T < TLC-iso and above TLC-iso are illus-
trated in Fig. S1.† Despite the LC phase transition, the micro-
phase separated nanostructures remained HEX for tempera-
tures up to 200 °C according to the scattering vector ratios. We
conclude that the bulk BCP self-assembled into a hierarchical
nanostructure of HEX with PDMS cylinders inside a matrix of
smectic P(4CNB11C)MA, and transformed to a HEX structure
within isotropic P(4CNB11C)MA above 120 °C.

Self-assembly and morphology transition in thin films

Films of PDMS-b-P(4CNB11C)MA with a thickness of 140 nm
were prepared on silicon wafers. We first describe the hierarch-
ical nanostructure of the BCP thin film after annealing at
120 °C for 72 h. As seen in Fig. 4a, the 2D GISAXS profile
showed an in-plane HEX structure, though the weak circular
scattering ring indicates the coexistence of other orientations.
The SEM image of Fig. 4b confirmed the in-plane cylindrical

Fig. 3 (a, b) SAXS profiles measured in situ during the annealing of PDMS-b-P(4CNB11C)MA BCP. (c) The d-spacing values (black squares) and the
reciprocal of the maximum scattering intensity of the primary scattering peak (red triangles) as a function of the temperature.

Fig. 4 (a) 2D GISAXS pattern with an incident angle of 0.15° of the
140 nm thick BCP film after annealing at 120 °C; (b) a representative
SEM image of oxidized PDMS cylindrical nanopatterns formed in the
thin film; (c) 2D GIWAXS pattern with an incident angle of 0.15°, and (d)
the 1D GIWAXS profiles with an incident angle from 0.05° to 0.15°. (e, f )
Schematic illustrations of the in-plane cylinder with LC mesogens in a
smectic LC phase, where the mesogen π–π interaction direction is per-
pendicular to the smectic layer direction.
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morphology in which the oxidized PDMS cylinders in adjacent
layers were parallel to each other. The layers can be identified
by their different contrast, with the top layer appearing
brighter.48 The cross-section SEM images in Fig. S2† present a
closepacked arrangement of bright spots corresponding to the
cross-sections of the PDMS cylinders, which also confirmed
the in-plane cylindrical morphology. In the 2D GIWAXS profile
(Fig. 4c), the scattering arc labelled A in the equatorial direc-
tion suggests a smectic-A LC phase of P(4CNB11C)MA, and
this layered structure stacks perpendicular to the film plane.
1D GIWAXS profiles with different incident angles are plotted
in Fig. 4d, and show three sets of scattering peaks. From the
location of the reflection A at qx = 0.39 Å−1, the smectic layer
spacing was determined to be 1.61 nm. From the chemical
structure, the length of the LC group on the side chain was cal-
culated as about 0.97 nm (as described in Fig. S3†) and there
was a coil spacer of –(CH2)11 between the conjugated LC and
the backbone. Therefore, the cyanobiphenyl LC groups
between the neighboring chains are believed to interdigitate.
The intense scattering arc B located at qz = 1.43 Å−1, corres-
ponding to a d-spacing of 0.44 nm, is attributed to the interaction
between the cyanobiphenyl LC mesogens of the P(4CNB11C)MA
block. This result is consistent with the tendency of the cyanobi-
phenyl mesogens to aggregate through π–π stacking interactions.
The face-to-face interaction direction of the LC mesogen should
be parallel to the film plane. The other broad isotropic scattering
peak C at qx = 0.85 Å−1, corresponding to a d-spacing of 0.74 nm,
is attributed to the amorphous PDMS block.

The in-plane cylindrical structure with interdigitated stack-
ing of the LC mesogens in a continuous smectic phase is sche-
matically illustrated in Fig. 4e and f. The long axis of the meso-
gens is along the axis of the microphase separated cylinders.
From the top view, the LC mesogens stacked face-to-face into a
smectic phase with its molecular plane parallel to the sub-
strate surface, and the smectic layers normal to the substrate.
The periodicity of the smectic structure (P) was 1.61 nm and
the mesogen to mesogen distance (M) was 0.44 nm obtained

from the GIWAXS. The smectic layering direction (noted by the
double-headed black arrows A′) is normal to the mesogen face-
to-face interaction direction indicated by the double-headed
blue arrows B′ (Fig. 4f). Therefore, the hierarchical structure
consists of three levels of ordering: the mesogen orientation,
the smectic LC orientation and the orientation of the micro-
phase-separated domains. Furthermore, the drop-cast thick
film of this BCP annealed at 120 °C also presented good in-
plane ordering of the cylindrical nanostructure as shown in
Fig. S4.†

We now describe the structural evolution of the block copo-
lymer films during thermal annealing using in situ GISAXS
and GIWAXS. 2D GISAXS and GIWAXS profiles with the same
incident angle of 0.15° during the thermal annealing process
after holding for 10 min at each temperature are compared in
Fig. 5(a–f ) and (g–l).

For the as-cast film at 30 °C, the GISAXS profile exhibited a
broad scattering ring, indicative of a poorly-ordered micro-
phase-separated structure kinetically trapped during spin-
coating from solution, while the LC block was in the smectic A
phase based on the arc A in the equatorial direction at q =
0.39 Å−1. When the temperature increased to 50 °C, intense
scattering rings appeared in the GISAXS profile, suggesting the
emergence of poorly oriented hexagonally packed cylinders.
The LC block was in a more ordered smectic phase (indicated
by the sharper scattering intensity at A and B in the GIWAXS
profile) due to the mobility of the backbone of the LC block
near the Tg of P(4CNB11C)MA. When the temperature
increased to 120 °C, the intensity of the GISAXS increased and
scattering peaks appeared while the rings became faint,
indicative of the increased in-plane ordering of the cylindrical
morphology. The scattering peaks at A and B of the GIWAXS
profile became broad indicating the LC block becoming dis-
ordered as the temperature approached the smectic-to-isotro-
pic transition temperature.

When the temperature increased above 140 °C, the GISAXS
and GIWAXS underwent drastic changes. At 140 °C, the

Fig. 5 In situ GISAXS 2D patterns (a–f ) and in situ GIWAXS 2D patterns (g–l) of the PDMS-b-P(4CNB11C)MA BCP thin film at the indicated tempera-
tures during thermal annealing.
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GISAXS profile became a merged halo. The position of the first
qx scattering peak did not change, but the position of the ring
at qz decreased, which is attributed to structural undulations
as P(4CNB11C)MA transformed to the isotropic phase. When
the temperature increased to 160 °C, the two rings and scatter-
ing peaks appeared again, and the scattering intensity
increased further at 200 °C, but the qx value of the first scatter-
ing peak showed little change. The GIWAXS profiles above
140 °C showed a featureless pattern except for two isotropic
amorphous rings corresponding to the isotropic PDMS (cen-
tered at qx = 0.85 Å−1) and isotropic P(4CNB11C)MA (centered
at qx = 1.42 Å−1). As the temperature increased, the isotropic
amorphous ring of P(4CNB11C)MA became broader and more
ambiguous, as a result of the increased undulation of the
backbone of P(4CNB11C)MA. The GIWAXS and GISAXS results
collectively indicated that the microphase-separated nano-
structure experienced an order-to-order transition as the
P(4CNB11C)MA block transformed from the smectic LC phase
to the isotropic phase.

SEM and AFM experiments were carried out on thin films
annealed in air at different temperatures and then quenched
to room temperature. Representative SEM images of the films
after etching are shown in Fig. S5† and Fig. 6, in which
P(4CNB11C)MA has been etched and the oxidized PDMS pat-
terns were revealed, appearing bright.

The morphology of the thin film without thermal annealing
was a mixture of disordered spheres and short cylinder seg-
ments as shown in Fig. S5,† consistent with the GISAXS result.
After quenching from 120 °C (Fig. 6(a and b)), an in-plane
HEX morphology was observed with parallel cylinders in the
upper and lower layers indicated by the white and yellow

arrows. The cylinder-to-cylinder distance in the SEM image is
about 22.2 nm which is close to the center-to-center distance
(2d/√3, ∼22.8 nm) of the cylinders in the bulk sample. In
films on a bare silicon wafer, the PDMS wetting layers at the
film/substrate interface and the film/air surface result in sym-
metrical wetting, so that the commensurate film thickness is
nd (d is the layer spacing of the HEX structure). The film thick-
ness (140 nm) is close to 7d, where d is 19.7 nm, and the cross-
section SEM image shown in Fig. 2 presented 7 layers of
cylinders.

SEM images of the thin film quenched from 160 °C show
the coexistence of PDMS spheres, ellipsoids and short cylin-
ders, Fig. 6(c and d). From their relative orientation, it appears
that they represent a partial conversion of the HEX cylinders to
a BCC symmetry. After quenching from 200 °C, only a PDMS
spherical morphology was observed in Fig. 6(e and f).
Therefore, the HEX to BCC structure transition of the micro-
phase-separated nanostructure appeared between 160 °C and
200 °C. Fig. 6(c and d) represent a transient state between HEX
and BCC.

The HEX to BCC transition as well as the transient mor-
phology of the thin film was further confirmed by AFM experi-
ments. The AFM height and phase images of the etched thin
films after annealing at 120, 160 and 200 °C are compared in
Fig. 7, and the morphologies were consistent with the SEM
results.

From the morphology of the transient state, the spheres
formed from the cylinders had six-fold symmetry as noted by
the green hexagon in Fig. 6d, which indicates that the
decomposition of the cylinder into spheres should be along
the (111) direction of the BCC structure. The structure models

Fig. 6 SEM images of oxidized PDMS patterns from the thin films of PDMS-b-P(4CNB11C)MA BCP quenched from (a, b) 120 °C, (c, d) 160 °C and (e,
f ) 200 °C, and (g–i) a schematic illustration of the HEX to BCC transition.
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and the transition process are schematically illustrated in
Fig. 6(g–i). From the suggested transition pathway, we expect
that the (110) d-spacing of the BCC sphere lattice should equal
the (100) d-spacing of the hexagonal cylinder lattice. This can
explain the fact that the qx value of the first scattering peak of
the BCC in the GISAXS profile at 200 °C was almost the same
as that of the HEX structure at 120 °C. The nearest neighbor
(NN) spacing of the BCC structures obtained from the GISAXS
should be d110, which matched the NN spacing of the hexag-
onal cylinders from the GISAXS, d100.

49,50 This study therefore
identifies the pathway of the HEX to BCC transition from the
transient morphology observed by SEM and AFM.

Several factors influence the HEX to BCC structural tran-
sition including the LC phase transition, variation of the
Flory–Huggins interaction parameter (χ), and the composition
of the block copolymer. The PDMS-containing liquid crystal-
line block copolymer is expected to have an intrinsically high
interaction parameter χ, and below 120 °C, the smectic LC
phase of the P(4CNB11C)MA block makes a positive contri-
bution, χLC, to the effective interaction parameter, χeff.

51 The
volume fraction of the LC block is fP(4CNB11C)MA ∼73% and the
χeffN falls within the HEX region in the phase diagram.
Moreover, the smectic LC ordering favors a cylindrical mor-
phology compared to spherical due to the interfacial curvature.
After the P(4CNB11C)MA block transformed from the smectic
LC phase to an isotropic phase above 120 °C, and the influ-
ence of the LC ordering on the microphase separation dis-

appeared, the χeff decreased. However, the microphase separ-
ated nanostructure was still cylindrical in the temperature
range from 120 to 140 °C. The χeff continued to decrease with
increasing temperature, since χ(T ) scales inversely with temp-
erature, and we conclude that the morphology enters the BCC
regime in the phase diagram at ∼160 °C. A transient mor-
phology from HEX to BCC was observed in the thin film
quenched from 160 °C, which is higher than the temperature
of 140 °C for the structural transition observed in GISAXS.
This may be a result of a reverse transition of the sample
during cooling: the BCC structure in the sample used for SEM
imaging had partly converted back to HEX on cooling. The
evolution of χeffN is indicated schematically in the phase
diagram in Fig. S6.† The lack of the HEX-BCC transformation
in the bulk sample is a contrast to the thin film results.
Differences in the morphology between films and bulk may be
caused by surface energy effects or by the geometrical con-
straint caused by the film thickness, but the origin of this
difference in the LC BCP requires further investigation.

Conclusions

In summary, the bulk and thin film self-assembly of a silicon-
containing side-chain liquid crystalline block copolymer
PDMS-b-P(4CNB11C)MA was investigated. In bulk, the PDMS-
b-P(4CNB11C)MA block copolymer with fPDMS 27% formed a
hierarchical nanostructure of PDMS cylinders within a LC
P(4CNB11C)MA matrix, which transformed from a smectic to
an isotropic LC phase on heating above 120 °C. Thin films of
this block copolymer also presented a cylindrical morphology
with in-plane oriented PDMS cylinders. The mesogen orien-
tation and the smectic LC orientation were related to the
microdomain orientation, thus the thin film morphology con-
strains these orientations compared to the bulk. The in situ
GISAXS and GIWAXS and ex situ AFM and SEM measurements
revealed a HEX to BCC structural transition of the thin film at
∼160 °C that was not seen in the bulk BCP up to 200 °C. The
hierarchical ordering of the microdomains and mesogens, as
well as the high-χ value and the etch contrast in an oxygen
plasma, makes this silicon-containing LC block copolymer an
attractive system for nanoscale fabrication.
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