Issue 7, 2019

Heteromultimetallic compounds based on polyfunctional carboxylate linkers

Abstract

A series of homo- and hetero-nuclear, bi- and trimetallic compounds are accessible using polyfunctional linkers with carboxylic acid and alkynyl or pyridyl donor combinations. This versatile approach affords reaction at a specific donor site in each case, to accommodate both ruthenium(II) or osmium(II) units and also rhenium and gold centres. Due to the orientation of the nitrogen donors of the bipyridyl moiety in 2,2′-bipyridine-4,4′-dicarboxylic acid, the metal addition must be performed in a certain sequence due to steric considerations. One example was investigated crystallographically to add to the spectroscopic and analytical characterisation performed for all complexes. Photophysical investigations reveal the effect of incorporating second or third row transition metal centres. This approach was expanded through the use of a linker bearing both carboxylic acid and alkynyl functionalities, 1,1′-ethynylferrocene carboxylic acid. This allows initial coordination of the carboxylate donors to be followed by the formation of either an acetylide or a vinyl bridge to another metal, providing access to heterotrimetallic (FeRuOs and FeRuAu) compounds as well as a heteroheptametallic Fe3Ru2Au2 example. Preliminary electrochemical studies were performed on the latter compound.

Graphical abstract: Heteromultimetallic compounds based on polyfunctional carboxylate linkers

Supplementary files

Article information

Article type
Paper
Submitted
21 Dec 2018
Accepted
22 Jan 2019
First published
22 Jan 2019

New J. Chem., 2019,43, 3199-3207

Heteromultimetallic compounds based on polyfunctional carboxylate linkers

K. A. Jantan, J. M. McArdle, L. Mognon, V. Fiorini, L. A. Wilkinson, A. J. P. White, S. Stagni, N. J. Long and J. D. E. T. Wilton-Ely, New J. Chem., 2019, 43, 3199 DOI: 10.1039/C8NJ06455E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements