Nanoscale Advances

CORRECTION

Check for updates

Cite this: Nanoscale Adv., 2019, 1, 4174

Correction: Synthesis of nanostructured catalysts by surfactant-templating of large-pore zeolites

Aqeel Al-Ani,^{*ab} Josiah J. C. Haslam,^a Natalie E. Mordvinova,^c Oleg I. Lebedev,^c Aurélie Vicente,^d Christian Fernandez^d and Vladimir Zholobenko^{*a}

DOI: 10.1039/c9na90049g

rsc.li/nanoscale-advances

Correction for 'Synthesis of nanostructured catalysts by surfactant-templating of large-pore zeolites' by Aqeel Al-Ani *et al., Nanoscale Adv.*, 2019, **1**, 2029–2039.

The following amendments have been suggested:

Introduction

The surfactant-templated mesostructuring approach, introduced in ref. 21 and 25, allows for a more precise control of the intracrystalline mesoporosity introduced while retaining the main properties of the zeolites, including their microporosity, catalytic activity, and hydrothermal stability. For these reasons, surfactant-templated zeolites have been successfully commercialised.^{22,36}

Experimental section

The preparation of mesostructured faujasites followed the general procedure introduced in ref. 25.

Results and discussion

In agreement with previous reports,^{18,25,44} our results demonstrate that TIPB conversion increases for all zeolites following their mesostructuring treatment.

Acknowledgments

The authors would like to thank Professor Javier Garcia-Martinez and Dr Eric Li for the useful information provided regarding the synthesis of surfactant-templated zeolites.

References

The reference numbers cited here correspond to those in the original paper.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^aSchool of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK. E-mail: a.a.t.al-ani@keele.ac.uk ^bOil Marketing Company (SOMO), Baghdad, Iraq

^cLaboratoire CRISMAT, ENSICAEN, UMR CNRS 6508, 6 Boulevard du Maréchal Juin, 14050, Caen Cedex 04, France ^aNormandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 14000 Caen, France

View Article Online

View Journal | View Issue