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The development of active and stable earth-abundant catalysts for hydrogen and oxygen evolution is one of
the requirements for successful production of solar fuels. Atomic Layer Deposition (ALD) is a proven

technique for conformal coating of structured (photo)electrode surfaces with such electrocatalyst
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materials. Here, we show that ALD can be used for the deposition of iron and cobalt phosphate

electrocatalysts. A PE-ALD process was developed to obtain cobalt phosphate films without the need for

DOI: 10.1039/c9na00391f

rsc.li/nanoscale-advances

Introduction

Producing hydrogen by splitting water using solar energy is one
of the most attractive routes towards the production of renew-
able fuels. Solar water splitting devices operate at low current
density as determined by the photon flux from the sun, which
allows for less stringent device requirements. Due to the large
catalytic surface area, earth-abundant catalyst materials are
required to avoid issues of scarcity and cost. Cobalt phosphate
is a well-known earth-abundant oxygen evolution reaction
(OER) catalyst that self-assembles from cobalt and phosphate
ions at neutral pH." Its structure is that of a cobalt oxyhydroxide
with incorporated phosphate ions that act as proton acceptors
during water oxidation.” Cobalt-based catalysts can be operated
in acidic and basic solutions as well.>* Bloor et al. achieved
overall water splitting in acidic media containing phosphate
and cobalt ions.* By applying a cell potential in excess of 2 V,
phosphate containing cobalt catalysts were deposited on the
anode and cathode and performed oxygen evolution and
hydrogen evolution, respectively. The hydrogen evolution reac-
tion (HER) catalyst consisted of a metallic cobalt core and
a surface layer containing cobalt, phosphorus and oxygen,
similar to the bifunctional cobalt phosphate catalyst reported
by Cobo et al.® Cobalt phosphide (CoP) is known to be among
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a phosphidation step. The cobalt phosphate material acts as a bifunctional catalyst, able to also perform
hydrogen evolution after either a thermal or electrochemical reduction step.

the most active and stable earth-abundant HER catalysts.®”
Related phases such as Co,P and even amorphous Co-P mate-
rial were found to be active towards HER as well.® The amor-
phous material was deposited by electrodeposition and could
be purified by a potential cycling procedure to reach a Co: P
stoichiometric ratio of 1:1.° Consequently, several authors
have demonstrated bifunctional cobalt-based phosphate/
phosphide catalysts.>'®"* Jiang et al. electrodeposited Co-P
films with very low phosphorus content yet excellent HER and
OER activity." A similar evolution occurred for iron phosphide
(FeP), which is a bifunctional catalyst as well and even outper-
forms CoP as a HER catalyst, although it is less stable.*>**
However, the reports on overall water splitting using iron
phosphide catalysts are rare."*** Interestingly, Kibsgaard et al.
predicted a near-zero hydrogen adsorption free energy on
ternary Fe, sCoo sP and demonstrated that consequentially this
material has superior performance to both monometallic
phases.*

Metal phosphides are commonly synthesized via phosphi-
dation of metallic or oxide nanoparticles,'*** electrodeposi-
tion,>>*** or solid-state reactions using precursor salts.>'***
Chemical vapor deposition may also be used.® However, for the
envisioned water splitting applications, a synthesis strategy is
often required that is able to precisely coat surfaces. Atomic
layer deposition (ALD) has been used to deposit protective
coatings, passivation layers and transparent catalytic films.'>"
Yang et al. have deposited cobalt oxide films on silicon photo-
anodes to simultaneously protect the electrode from corrosion
and catalyse the OER.*® Goryachev et al. obtained cobalt phos-
phide films by phosphidation of cobalt oxide, deposited by
ALD." Di Palma et al. have recently reported ALD deposited
cobalt phosphate films which were used for OER.*®

This journal is © The Royal Society of Chemistry 2019
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A number of ALD processes for iron phosphate have been
developed by different authors, mostly with the goal of using the
material as a lithium-ion battery electrode.”> Some of the
authors have developed a plasma-enhanced (PE-ALD) method
which has the advantage of having much higher growth per cycle
(GPC) values than other processes, speeding up deposition times
for thicker films.*>* In this work, ALD was used to deposit cobalt
and iron phosphate films with electrocatalytic activity for both
HER and OER. In addition, post-deposition thermal reduction
was used to obtain phosphide electrocatalysts for HER. Contrary
to previous reports which started from metal phosphides, phos-
phates were used as the starting material in this work. A PE-ALD
process has been developed using the same phosphate source as
the reported iron phosphate process® but combined with
Co(Cp), as the cobalt precursor. This precursor had been previ-
ously used for the PE-ALD growth of Co;0,4 by Donders et al.*®

Results & discussion

Deposition

We start this section with a brief characterization of the PE-ALD
deposition process for cobalt phosphate. The process charac-
terization was performed by running 50-cycle test depositions
within a range of substrate temperatures (at constant pulse
durations) and with varying pulse durations (at a constant
substrate temperature) on silicon substrates. In situ spectro-
scopic ellipsometry measurements were acquired after each
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cycle and fitted with a generalized oscillator model, allowing
calculation of the film thickness after each cycle.

The results are summarized in Fig. 1. Fig. 1a shows in situ
growth curves acquired at substrate temperatures ranging from
150 to 325 °C, using a fixed pulse sequence of 10 s TMP plasma -
20 s O, plasma - 7 s CoCp, vapor. The slope of the growth curve
(i.e. the GPC) decreases with increasing temperature, as shown
explicitly in Fig. 1b. Above 275 °C, there is a distinct nonlinearity
between 10 and 30 cycles, which is attributed to nucleation
effects; therefore, the GPC was calculated from the linear region
which appeared after 35 cycles. The increasing GPC at low
temperatures is attributed to a CVD contribution originating
from TMP plasma polymerization, an effect that has been
previously investigated in detail.** To avoid this and to ensure
a PE-ALD growth mode, a substrate temperature of 300 °C is
chosen for all further depositions. The influence of the pulse
duration on the GPC at this temperature is shown in Fig. 1c-e for
respectively the TMP plasma, O, plasma, and CoCp, vapor
exposures. For each curve, one exposure time was varied, while
the two others were fixed to the circled values (10 s, 20 s, and 7 s
for respectively TMP plasma, O, plasma, and CoCp, vapor).
While the TMP plasma and CoCp, vapor exposures show rela-
tively quick saturation, the O, plasma pulse saturates rather
slowly. Note that the process also works without O, plasma (the
0 s point, Z.e. a TMP plasma - CoCp, process), albeit at a much
lower GPC of approx. 0.1 nm per cycle compared to the saturated
value of 0.8 nm per cycle for the full process.
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Fig. 1 Growth characterization of the cobalt phosphate process, showing (a) in situ growth curves between 150 and 325 °C; (b) the GPC as
a function of the substrate temperature; and (c—e) the GPC as a function of the TMP plasma, O, plasma, and CoCp, pulse times, at 300 °C.
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Phase characterization and conversion

The composition of the as-deposited cobalt phosphate was
measured by ERD and RBS on a 100-cycle test sample deposited
on a silicon substrate. The resulting depth profile is shown in
Fig. 2. All elements are shown by their ERD traces, except for
phosphorus, where the RBS trace is additionally plotted because
it provides a better (lower-noise) signal. Because the depth

information stems from atomic energy loss, which is
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Fig. 2 Depth profile of a 100-cycle cobalt phosphate sample
deposited on silicon and measured by ERD, with atomic percentages
shown as a table inset.
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Fig. 3 Reduction of iron (a and b) and cobalt (c and d) phosphates to
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proportional to the areal density (i.e. the product of the depth
and the number density of atoms), the depth profile is primarily
given as a function of the areal density (shown on the lower x-
axis). To aid interpretation, an approximate depth scale in nm is
shown on the secondary (upper) x-axis, based on linear scaling
with the total film thickness.

The depth profile reveals a uniform film composition with an
empirical stoichiometry of CoP, ;06 ;. Only a small amount of
hydrogen (0.3%) was detected as an impurity. The composition
is relatively phosphorus-rich and corresponds approximately to
cobalt(iv) pyrophosphate, CoP,0,.

The phosphate starting materials were converted into
phosphide catalysts either by thermal annealing or by electro-
chemical treatment. To produce the phosphide catalysts by
thermal annealing, we employed the following synthesis route:

(1) Deposition of a metal phosphate (M,P,O,, where M =
Co,Fe) by PE-ALD.

(2) Conversion of the phosphate to a phosphide (M,P,
where M = Co,Fe) by post-deposition annealing in a reducing
atmosphere.

This process was investigated in detail by in situ XRD during
ramp annealing, as shown in Fig. 3. The test samples consisted of
100-cycle depositions of iron phosphate (Fig. 3a and b) and cobalt
phosphate (Fig. 3c and d). Each sample was subjected to annealing
in a reducing atmosphere consisting of 5% hydrogen in helium,
while applying a linear temperature ramp from room temperature
up to 950 °C at a rate of 5 °C min . In both cases, the formation of
crystalline phosphides could be clearly observed, starting from the
corresponding as-deposited phosphates (which were amorphous,
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their respective phosphides by post-deposition annealing in a reducing

atmosphere. Plots (a) and (c) show the evolution of the XRD intensity (color scale) together with temperature (white dashed line), while plots (b)
and (d) show a comparison of the XRD patterns measured before and after annealing.
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evidenced by the lack of initial diffraction peaks). More specifi-
cally, both Fe,P (JCPDS #51-0943) and Co,P (JCPDS #32-0306) were
formed at a temperature of approx. 800 °C.

Aside from the fact that oxygen is removed, as is expected in
a reduction reaction, it should be noted that the metal/
phosphorus ratio of the produced phosphides differs consid-
erably from the ratio of the starting materials, i.e. 2.0 for Co,P
and Fe,P versus 0.43 for CoP, ;04 > and 0.67 for FeP; 50, 5.>* This
means that excess phosphorus is either removed from the film,
or remains embedded in an amorphous form (which would be
invisible in XRD).

In order to find out which of those two possibilities holds,
the cobalt phosphate/phosphide samples were analyzed by
SEM/EDX, the results of which are shown in Fig. 4. The SEM
images demonstrate the transformation from a smooth and
featureless cobalt phosphate film (Fig. 4a) to a nanocrystalline
cobalt phosphide film (Fig. 4b). The EDX spectra reveal that the
amount of cobalt in the film remains unchanged during
annealing, but both oxygen and phosphorus decrease dramat-
ically in intensity. This leads to the conclusion that both oxygen
and phosphorus are removed from the film during annealing,
presumably through the following reduction reaction:

MP.O, + (3/2(z — x) + y) Hy = MP, + (z — x) PH; 1 + y H,0 1

where M = Co,Fe, and z > x. In other words, the hydrogen in the
reducing atmosphere removes oxygen from the film by con-
verting it to water vapor and removes excess phosphorus by
converting it to phosphine gas (PH;). The result is a stoichio-
metric and crystalline metal phosphide. The production of
phosphine gas, which is notorious for its toxicity and
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Fig. 4 SEM images showing the morphology of cobalt phosphate, (a)
as-deposited and (b) after annealing in a reducing atmosphere,
together with (c) a comparison between the EDX spectra of the same
samples.
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flammability, during this synthesis might lead to safety
concerns. In this work, very thin films were processed and thus
very low amounts of PH; could be produced. However, in case of
performing this process on larger quantities of material, the
release of PH; should be considered as a safety risk.

Electrocatalytic water oxidation

Fig. 5a shows the redox activity of as-deposited cobalt mate-
rials at pH 13 when exposed to positive potentials. As a refer-
ence to the cobalt-phosphate materials investigated in this
work, a conventional cobalt oxide (Co;0,) was also deposited
according to a known method.*® The first redox wave (1) is
assigned to an oxidation step from Co>" to Co®*, whereas the
second wave (2) can be associated with the formation of
a mixed Co**/Co* material, characteristic of cobalt oxy-
hydroxide water oxidation.>'®?**” In the cobalt-oxide sample,
the first redox wave is absent and the second wave is present to
a much smaller extent, indicating the presence of a crystalline
spinel phase with poor catalytic activity (110ma/em? = 624 mV),
similar to that of ALD cobalt-oxide reported before.'® The OER
activity in this sample is caused by surface activity only,
leading to higher overpotentials (Fig. 5b). This is supported by
the much smaller specific capacitance measured for the
cobalt-oxide sample (Fig. S21). These data reconfirm the
conclusions of other authors that Co;0, with its crystalline
spinel structure has lower activity compared to amorphous
and layered (oxy)hydroxide materials, which have a much
more flexible redox cycling behaviour.>**?%*” The incorpora-
tion of phosphate by the newly developed ALD process endows
the material with intrinsic disorder (Fig. 3d) and a propensity
to form layered structures with phosphate anion interlayers.
The flaky material structure observed by SEM and the non-
stoichiometric incorporation of phosphate anions, indicated
by XPS analysis, could point to the formation of such a layered
double hydroxide (Fig. S3 and S41). As a result, its catalytic
OER activity is clearly enhanced (71oma/em? = 509 mV). This
property may be exploited to develop biphasic catalytic-
protective coatings in which a stable, crystalline underlayer
is combined with a top layer of catalytically active material.*®
Despite the expected formation of hydroxide-containing
material, phosphorus is retained within the structure, shown
by post-OER XPS measurements (Fig. S4t). After extensive
testing in alkaline medium, performance of the catalyst only
slightly degraded and was still well above that of the cobalt
oxide reference sample (Fig. S57).

Electrocatalytic hydrogen evolution

The phosphate materials could be used for hydrogen evolution
as well after an electrochemical activation procedure in alkaline
conditions. Fig. 6 shows the very first cyclic voltammograms of
as-deposited phosphate ALD materials in 0.1 M KOH. The
cobalt-phosphate sample is characterised by a whimbrel-
shaped first scan with cathodic currents. However, after initial
reduction, the cobalt film is not reoxidized except for a small
oxidation event at the end of the first scan.’ Nonetheless, reor-
ganization of the film and/or a slow reduction process does

Nanoscale Adv., 2019, 1, 4166-4172 | 4169
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seem to continue over consecutive scans, as these result in
a strong improvement of the performance. After prolonged
cathodic current flow during the staircase voltammetry at low
scan rate, the film reached its maximal performance. This
activation procedure is accompanied with a ten-fold increase in
film capacitance, indicating an increase in specific surface area
(Fig. S61). The first scan of iron-phosphate (Fig. 6b) is similar to
that of cobalt-phosphate, but with much more pronounced
cathodic current. Around —0.1 V vs. RHE, the iron-phosphate
film displays multiple reversible redox events. Compared to
the cobalt-phosphate film, performance quickly improves over
consecutive scans and also reaches its maximal performance
during staircase voltammetry.

Some samples first underwent a thermal treatment under
areducing H,/He gas flow and were converted into Co,P or Fe,P
(Fig. 3). For those materials, potential scanning did not result in
any further improvement of the catalytic activity. Instead,
optimal performance was already obtained from the first
measurement (Fig. 7).
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The activity of the electrochemically activated and thermally
reduced materials in alkaline conditions is given in Fig. 7a.
Cobalt oxide lacking phosphorus was also tested as a reference.
The data show that the iron-based materials outperform cobalt-
based materials, which is in accordance with literature.®®'?
However, iron-based materials appeared to be less stable than
cobalt-containing materials (Fig. S77). The thermally reduced
materials, which were identified as having M,P (M = Co,Fe)
stoichiometry, are active both under alkaline and acidic (Fig. 7b
and S71) conditions. After reaction in alkaline conditions,
reduced phosphide species are no longer present (Fig. S87).
This was also reported by Zhang et al. for Co,P materials
prepared by thermal phosphidation of ALD-deposited cobalt
oxide films.?® The cobalt oxide reference material was also active
towards HER but had the lowest activity of all samples. After
HER, the oxidation state of Co centers was clearly reduced with
some metallic Co present (Fig. S10t1). The electrochemically
activated materials are superior to the thermally reduced.
However, the electrochemically activated materials show no
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Fig. 6 Cyclic voltammetry of ALD as-deposited cobalt (left) and iron (right) phosphate materials in 0.1 M KOH. The very first (black) and

subsequent (grey) scans were measured at a scan rate of 100 mV s, Next, staircase cyclic voltammetry (coloured) was performed at 1 mV s
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activity in acid medium. Following exposure to acid medium,
their catalytic activity was lost in alkaline conditions as well,
indicating dissolution of the film in acid medium. From this we
infer that the electrochemically activated materials were not
converted to pure M,P phosphides. Others obtained materials
with a phosphide/hydroxide surface layer when synthesizing
metal-phosphide catalysts by electrochemical methods.>**°
Such materials readily dissolve in acid media when not
continuously exposed to sufficiently negative potentials.>® XPS
data identifies the material as a cobalt-phosphate with cobalt in
a low oxidation state (Fig. S81). SEM indicates a change in
morphology from large crystallites to a thin film upon activation
in alkaline medium (Fig. S117).

For all materials, the required overpotential is quite high
(M1omasem? = 416-502 mV (alkaline) and 293-301 mV (acid)).
This can be explained by the low mass loadings in ALD films.
When the results are plotted as a turnover frequency (TOF), the
ALD films reported here show similar performance to other
metal phosphide materials in acid medium (Fig. S12t). The
turnover frequency is among the highest reported until now.
This can be understood as follows. At very low mass loadings,
every catalytic site operates at very high performance because
mass transfer limitations are absent. This effect is enhanced in
films that are prepared by ALD, because of its ability to obtain
conformal coatings on irregular substrates.

Conclusions

Iron and cobalt phosphate materials were deposited by ALD and
tested for water splitting activity. As-deposited cobalt phosphate
was active towards oxygen evolution with clearly enhanced
activity compared to a cobalt oxide sample lacking phosphate.
Cobalt phosphate and iron phosphate were both active towards
HER in alkaline medium. Initially, transient behaviour was
observed while the metal atoms were being reduced to lower
oxidation states. The resulting material was a metal (hydr)oxide
containing phosphate species. Thermal reduction of the as-
deposited metal phosphates resulted in the formation of

This journal is © The Royal Society of Chemistry 2019

a metal phosphide (M,P). In alkaline medium, these metal
phosphides reconverted into phosphate-containing materials
and were outperformed by the electrochemically reduced
materials. In acid medium, only the thermally reduced phos-
phides were stable and active, achieving a performance that is
similar to the state of the art.

In conclusion, we show that ALD is a valuable technique for
depositing both oxide and phosphate materials directly onto
surfaces. A post-deposition phosphidation step is not needed
with the process demonstrated in this work. In alkaline
medium, a bifunctional catalyst can be achieved even without
the need for a thermal post-treatment. The films were active
towards HER and OER, and their performance was comparable
to the state of the art. More research is desirable to uncover the
nature of the active sites as obtained by different deposition
methods.
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