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The conventional Haber—Bosch process for industrial NHz production
from N, and H; is highly energy-intensive with a large amount of CO,
emissions and finding a more suitable method for NHz synthesis under
mild conditions is a very attractive topic. The electrocatalytic N,
reduction reaction (NRR) offers us an environmentally benign and
sustainable route. In this communication, we report that C-doped
TiO, nanoparticles act as an efficient electrocatalyst for the NRR
with excellent selectivity. In 0.1 M Na,SOy,, it achieves an NHj3 yield of
16.22 ng h™t mge. ~* and a faradaic efficiency of 1.84% at —0.7 V vs.
the reversible hydrogen electrode. Furthermore, this catalyst also
shows good stability during electrolysis and recycling tests.

NH; is an essential ingredient in the manufacture of fertilizers,
medicaments, resins, dyes, explosives, etc.’™ In 2017, total
worldwide NH; production exceeded 150 million tons, and the
demand for NH; continues to grow.® Industrially, NH; is
produced almost via the Haber-Bosch process.® In order to
overcome the kinetic limitations of strong N=N triple bonds,
elevated temperature (350-550 °C) and high pressure (150-350
atm) are necessary throughout the whole process.”” Moreover,
it not only consumes a large amount of energy, but inevitably
leads to significant CO, emission. So, it is imperative to develop
an environmentally friendly process for the sustainable
conversion of N, to NH;.

Electrochemical NH; synthesis from N, and H,O is a prom-
ising candidate for artificial N, fixation under ambient condi-
tions due to its environment-friendly, convenient and low-cost
characteristics.’*™ Although electrochemical reduction is
feasible for achieving the conversion of N, to NH3, it requires
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electrocatalysts for the N, reduction reaction (NRR) to meet the
challenge associated with N, activation. Noble-metal catalysts
such as Ru," Au,"”'® Ag," and Rh* were reported as NRR cata-
lysts with attractive catalytic performances, but the scarcity of
these catalysts limits their wide application. Recently, transition
metal oxides (TMOs)*** have attracted much attention as NRR
electrocatalysts, as they are inexpensive and can be easily
prepared on a large scale. Therefore, it is still highly desirable to
develop TMOs for the NRR. TiO, is nontoxic with a high thermal
stability,”” but its low electronic conductivity hinders its elec-
trocatalytic application.”® It has been reported that carbon
doping can enhance the electronic conductivity of TiO, and
facilitate charge transfer from the bulk to the surface region,*
offering us a possible catalyst for the NRR, which, however, has
not been explored before.

Herein, we report that C-doped TiO, nanoparticles (C-TiO,)
are effective for electrochemical N, conversion to NH; with
excellent selectivity under ambient conditions. In 0.1 M Na,SO,,
the catalyst achieves an NH; yield of 16.22 pg h™' mg.,. " and
a faradaic efficiency (FE) of 1.84% at —0.7 V vs. the reversible
hydrogen electrode (RHE). Remarkably, it also demonstrates
a high electrochemical stability. Compared with pristine TiO,
(NH; yield: 8.49 pg h™' mg.. ' FE: 1.28%), C-TiO, has
a superior NRR performance. This result suggests that the
introduction of carbon can enhance the electrocatalytic activity
of TiO,.

C-TiO, nanoparticles were prepared by a facile calcination
assisted solvothermal method (see the ESIf for preparation
details). Fig. 1a presents the X-ray diffraction (XRD) patterns of
C-TiO, and TiO,. The diffraction peaks at 25.3°, 37.8°, 48.0°,
53.9° 55.1°, and 62.7° can be indexed to the (101), (004), (200),
(105), (211), and (204) planes of anatase TiO, (JCPDS no. 21-
1272), respectively, which is similar to the pattern of C-TiO,.
Thermal gravimetric analysis (Fig. S11) demonstrated that the
content of C was 2.97 wt%. Scanning electron microscopy (SEM)
images (Fig. S2t) indicate that the crystallite size of C-TiO, is
smaller than that of TiO,. Fig. 1b shows a transmission electron
microscopy (TEM) image which evidences the nanoparticle
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Fig. 1 (a) XRD patterns for C-TiO, and TiO,. (b) TEM and (c) HRTEM
images for the C-TiO, nanoparticles. (d) SAED pattern for C-TiO,.

nature of C-TiO,. A high-resolution TEM (HRTEM) image
(Fig. 1c) reveals a well-resolved lattice fringe with an interplanar
distance of 0.35 nm, indexed to the (101) plane of C-TiO,. The
selected area electron diffraction (SAED) pattern of C-TiO,
(Fig. 1d) exhibited four diffraction rings indexed to the (101),
(004), (200) and (211) planes of the TiO, phase.

Fig. 2a shows the X-ray photoelectron spectroscopy (XPS)
survey spectrum of C-TiO,, which confirms the presence of Ti,
C, and O elements. Fig. 2b presents the Ti 2p spectra for the C-
TiO, and TiO, samples. The binding energies (BEs) of Ti 2p;/,
and Ti 2p,,, for TiO, are 458.38 and 464.07 eV, respectively.*®
Compared to the TiO, sample, the Ti 2p peaks of C-TiO, show
a positive shift of 0.3 eV, which could be attributed to lattice
distortions.** Fig. 2c reveals the O 1s spectra for C-TiO, which
are in good agreement with those of pure TiO,. The BEs at
529.92 and 531.33 eV in the O 1s region are ascribed to the Ti-
O-Ti (lattice oxygen) and O-H bonds in C-TiO,.*** For the C 1s
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Fig. 2 (a) XPS survey spectrum for C-TiO,. XPS spectra of C-TiO, and
TiO; in the (b) Ti 2p, (c) O 1s and (d) C 1s regions.
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XPS spectra (Fig. 2d), three peaks can be deconvoluted at
around 284.76, 286.15, and 289.12 eV for C-TiO,. The peak at
284.76 eV could be attributed to the surface adventitious
carbon.*® The two peaks at 286.15 and 289.12 eV are charac-
teristic of the oxygen bound species C-O and Ti-O-C, respec-
tively.** This result indicates that carbon atoms substitute for
some of the lattice titanium atoms and form a Ti-O-C struc-
Compared with C-TiO,, only one C 1s XPS spectrum
corresponding to C-C is observed for the TiO, sample, further
confirming the existence of C in C-TiO,. In addition, the
ultraviolet-visible (UV-vis) absorption spectra and the corre-
sponding Kubelka-Munk plots of C-TiO, and TiO, are displayed
in Fig. S3.1 The band gap energies of C-TiO, (2.79 eV) and TiO,
(2.96 eV) were determined by the intercept of the plots of (ahr)"/>
versus photon energy (hv),* indicating a narrower band gap
after C doping. The enhancement of visible light absorption for
C-TiO, and TiO, should be attributed to the carbon doping in
the TiO, lattice, which would introduce a series of localized
occupied states into the band gap of the TiO, lattice, leading to
a strong visible light absorption.*® All of the above results
strongly support the preparation of C-TiO,
nanoparticles.

The electrocatalytic NRR performance of C-TiO, was tested
using a typical two-compartment and three-electrode device as
the reaction vessel. C-TiO, was deposited on carbon paper (C-
TiO,/CP with a C-TiO, loading of 0.10 mg) for the test. All of the
potentials for the NRR were reported on the RHE scale. The
produced NH; was detected by spectrophotometry with salicylic
acid.”” The relevant calibration curves are shown in Fig. S4.1 The
chronoamperometry curves at the corresponding potentials in
N,-saturated 0.1 M Na,SO, are displayed in Fig. 3a, which can
directly express the relationship between current density and
time during the whole test process. Fig. 3b presents the UV-vis
absorption spectra of the electrolyte stained with indophenol
indicator after 2 h electrolysis at a series of potentials, and the
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Fig.3 (a) Chronoamperometry curves at the corresponding potentials

in N»-saturated 0.1 M Na,SO4. (b) UV-vis absorption spectra of the
electrolytes stained with indophenol indicator after 2 h electrolysis at
a series of potentials. (c) The NH5 yields and FEs of C-TiO, for the NRR
at a series of potentials. (d) The amount of NHz with different elec-
trodes at —0.7 V after 2 h electrolysis under ambient conditions.
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values of absorbance at 660 nm were used to calculate the
concentrations of the generated NH; at different applied
potentials according to the calibration curve of NH;. Combined
with the collected data, the final results including the NH;
yields and FEs under various potentials were calculated and are
plotted in Fig. 3c. Both the NH; yields and FEs increase as the
negative potential rises to —0.7 V, which is the optimum
potential point when the NHj; yield and FE are 16.22 pg h™*
mg... = and 1.84%, respectively. After that, as the potential
continually increases, both the NH; yields and FEs decrease
significantly which is mainly caused by the competitive
hydrogen evolution reaction. For comparison, the pure TiO,
sample was tested under the same conditions and the corre-
sponding results are presented in Fig. 3d. It is worth noting that
the performance of C-TiO, is evidently better than that of pure
TiO,. The superior NRR performance of C-TiO, can be rationally
attributed to the C-TiO, nanoparticles having more exposed
active sites (Fig. S51), enabling more effective utilization of
them as electrocatalysts. The enhanced conductivity of C-TiO,
also contributes to its higher catalytic activity. The charge
transfer resistance related to the electrocatalytic kinetics can be
determined from the diameter of the semicircles in the low
frequency zone.*®* Electrochemical impedance spectroscopy
data (Fig. S61) show that C-TiO,/CP possesses a smaller radius
of the semicircle compared to TiO,/CP, suggesting that the C-
TiO, sample has a lower charge transfer resistance* and thus
faster NRR kinetics. Meanwhile, C-TiO, shows a higher perfor-
mance than some of the previously reported NRR electro-
catalysts.**** More detailed comparisons are listed in Table S1.f

To prove that NH; was generated via the N, reduction
process of C-TiO,, three sets of control experiments were carried
out: (1) immersing the samples in Ar-saturated solution at
—0.7 V for 2 h; (2) immersing the samples in N,-saturated
solution at an open circuit potential for 2 h; and (3) immersing
the samples at —0.7 V with alternating 2 h cycles between N,-
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Fig. 4 (a) NHs yields for C-TiO, under different conditions. (b) The

amount of NHz with different electrodes at —0.7 V after 2 h electrolysis
under ambient conditions. (c) NHz yields and FEs at a potential of
—0.7 V during 6 recycling tests. (d) Chronoamperometry curve at
a potential of —0.7 V using a C-TiO,/CP catalyst for 24 h.
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saturated and Ar-saturated solutions, for a total of 12 h. As
shown in Fig. 4a and Fig. S7,T a trace amount of NH; production
was detected under Ar-saturated solution and an open circuit
potential. Combined with Fig. S8,7 this result indicates that
only N, provides the nitrogen source to NH;. Moreover,
controlled trials were carried out to investigate the performance
of bare CP. The relevant UV-vis absorption spectra are displayed
in Fig. S9.7 The results show the poor electrocatalytic activity of
bare CP, indicating that C-TiO, is an active material for the NRR
(Fig. 4b). In addition, stable performance is another important
indicator for evaluating catalysts. Recycling tests were per-
formed in N,-saturated 0.1 M Na,SO, 6 times and the results are
shown in Fig. 4c. The NH; yield and FE results show no obvious
fluctuation over the whole process, suggesting that C-TiO,
possesses a stable NRR performance. Moreover, only a slight
fluctuation of current density is observed at —0.7 V after 24 h
electrolysis, further suggesting an excellent electrochemical
stability.

Hydrazine (N,H,), as a possible by-product in the NRR test,
was detected by the method of Watt and Chrisp.** The relevant
calibration curves are displayed in Fig. S10.7 The UV-vis
absorption spectra of N,H, after 2 h electrolysis in a N, atmo-
sphere at a series of potentials are shown in Fig. S11.1 The
concentrations of the possible by-product N,H, are determined
according to the values of absorbance at 455 nm. The results
demonstrated that no N,H, was detected at all potentials,
implying the excellent selectivity of C-TiO, as an NRR
electrocatalyst.

In summary, C-TiO, nanoparticles have been proven as an
effective non-noble-metal electrocatalyst for the NRR at
moderate temperatures and atmospheric pressure. This elec-
trocatalyst achieves an NHj yield of 16.22 pg h™' mg.,. ' and
a FE of 1.84% at —0.7 Vvs. RHE in 0.1 M Na,SO,. It also exhibits
excellent selectivity and satisfactory electrochemical stability
during the process of electrochemical NH; synthesis under
ambient conditions. This work not only offers us an attractive
earth-abundant electrocatalyst for the NRR, but also opens up
an exciting new avenue for the design and development of
doped Ti-based catalysts*>*” with enhanced performances
toward electrocatalytic N, and nitrite** reduction for
applications.
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