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Multi-walled carbon nanotubes are currently used in numerous industrial applications and products,

therefore fast and accurate evaluation of their biological and toxicological effects is of utmost

importance. Computational methods and techniques, previously applied in the area of

cheminformatics for the prediction of adverse effects of chemicals, can also be applied in the case of

nanomaterials (NMs), in an effort to reduce expensive and time consuming experimental procedures.

In this context, a validated and predictive nanoinformatics model has been developed for the accurate

prediction of the biological and toxicological profile of decorated multi-walled carbon nanotubes. The

nanoinformatics workflow was fully validated according to the OECD principles before it was released

online via the Enalos Cloud platform. The web-service is a ready-to-use, user-friendly application

whose purpose is to facilitate decision making, as part of a safe-by-design framework for novel

carbon nanotubes.
Introduction

A wide variety of emerging industrial processes, commercial
products and biomedical applications are based on nanotech-
nology. Manufactured nanomaterials (NMs) such as graphene
and carbon nanotubes (CNTs) are widely applied, mainly due to
their size and unique mechanical and electronic properties.1–3

Carbon family materials, which include the aforementioned
CNTs and graphene, also include fullerenes, carbon dots,
nanodiamonds and various superstructures, as reviewed by
Georgakilas et al., (2015).4 Being among the rst discovered
NMs and having enormous versatility in size, surface func-
tionalization and properties, CNTs are currently themost widely
used carbon-based NMs commercially. The estimated global
demand for CNTs was found to be on the order of 3300–3700
tonnes in 2012, with market size and trade value of CNT and
CNT-based products on the order of $158.6 million in 2014 and
expected to have an annual growth rate of 33.4% until 2019.5

However, many recent studies suggest that the environment
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tion (ESI) available. See DOI:
and biota may be severely affected by exposure to NMs.6–8 The
extent of use of NMs in various applications drives an urgent
need for systematic toxicological investigation.

A complete experimental toxicity assessment requires
expensive and time consuming in vitro and in vivo practices,9

rendering it unfeasible to thoroughly test the NMs already on
themarket, as well as novel emerging variants. Additionally, it is
currently not known how different ormodied a NMneeds to be
to constitute a unique NM (or nanoform in the emerging
regulatory arena) – i.e. are different surface functionalisations
considered different nanoforms? For chemicals, their unique-
ness is established through their individual Chemical Abstract
Number (CAS), while NMs currently share a CAS number with
their bulk form. Thus, current approaches to the risk assess-
ment of NMs are undertaken on a case-by-case basis, which has
been estimated to require 10 years just for the 500–1000 NMs
expected to have been registered in the EU by the May 2018
REACH registration deadline.10 To overcome this obstacle in the
risk assessment framework, a signicant number of alternative
– fast and inexpensive – novel techniques, such as Quantitative
Nanostructure Activity Relationship (QNAR) models for the
prediction of the biological and toxicological effects of NMs,
have been proposed in literature.9,11–14 These approaches are
collectively moving knowledge and regulatory practice closer to
a future of in silico toxicity analysis based on dramatically
reduced, or eventually no, experimental input.

Similar to the Quantitative Structure Activity Relationship
(QSAR) models utilised in chemoinformatics, QNAR models are
This journal is © The Royal Society of Chemistry 2019
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mainly based on well-structured databases or well-organized
datasets, to establish robust and predictive correlations
between NM properties and their biological or toxicological
effects. So far, signicant efforts have taken place to organize
the already available data, including NM biological and toxi-
cological assessment, such as the eNanoMapper database15 and
the NanoMILE database16 which together, and along with other
emerging datasets, will form the basis of future data structures
(e.g. the NanoCommons nanoinformatics infrastructure and
KnowledgeBase, http://www.nanocommons.eu). Targeted data-
sets are also available for specic NM categories for further
exploitation. For example, Zhou and co-workers (2008)17

designed and synthesized a library of 80 combinatorially
surface modied Multi-walled Carbon Nanotubes (MWCNTs)
and tested their binding with 4 specic proteins, and their
cytotoxicity (% cell viability) and immunotoxicity (release of
Nitric Oxide, NO) to THP-1 cells, which is a widely-accepted
dataset, and has already been used in various in silico nano-
toxicity studies.12,13,18,19

Different nanostructures have different levels of structural
complexity and heterogeneity (presence of inorganic–organic
elements and coatings, varying stoichiometry between the
particles etc.) and thus extracting quantitative parameters for
the characterization of the structural and chemical properties
of the nanostructures is a very challenging task that is not yet
fully addressed computationally. The development of in silico
methods is thus hindered by the absence of sufficiently large
physicochemical, geometrical, structural and biological
datasets of different nanostructures in available databases.20

The hypothesis that each nanostructure can be represented
by its surface modiers when the core remains identical, can
be considered pragmatic, especially taking into account the
near- and long-term hazard and risk assessment goals, and
the time and cost required for a full characterization –

experimental and/or computational – of all available nano-
structures. This hypothesis has already been accepted and
used in different studies found in the literature.9,21–23

Fourches et al.13 built and validated classication models
for the prediction of the protein binding and cytotoxicity of
MWCNTs, and made the underlying experimental dataset at
least partially available for further analysis. These models
were based on Molecular Operating Environment (MOE) and
Dragon molecular descriptors computed only from the
surface-modifying compounds, assuming that the MWCNT
core was the same in all samples. Support vector machines,
random forest and k nearest neighbours, have been employed
as machine-learning techniques, and the reported accepted
CCR (Correct Classication Rate, mean of sensitivity and
specicity) of the validation sets ranged from 73 to 75% for
the protein binding, and from 70 to 77% for the toxicity
endpoint.

Singh et al.19 reported an ensemble learning approach
based nano-QSAR model for predicting biological effects of
NMs based on molecular descriptors, calculated with Chem-
istry Development Kit (CDK). Here, the 29 most toxic surface-
modied (decorated) MWCNTs from the Zhou et al.17 dataset
have been used for the prediction of their impact on cellular
This journal is © The Royal Society of Chemistry 2019
viability. For model development, decision tree boost and
decision tree forest methods were implemented based on six
molecular descriptors of the decorators. The models resulted
in R2 values of 0.903 and 0.922 respectively. Shao et al.12 used
the 29 most toxic samples in order to build QSAR models
based on different sets of descriptors. The CNT–decorator
complex was geometrically optimized using the molecular
dynamics simulation package GROMACS with the ffgmx force
eld. All possible combinations of calculated MOE, VolSurf,
and 4D-ngerprints descriptors have been used. Multiple
linear regression (MLR) and trial QSAR models were built, in
a genetic function approximation scheme. For the carbonic
anhydrase protein binding endpoint, using only the decora-
tors for the descriptor calculations, R2 and QLOO

2 accuracy was
reported as 0.892 and 0.832 respectively, while using the
combination of a 10 Å nanotube and the decorators, the R2 and
QLOO

2 measures were reported as high as 0.903 and 0.851
respectively. For the cell viability endpoint, using only the
decorators, R2 and QLOO

2 were equal to 0.922 and 0.863
respectively, while using the combination of a 10 Å nanotube
and the decorators the R2 and QLOO

2 measures were 0.857 and
0.759 respectively. These results suggest that depending on the
end-point being modelled, and the role of the core versus
surface in the specic interaction, inclusion of both compo-
nents should be assessed to determine whether the core plays
a role or not. Unsurprisingly, in the case of protein binding,
a minor contribution from the CNTs was found, whereas in the
case of toxicity, the surface functionalization played the
dominant role, probably by controlling the amount of cellular
adhesion and internalization of the CNTs. This reinforces the
hypothesis that the decorated MWCNT with the same core can
be represented by their surface modiers for prediction of
protein binding and cellular receptor attachment. Given that
following the attachment step, nanoparticles including
MWCNTs are actively taken up into THP-1 cells via an active
endocytotic process (e.g. phagocytosis), we can safely assume
that the particle scaffold (core), which is common to the whole
dataset, is the driver once attachment, which is ligand-
specic, has occurred, and thus the discrimination in terms
of the amount of uptake (and thus toxicity) is driven by the
ligands, allowing us to ignore the role of the core.

In this present work, a fully-validated predictive QNAR
workow was developed to assess the biological and toxicolog-
ical prole of MWCNTs, based solely on calculated molecular
descriptors of the surface decorators, in order to avoid
computationally challenging and time-consuming molecular
dynamics simulations and to achieve a fast classication of the
samples employing the kNNmethod. Each MWCNT sample has
been evaluated against two different endpoints; protein binding
of carbonic anhydrase and toxicity, and was classied as
a “binder” or “non-binder” and “toxic” or “non-toxic”, respec-
tively. The driving force for adsorption of Human Carbonic
Anhydrase II (HCAII) to nanoparticles has been shown previ-
ously to be electrostatic in nature, driven by attraction to
negatively charged particle surfaces, and the hydrophobic effect
alone was shown not to be strong enough to drive the initial
binding at least to positively charged hydrophobic polystyrene
Nanoscale Adv., 2019, 1, 706–718 | 707
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Fig. 1 Core MWCNT and substituent structure and position.
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View Article Online
nanoparticles.24 For modelling and validation, we tried to use
as many of the available CNT samples as possible, and not only
the most toxic ones as in previous computational studies. The
main target of the proposed workow was to offer a computa-
tional tool that will simplify the design and screening of novel
MWCNTs by allowing prediction of the CA binding and
cellular toxicity based only on the chemical structure of the
surface decoration molecule, as part of a safe-by-design
strategy that would allow elimination of potentially toxic
modications at the design stage. Making the tool available
online with a user friendly interface enhances its utility as an
aid for the decision making of interested research, industry
and regulatory groups.

Methods
Dataset

A dataset of 83 surface modied MWCNTs with a controlled size
distribution (diameter of 40 � 10 nm and length of 250 � 120
nm), derived from the study of Zhou et al. (2008),17 was exploited
in silico. Combinational chemistrymodications were performed,
by covalently attaching copies of different molecules to the
surface of the MWCNTs, whereas the size and the shape of the
nanotube remained intact13,17 (Fig. 1). As the studied samples all
had the identical core, a reasonable assumption9,13 wasmade that
the differences in their biological behaviour were mostly due to
the structural characteristics of their surface ligands. The
MWCNTs were experimentally tested in six in vitro assays
including CNT binding of the proteins bovine serum albumin
(BSA), carbonic anhydrase (CA), chymotrypsin (CT), and haemo-
globin (HB), as well as acute toxicity and immune toxicity prop-
erties.13,17 Based on the available datasets, we developed two
different statistically signicant models for the available
endpoints of CA binding and acute toxicity, following the splitting
of the data into categories, as proposed by Fourches et al. (2015).13

The CA binding affinity values varied from 0.53 to 5.29 at
aMWCNT concentration of 15mgmL�1, thus a separation cut-off
limit of 2.0 was chosen, in order to produce two classes of
balanced distribution; in total, 44 CNTs were assigned as
“binders” (CA protein binding activity greater than 2.0) and 39 as
“non-binders” (CA protein binding activity less than 2.0). Simi-
larly, for the toxicity endpoint the cellular survival percentage
measured experimentally ranged between 2% and 68% at the
high MWCNT concentration of 200 mg mL�1. MWCNTs with cell
survival values lower than 37% were labelled as “toxic” (38
samples), whereas samples with cell survival values greater than
43% were labelled as “non-toxic” (35 samples). The MWCNTs
around the median cell survival range (37–43%) were not
included in the rened modeling set, as it was difficult to dene
a clear threshold for the division of the two classes.13

The following analysis steps were entirely implemented
using the KNIME Analytics Platform (Konstanz Information
Miner, https://www.knime.com/knime-analytics-platform). In
the developed KNIME workow the available nodes were
combined with the Enalos+ nodes, developed by Nova-
Mechanics Ltd (http://enalosplus.novamechanics.com/), in
order to build a robust and accurate model development. The
708 | Nanoscale Adv., 2019, 1, 706–718
workow was incorporated later in the Enalos Cloud platform
(http://www.insilicotox.com/), which hosts predictive models
released as web services. Through this platform the need to
reduce the amount of time and cost spent in experimental
testing can be addressed, using in silico tools for safe-by-design
that produce accurate predictions for drug discovery and risk
assessment of small molecules and nanomaterials.
Molecular descriptors

In the classical approach of QNAR computational techniques,
the transformation of the molecules' structural characteristics
into numerical values is a crucial step for model development.
According to our strategy every CNT has been represented by its
surface-modifying molecules,13 thus we were able to encode the
properties of these organic compounds that change across the
dataset and later correlate them with the available biological
endpoints. It should be emphasized that even though the
modelling was performed for the surface ligands, the biological
activities and the toxicity are related to the whole decorated
MWCNT structure and not only the surface-modifying
compounds.13 Mold2 soware was used in order to calculate
the necessary descriptors. This soware calculates a large and
diverse set of molecular descriptors for each decorator encoding
two-dimensional chemical structure information.25
This journal is © The Royal Society of Chemistry 2019
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Fig. 2 Analysis workflow. Model implementation using internal and external validation loops.
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The workow generated also included the EnalosMold2
KNIME node26 that calculates 777 descriptors per CNT-
decorating molecule accounting for the topological, geometric
and structural characteristics of the organic modiers (see
Fig. 1). An important step in the modelling procedure is the
This journal is © The Royal Society of Chemistry 2019
reduction of the original pool of descriptors before the feature
selection, in order to increase the model quality.27 Thus, the
descriptors containing the same values at a percentage equal or
higher than 20% among the samples were excluded from
further analysis using the Enalos+/Remove column node.
Nanoscale Adv., 2019, 1, 706–718 | 709
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Table 1 Different outcomes of a two-class prediction

Positive predicted Negative predicted

Positive observed TP FN
Negative observed FP TN
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kNN/read-across model development

For validation purposes we followed the double cross-validation
scheme28 as depicted in Fig. 2. For each model (protein
attachment and cell viability) the full dataset was randomly
divided into training and test sets in the proportion 75 : 25. The
decorators of the test set were excluded from the model
training. Asmany of the molecular descriptors had considerably
different numerical ranges, they were normalized prior to
modelling.29 In the present work, Gaussian normalization was
used on the calculated descriptors of the training set with mean
values equal to 0 and standard deviation equal to 1. The
normalization function used for the training set was later
applied to the test set.

Aer the rst (external) partition the training set was
repeatedly divided into calibration and validation sets. The
calibration set was used for variable selection and model
development, whereas the validation set was used for the
determination of the accuracy of the produced models. The
multiple splits of the initial training set into two subsets
removed any bias in descriptor selection that may be introduced
by the use of only one training set of rm composition.

A variable selection method included in WEKA was used in
order to remove noisy variables and to retain only the ones
relevant to each endpoint. In both cases, the most signicant
descriptors were selected using the InfoGain variable selection
(InfoGainAttributeEval) with Ranker evaluator.

InfoGainAttributeEval measured the attribute's informa-
tion gain with respect to the current endpoint, whereas Ranker
prioritized the variables and removed the lower-ranking
ones.30 In this way the modelling computational time and
space were reduced, and the predictive performance was
greatly improved.

Consequently, we proceeded with model development with the
aim to correlate the available endpoints to the selected molecular
descriptors. The machine learning method that proved to best
correlate the available data was the k-nearest neighbours (kNN)
methodology. The kNN method belongs to the “lazy” (instance-
based) learning techniques, that classify an instance based on
the closest training examples (neighbours) in the feature space.
Each instance is assigned to the class indicated by the weighted
majority vote of the k closest neighbours.30 This prediction scheme
places the kNN method among the read-across strategies, as it
requires only a few neighbouring – in terms of similarity – deco-
rators, in order to predict the MWCNT's endpoint class.31 Among
the modelling parameters, an optimal k value has been selected,
with Euclidean distance between the chosen descriptors and the
inversed distance as the weighting factor for the majority vote.

The kNN method was employed in our workow, using the
EnaloskNN KNIME node.32 With this node, apart from the
endpoint predictions, we were able to identify the groups of k
neighbours of each test decorated CNT and later map the
analogous area, as required by the read-across framework.33

Model validation. For credibility purposes, for each
endpoint the proposed model was validated both externally
and internally in terms of goodness-of-t, robustness and
predictivity, as recommended by the Organization for
710 | Nanoscale Adv., 2019, 1, 706–718
Economic Cooperation and Development (OECD).34 As previ-
ously described, the dataset has been separated into training
and test sets, and the training set was further divided into
calibration and validation sets. For each calibration subset
a model was developed and its performance was tested using
the corresponding validation set. To validate the performance
of the model the following measurements (eqn (1)–(3)) were
calculated:30 sensitivity (Sn), specicity (Sp) and accuracy (Ac).
Validation results were displayed in a confusion matrix
(Table 1). The above procedure of partition into calibration
and validation sets was repeated until a model with satisfac-
tory performance was produced.

Sn ¼ TP

TPþ FN
(1)

Sp ¼ TN

TNþ FP
(2)

Ac ¼ TPþ TN

TPþ FPþ TNþ FN
(3)

where TP are true positives, TN are true negatives, FP are false
positives and FN are false negatives.

The selected model was nally validated using the external
test-blank set by calculating the same accuracy measurements
(eqn (1)–(3)). The nal model was considered satisfactory when
the values of all the above statistics exceeded 0.7. In the case
that the previous criterion was not satised, the external parti-
tioning into training and test sets was repeated, as well as the
internal partitioning and all the processes of model develop-
ment and validation.

Moreover, the Y-randomization test was performed in the
internal loop, in order to validate the robustness and the statis-
tical signicance of the produced models. In this test, all
modelling calculations were repeated several times, using the
original values of the independent variables, but also using
randomly shuffled values for the dependent endpoint. The
statistical metrics of the so-produced models were evaluated and
were expected to be reduced in comparison to those of the initial
model, thus demonstrating that the initial model was not the
result of random chance. If this was not the case, both the applied
methodology and the training set would not produce reliable
predictive models.35 In addition to the previous validation prac-
tices, internal validation was performed in order to reduce the
bias produced from a possible unbalanced representation of the
two classes between the two subsets. Both for the calibration sets
(inner loop) and the training set (external loop), leave-one-out
(LOO) and leave-ve-out (L5O) cross-validation methods were
employed for both models (protein binding and cell viability).

Applicability domain. In order to promote our proposed
validated model in real-life applications, a well-dened domain
This journal is © The Royal Society of Chemistry 2019
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of applicability has to be provided. In that way, we ensure the
condence of future users concerning the reliability of their
predictions. In this study, similarity measurements based on
the Euclidean distance among all training and test decorators
were used to dene the applicability domain (APD) of the two
proposed models. The distance of a test compound to its
nearest neighbour in the training set was compared to the
predened APD threshold (eqn (4)). In the case where this
distance for a test compound exceeded the APD limit, its
prediction was considered unreliable.9 The assessment of the
applicability domain of the proposed model was performed in
our KNIME workow, using the Enalos+ Domain–APD node
that executes the above procedure.26,32

APD ¼ hdi + Zs (4)

where hdi is the average of all distances included in the subset
of distances which are lower than the mean value, s is the
standard deviation of all distances included in the subset of
distances that are lower than the mean value and Z is an
empirical cut-off value (in this case was set equal to 0.5 (ref. 36)).
Table 2 Accuracy statistics of the kNN predictive models for the
validation and the test sets

Model Set Accuracy Sensitivity Specicity

CA binding Validation 0.750 0.778 0.727
Test 0.857 0.727 1.000

Toxicity Validation 0.778 0.778 0.778
Test 0.842 0.875 0.818
Results and discussion

In this work, we have addressed the need for development of
reliable predictive models for the biological evaluation and
toxicity assessment of MWCNTs. All preprocessing and model-
ling activities, including the calculation of molecular descrip-
tors, were performed within the freely-available KNIME
platform, using the available nodes and the Enalos proprietary
KNIME nodes developed by NovaMechanics Ltd.

For the development of our model, the dataset of 83
MWCNTs with the same core and different organic surface
ligands (decorators), tested in vitro for carbonic anhydrase (CA)
binding and acute toxicity (% cell viability), as described above,
has been used.13,17 Two QNAR models were built to classify
samples as “binders” and “non-binders” as well as “toxic” and
“non-toxic” to assess their CA binding and toxicity.

Since the surface modication differentiated the MWCNTs,
we transformed their structural, topological and geometrical
characteristics into numerical values, using Mold2 descrip-
tors.25 EnalosMold2 KNIME node was used to calculate 777
molecular descriptors for each decorator that were then
reduced to 403 descriptors for QNAR development aer ltering
out descriptors that contained the same values at percentage
equal or higher than 20%.

For the development of eachmodel, the dataset of decorators
was randomly divided into training and test sets in a ratio of
75 : 25. The descriptor values of the training set were normal-
ized, and the applied normalization parameters were used for
the normalization of the test set during external validation. The
training set was further divided into calibration and validation
sets in a proportion that ensured that the calibration set con-
tained 50% of the samples of the initial dataset (75% of the
training set). The variable selection and model building
processes followed, and the produced model performances
were tested using the corresponding validation set. The
This journal is © The Royal Society of Chemistry 2019
processes of partitioning and model development were
repeated until a satisfactory model was built (inner loop).

The InfoGain variable selection with Ranker evaluator
method (which are included in the WEKA platform), were
applied to the calibration data, to select the most critical,
among the 403 available descriptors. From the ranked
descriptors, six emerged as important for predicting the CA
binding endpoint and six descriptors have been selected as the
most relevant to predicting the toxicity endpoint, as well.37

The proposed KNIME workow gave us the exibility to test
the performance of different modelling methodologies and
nally select the best performing combination. Among the
appliedmethodologies, the k-nearest neighbours (kNN) appeared
to outperform the others, providing the best correlation between
the selected descriptors and the endpoints. The kNNmethod was
applied to the calibration data with an optimized value for the
number of neighbours equal to 3 for the CA binding model and,
equal to 7 for the toxicity model. Aer model development based
on the calibration data, binding and toxicity predictions for the
validation set of decorated MWCNTs were performed. In order to
test the accuracy of the developed models, several statistical
measurements were calculated, as described in theMaterials and
methods section, consistent with the OECD proposed tests.
Table 2 presents the accuracy statistics of the models for
validation sets (internal loop). The Y-randomization robustness
test when applied, proved the statistical signicance of the
proposed models. Random shuffles of the endpoints were per-
formed while the descriptor matrix of the calibration set
remained intact. Predictions using the validation set demon-
strated that the resulting models (same parameters as the
proposed ones) presented statistically lower predictive power
(0.40–0.55 for the CA binding and 0.33–0.53 for the toxicity
model) in comparison to the models using the original training
values, thus the possibility of chance correlation was eliminated.

Aer the selection of the optimal model from the inner loop,
predictions were performed using the test set of the external
loop, in order to assess their actual performance in a blank
dataset. The accuracy statistics using the test sets are also pre-
sented in Table 2.

As far as internal validation is concerned, the models'
stability to the inclusion–exclusion of data was tested by per-
forming L0O and L5O cross-validation, in the training sets. The
accuracy values of cross-validation for both models are pre-
sented in Table 3 and are higher than 0.7 thus, both models can
be considered stable.

Finally, the domain of applicability (APD) has been deter-
mined in order to dene the area of reliable predictions. The
APD threshold was calculated, according to the training set, to
Nanoscale Adv., 2019, 1, 706–718 | 711
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Table 3 Accuracy values of the predictive models for the calibration
and training sets in L0O and L5O cross-validation

CA binding Toxicity

L0O 0.810 0.750
L5O 0.833 0.722
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be 2.166 for the CA binding model. All samples in the test set
had values in the range of 0.219–2.297. Similarly, for the toxicity
model, the APD threshold was calculated equal to 1.805 and the
decorators in the test set had values in the range of 0.25–2.305.
Therefore, in both cases, the prediction for the samples that
exceeded the APD threshold was considered unreliable.
Fig. 3 A qualitative representation of the neighbours from the training s
Both the CA binding and toxicity neighbours are ordered according to the
R1/R10 and R2 of the MWCNTs surface decorators are presented.

712 | Nanoscale Adv., 2019, 1, 706–718
A representative case of the read-across process is presented
below using the sample AMOO4AC008 which belongs to both
test sets for CA binding and toxicity. In Fig. 3, the 3 CA binding
and the 7 toxicity neighbours are presented and their structural
similarity in terms of common substituents is depicted using
a color code. In Table 4 the neighbours, along with their
distance from the AMOO4AC008 sample, are presented.
Discussion on selected descriptors

Most of the selected descriptors, as presented in Table 5, are
derived from the structural graph representation of the mole-
cules and quantify their molecular topology.38 Geary coefficients
et of the decorated MWCNT sample AMOO4AC008 from the test set.
ir distance from the query sample. The colour code for the substituents

This journal is © The Royal Society of Chemistry 2019
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Table 4 CA binding and toxicity neighbours of the sample AMOO4AC008 of the test set in the training set

Sample AMOO4AC008
Experimental Non-binder/toxic
Prediction Non-binder/toxic

CA binding Toxicity

Neighbours Distance Neighbours Distance

AMOO1AC008 0.1793 Non-binder AMOO5AC008 0.0420 Toxic
AMOO3AC008 0.2212 Non-binder AMOO5AC006 0.0704 Toxic
AMOO7AC006 0.3317 Non-binder AMOO3AC008 0.0733 Toxic

AMOO3AC007 0.0909 Non-toxic
AMOO4AC006 0.0928 Toxic
AMOO2AC006 0.1158 Toxic
AMOO8AC006 0.1185 Toxic
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are topochemical indices that encode spatial autocorrelation,
a function of spatial separation that measures the strength of
the relationship between atoms. Burdex eigenvalues, that
belong to the class of Burden eigenvalue descriptors,39 have
emerged as signicant variables for model development.
Burden eigenvalues are topochemical indices, which reect
both the topology of the whole molecule and the chemical
properties of atoms such as their chemical identity or their
hybridization state. Mohar indices are topostructural indices,
which encode useful information about the adjacency and
distances between atoms within the molecular structure. In
addition, Vertex distance counts, which express the distance
degree between the atoms of a molecule (e.g. the order of their
neighbours), were identied. Themajority of the aforementioned
descriptors belong to the family of molecular topological indices,
including among others, the structure of the molecules and the
distances between atoms.38 More details about the descriptor
calculations can be found in the provided ESI.†Here, we focus on
the descriptors with the highest ranking during the variable
selection process. Descriptors related to the topological charge
index express the charge transfer between pairs of atoms and
consequently the overall transfer of charge in the molecule. The
Table 5 Selected descriptors for the CA binding and the toxicity endpo

CA binding

D522 Mean molecular topological order-2
charge index

D473 Geary topological structure
autocorrelation length-3 weighted
by atomic polarizabilities

D472 Geary topological structure
autocorrelation length-2 weighted
by atomic polarizabilities

D269 Information content order-0 index
D133 Mean value of atomic composition

index
D541 Lowest eigenvalue from Burdex

matrix weighted by van der Waals
order-2

This journal is © The Royal Society of Chemistry 2019
Geary topological structure autocorrelation descriptors,
embedded with a physicochemical property as a weighting factor
(such as the Sanderson electronegativities or the atomic polar-
izabilities) also emerged as important ones for modelling during
variable selection. Considering that themolecules in question are
the MWCNTs decorators and the surface area of the decorator is
also their “contact area” with the biological environment, the
surface electrostatic status inuences the MWCNT behavior in
the exposed environment. For example, it is reported in the
literature40,41 that electrostatic interactions directly induce the
adsorption of proteins onto NMs, thus surface charge of the
MWCNTs, which is conferred by the decorating ligands, is an
important factor, greatly related to the CA binding endpoint.
Surface charge is also an important parameter for the cytotoxicity
endpoint, given that it contributes to the cellular uptake of
NMs.42,43 Beyond the molecular scale of these descriptors, the
electrostatic status of the NMs is expressed by their surface
charge or their zeta-potential.
Virtual screening

Enalos Cloud platform. The models are available for public
use and verication through the Enalos Cloud platform
ints, ranked in order of significance

Toxicity

D468 Geary topological structure
autocorrelation length-6 weighted
by atomic Sanderson
electronegativities

D173 Mohar order-2 index

D454 Geary topological structure
autocorrelation length-8 weighted
by atomic masses

D254 Radial centric index
D250 EXP5 of path-distance/walk-

distance over all atoms
D255 Vertex distance count equality index

Nanoscale Adv., 2019, 1, 706–718 | 713
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Fig. 4 Enalos Nanoinformatics Cloud platform user-friendly interface. Users can simply draw the chemical structure of the decorating ligand, or
upload a Spatial Data File (SDF) containing the molecular structure(s) of interest.
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(http://enalos.insilicotox.com/CNT/), and can be used in order
to observe the effects of the different inputs (decorating
molecule structures) on the prediction of CA binding to the
MWCNTs and the toxicity of the resultant decorated-
MWCNTs. The user-friendly web service will facilitate the
computer-aided design of novel MWCNTs by the interested
users (computational experts or not); the Enalos Cloud plat-
form can be easily accessed and directly explored by anyone
interested in MWCNTs design to optimise functionality and
safety (i.e. safe-by-design), without any need for prior
programming skills. The user-friendly interface can be seen
below in Fig. 4.

The user can insert one or several structures of compounds
being considered as potential decorating molecules for
MWCNTs and get, within seconds, the prediction of the CA
binding and their toxicity prole, along with a warning on the
reliability of the predictions based on the models' domain of
applicability limits. The user has three different options for
providing the structures of the compounds to be screened: (i) by
drawing the chemical structure of interest, (ii) by entering the
SMILES notation of the compounds in the appropriate eld or
(iii) by uploading an .sdf le with a batch of compounds (Fig. 4).
During a safe-by-design process, different data sets with deco-
rators of interest can be imported, and their effects on the
biological and toxicological behaviour of the resulting deco-
rated MWCNTs can be studied.

The developed models can be used under a virtual screening
framework for the development of novel, plus safe, decorated
MWCNTs. As an initial case study, we tried to improve the
proles of MWCNT samples identied in the initial dataset as
having unsatisfactory toxicity and high protein binding prop-
erties (toxic and a CA binder sample). We have to underline at
this point that, depending on the nature of the specic proteins
that bind, protein binding can increase a NM's engagement
with specic cellular receptors thus enhancing uptake, or can
increase or reduce the susceptibility to phagocytosis (depending
on whether the corona presents opsonising or disopsonising
714 | Nanoscale Adv., 2019, 1, 706–718
proteins) or can create cryptic epitopes in cellular signaling
proteins causing toxic responses.17,44 As a second case study we
performed a sensitivity analysis in order to explore the toxicity
and the protein binding limits of the samples, by inserting,
deleting or modifying substituents at different positions of the
decorators. These safe-by-design case studies are presented
below.

Case study – designing MWCNTs with desired properties. To
begin with, we selected three MWCNT samples with unsatisfac-
tory toxicity and CA protein binding responses and through
a similarity search in the PubChem database,45 we proposed
a group of potential surface modifying compounds that could
lead to samples with the desired (low) toxicity and (low) protein
binding levels. Therefore, we selected the AMOO4AC002, the
AMOO7AC002 and the AMOO8AC00213 samples which are toxic
and bind CA from the initial dataset. For their substituents – as
presented in Fig. 1 – using the Enalos+ PubChem Similarity and
the Main PubChem KNIME nodes, we searched the whole Pub-
Chem repository for similar substituents to the reference
substituents of the initial samples. Tanimoto similarity measure
was selected equal to 98% for both substituents R1 and R2.

Aer ltering the duplicate generated substituent SMILES,
we created a list of 942 candidate surface modiers by
combining the different substituents in positions R1 and R2
with the core molecule. We uploaded an .sdf le including these
structures to the web-service, and within seconds we acquired
the predictions for their CA binding and toxicity proles, as well
as the reliability of these predictions according to the APD
limits. According to our initial plan we were only interested in
MWCNTs with reduced toxicity and low protein binding, thus
from the generated predictions we focused only on non-toxic
and CA non-binder results. From these, we excluded the
samples with unreliable outcomes and 32 MWCNT samples
with desired properties remained. In a nal step we checked if
the valence on the atoms of the structure is correct in KNIME,
using the Valence Checker node. The valence was correct for the
This journal is © The Royal Society of Chemistry 2019

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8na00142a


Table 6 Potential decorator for designing MWCNTs with desired properties (non-toxic, non-protein binders) based on the decorators of three
inadequate (i.e. toxic and CA binding) samples of the initial dataset

Initial decorators

AMOO4AC002 AMOO7AC002 AMOO8AC002

Potential decorators

C1]CC(]CC]C1)C(OC2]CC]C(C]C2)
CC(C(NCCCCOC(]O)C1]CC]CC]C1)]O)
NC1]CC]C(C]C1)C]O)]O

C1]CC(]CC]C1)C(OC2]CC]C(C]C2)
CC(C(NCC]CC]CC]CCOC(]O)C1]CC]
CC]C1)]O)NC1]CC]C(C]C1)C]O)]O

C1]CC(]CC]C1)C(OC2]CC]C(C]C2)
CC(C(NCOCCCCCCOC(]O)C1]CC]CC]
C1)]O)NC1]CC(]C]C]C1)C]O)]O
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structures, therefore they can be considered feasible. Three
candidate surface decorators are presented in Table 6.

Case study – sensitivity analysis. In order to test the sensi-
tivity of the proposed method to vary the decorator compounds,
we slightly altered (Tanimoto similarity over 91%) the decora-
tor's structure of a sample with desired properties from the
initial dataset. Sample AMOO3AC005(1) (ref. 13) is a non-toxic
CA non-binder that was used as the input structure for
extracting similar compounds in the way described for the
previous case study. Aer ltering the duplicate generated
SMILES, 26 compounds remained, to be tested in the dedicated
CNT web service we have developed as described above. From
the produced predictions we focused only on the 13 reliable
ones, according to the calculated applicability domain. Finally,
in order to be consistent with the initial structure of the
MWCNTs as depicted in Fig. 1, we excluded the compounds that
This journal is © The Royal Society of Chemistry 2019
did not meet its' main components; i.e., the structure of the
linker and the substituent base. The selected altered decorators
are presented in Table 7.
Conclusions

A fully validated workow for prediction of the binding of
a representative protein, carbonic anhydrase (CA), to organic
molecule functionalised MWCNTs and for prediction of the
toxicity of the functionalised MWCNTs has been developed and
was disseminated as a user-friendly web service through the
Enalos Cloud platform. The present study was based on the
open-source KNIME platform, combining KNIME and Enalos+
nodes,32,46 which facilitate the manipulation of big data, the
modelling, the validation and the virtual screening processes.
Nanoscale Adv., 2019, 1, 706–718 | 715
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Table 7 Altered decorators according to an initial one with desired properties, for sensitivity analysis

Initial decorator

AMOO3AC005(1) Non-binder /non-toxic

Altered decorators

CC(C)CC(C(]O)NC(CC1]CC]C
(C]C1)OC(]O)C2]CC]CC]C2)
C(]O)NC(C)(C)C)N(C)CC3]CC]C(C]C3)Cl

CC(C)CC(C(]O)NC(CC1]CC]C(C]C1)
OC(]O)C2]CC]CC]C2)C(]O)NC(C)
(C)C)N(C)CC3]CC(]CC]C3)Cl

C1]CC]C(C]C1)C(]O)NC
(CC2]CC]C(C]C2)OC(]O)
C3]CC]CC]C3)C(]]O)N

Toxic/non-binder Non-toxic/non-binder Non-toxic/binder
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The predictive power of the proposed models is improved in
terms of sensitivity and specicity, especially in the case of the
toxicity endpoint, compared to the models developed by Four-
ches et al.13 and Singh et al.19 Shao et al.12 and Esposito et al.18

reported high accuracy statistics, nevertheless, their ndings
are not directly comparable with the results reported here, as
they considered a decreased dataset focused only on the most
toxic 29 MWCNTs.

The main advantages of the models presented here
compared to other relevant models proposed in the litera-
ture,12,13,19 are: the immediate release and dissemination of the
models to all interested parties through the user-friendly
interface of the Enalos Cloud platform, the important new
insights into the signicant molecular descriptors and the
determination of the domain of applicability of the model
allowing for the discrimination between reliable and unreliable
predictions. The web service is publicly available and ready-to-
716 | Nanoscale Adv., 2019, 1, 706–718
use by any interested user (e.g., experimentalists or regulators)
in the computer-aided design of novel MWCNTs or in the
prioritization of novel potent MWCNTs based on their predicted
toxic effects, taking into account that predictions can be
produced rapidly (about 30 seconds) along with an indication of
their reliability. Thus, it represents a useful tool within a safety-
by-design framework and can contribute to the reduction of in
vivo experiments and their replacement by in vitro and in due
course only in silico experiments. Finally, the dissemination of
the models facilitates their utility as they are easily expandable
and adjustable to address the requirements of other NMs, other
decorating molecules or other toxicity end-points, provided
sufficient experimental data is available to train the extended
models.

While it was not possible based on the current dataset to
link the binding and toxicity QNARs, since the uptake studies
were performed in serum-containing medium rather than on
This journal is © The Royal Society of Chemistry 2019
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the single protein-bound MWCNTs (i.e. CA-MWCNT
complexes) it is clear that as suitable datasets become avail-
able where protein binding and toxicity are performed under
the same conditions, a linked model, that can determine
whether high protein binding correlates with high or low
toxicity, would be possible. Indeed, reduction of protein
binding via surface decoration of NMs with PEG or other
hydrophilic polymers has been suggested as a route to
reducing their recognition and phagocytosis as a “stealth”
strategy for nanomedicines.47,48 Conversely, corona thickness
as driven by use of different media supplemented with 10%
foetal bovine serum was shown to affect cellular uptake and
toxicity for gold NMs: while DMEM elicited the formation of
a large time-dependent protein corona, RPMI showed different
dynamics with reduced protein coating which correlated with
more abundant internalized by two cell lines (HeLa and U937)
cells and higher cytotoxic effects as compared to DMEM.49

Similarly, models predicting which proteins in the NM corona
drive cellular association have been developed,14,50 so the
ultimate QNAR will link protein binding amount, presence of
specic proteins linked to cellular adhesion and uptake, and
the toxicity effects, thus enabling safe-by-design based on
several critical aspects that must be controlled for drug
delivery and for safe utilization of NMs broadly.
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