
108 | Mol. Omics, 2019, 15, 108--116 This journal is©The Royal Society of Chemistry 2019

Cite this:Mol. Omics, 2019,

15, 108

Small open reading frames and cellular
stress responses

Alexandra Khitun,†ab Travis J. Ness†ab and Sarah A. Slavoff *abc

Small open reading frames (smORFs) encoding polypeptides of less than 100 amino acids in eukaryotes

(50 amino acids in prokaryotes) were historically excluded from genome annotation. However, recent

advances in genomics, ribosome footprinting, and proteomics have revealed thousands of translated

smORFs in genomes spanning evolutionary space. These smORFs can encode functional polypeptides, or

act as cis-translational regulators. Herein we review evidence that some smORF-encoded polypeptides

(SEPs) participate in stress responses in both prokaryotes and eukaryotes, and that some upstream ORFs

(uORFs) regulate stress-responsive translation of downstream cistrons in eukaryotic cells. These studies

provide insight into a regulated subclass of smORFs and suggest that at least some SEPs may participate in

maintenance of cellular homeostasis under stress.

Introduction

The FANTOM genome annotation consortium initially relied
on a 100 amino acid cutoff to distinguish eukaryotic protein
coding sequences because a large number of spurious ORFs
of shorter lengths occur randomly within long non-coding
RNAs.1,2 In prokaryotes, a cutoff of 50 amino acids was used.3

However, with the advent of proteogenomic4 technologies,
thousands of previously unannotated small open reading frames
(smORFs)3,5 encoding products of fewer than 100 amino acids
have been shown to undergo translation in organisms spanning
all domains of life, including bacteria, yeast, flies, mouse, and
human.6–17 With this increase in coding sequence annotation
comes a need to determine the functions of smORF-encoded
polypeptides (SEPs). Three classes of smORFs have been pro-
posed in eukaryotes,18 based on RNA ‘‘location’’ and conserva-
tion: (1) non-functional intergenic smORFs that may represent
newly evolving genes19 (2) smORFs that encode functional SEPs
and (3) translated upstream ORFs (uORFs) encoded in 50 untrans-
lated regions of mRNA that function as cis-translational regulators
of downstream coding sequences. Classes 1 and 2 may also be
relevant to bacteria.

One-by-one characterization has shown that dozens of func-
tional SEPs play roles in important biological processes, often by
regulating the activity of macromolecular complexes.20 Increas-
ing evidence suggests that a subset of smORFs participate in

cellular stress responses.21 Cellular stress responses are evolu-
tionarily conserved molecular responses to changes in environ-
ment that would otherwise disrupt homeostasis by damaging
cellular molecules.22 These stresses can include temperature,
reactive oxygen species, hypoxia, nutrient limitation, and other
conditions to which cells must respond in order to survive. In
this review, we first consider the functions of bacterial SEPs in
stress response pathways (Fig. 1A), and secondly consider both
functional and regulatory roles of eukaryotic SEPs.

smORFs and bacterial stress responses

Early evidence for the regulated expression of SEPs during
cellular stress came from the study of prokaryotes, and a number
of stress-response bacterial SEPs have been characterized both at
the phenotypic and molecular levels.3,21,32 In this section, we
discuss SEP expression during various stress responses, then
detail the functions and mechanisms of selected stress-response
SEPs in both Gram-negative and -positive bacteria.

Regulated smORF expression during cellular stress in bacteria

Bacterial responses to extracellular stress are governed both
transcriptionally and post-transcriptionally.33–36 Transcriptional
responses are mediated by dedicated transcription factors, such
as sS/RpoS in Gram-negative and sB/SigB in Gram-positive
bacteria, which are required for the general stress response
(reviewed in ref. 35 and 36, respectively). Post-transcriptional
regulatory mechanisms include small regulatory RNAs (sRNA),34

RNA conformational changes,37 and RNA binding proteins; unique
among bacterial stress responses, the cold shock response is
largely mediated by post-transcriptional mechanisms.38 These
transcriptional and post-transcriptional responses govern alterations
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to the transcriptome, proteome, and metabolome that are
required to re-establish homeostasis. Regulated expression of
smORFs after exposure to a cellular stress has therefore led to
the hypothesis that the encoded SEPs may function in the
corresponding stress response.

The seminal observation by Storz and colleagues that B40%
of a set of 51 newly discovered Escherichia coli (E. coli) smORFs
exhibited differential expression during stress responses,
including heat shock, oxidative stress, and low pH, provided
the first strong evidence that smORFs function during stress.21

Interestingly, some of these smORFs are post-transcriptionally
regulated, such as yobF during heat shock. Importantly, sub-
sequent phenotypic analysis in E. coli showed that deletion of
three of these smORFs, yqcG, ybhT, and yobF, renders cells
sensitive to envelope stress, and the yobF deletion strain was
severely sensitive to acid stress.32 However, the molecular or
biochemical function of YobF in response to heat shock, cell
envelope stress, and acid stress has not yet been defined.

Proteomic and genomic approaches have subsequently been
applied to identify additional temperature stress-regulated SEPs
in E. coli K-12. Quantitative proteomics of small membrane
proteins revealed an unannotated peptide mapping to a putative

smORF, gndA, that is encoded within the gnd gene in an
alternative reading frame (and is therefore independent at the
amino acid level).25 Genomic tagging revealed that GndA expres-
sion is only detectable during heat shock. In parallel studies,
three novel cold-inducible SEPs have been reported (Fig. 1B).
Quantitative proteomics of E. coli K-12 revealed peptides YmcF
and YnfQ which are specifically induced by cold shock.23 These
peptides map to two unannotated, intergenic sequences down-
stream of cold shock genes cspG and cspI, respectively. YmcF and
YnfQ are upregulated by cold shock by up to a factor of 10, and
exhibit 66% sequence identity, suggesting possible functional
overlap. Interestingly, both of these cold-inducible smORFs
initiate at AUU start codons, consistent with regulated expres-
sion.39 Subsequent work by Hemm and coworkers identified an
additional 21 amino acid smORF, ynfR, downstream of ynfQ,
that is also cold-inducible.24

SEPs are stress-inducible in diverse bacterial species. For
example, three smORFs (sbrABC) recently discovered in Staphylo-
coccus aureus are expressed in a SigB-dependent manner.40 sbrA
and sbrB encode SEPs that are 26 and 38 amino acids, respec-
tively, while sbrC may encode a sRNA. In a second case,
transcriptomic analyses of the photosynthetic cyanobacterium
Synechocystis sp. PCC 6803 revealed three SEPs, NsiR6, HliR1,
and Norf1, that were induced by stress conditions, including
transfer of the cyanobacteria from light to darkness.41 The nsir6
and hlir1 transcripts (nitrogen stress-induced RNA 6 and high
light inducible RNA 1) were previously annotated as noncoding
RNAs.

Antibiotic stress

Antibiotics activate several bacterial stress pathways and can
induce the stringent response via (p)ppGpp signaling.42 Certain
antibiotics and therapeutics such as ciprofloxacin and mito-
mycin C induce the SOS response.43 A key antibiotic stress
response linked to development of resistance is expression of
drug efflux pumps.26 The 49 amino acid membrane-bound AcrZ
interacts with the AcrAB–TolC drug efflux pump, which exports
some classes of antibiotics to confer resistance (Fig. 2a).26 For
example, strains lacking acrZ are sensitive to chloramphenicol
and tetracycline, but not to erythromycin or rifampicin. While
the mechanism of AcrZ is not fully characterized, AcrZ interacts
directly with AcrB, which is hypothesized to lead to a conforma-
tional change in AcrB and export of specific antibiotics.26

Nutrient sensing and utilization

Specific pathways have evolved to maintain homeostasis during
nutrient stress, which can arise from either nutrient limitation
or accumulation.3 An early report linking smORF expression to
nutrient status showed that the 227 nt sgrS sRNA in E. coli is
expressed during glucose 6-phosphate accumulation.27 sgrS also
encodes the 43-amino acid SEP SgrT (Fig. 2b).27 The bifunctional
sgrS/sgrT gene inhibits the glucose permease PtsG at both the
RNA and protein level. Under conditions of high intracellular
glucose 6-phosphate, the sgrS sRNA inhibits translation of the
ptsG mRNA, while the SgrT SEP binds to PtsG and inhibits
glucose uptake. Overexpression of SgrT renders cells incapable

Fig. 1 Locations of stress-response associated small open reading frames
(smORFs) in the E. coli str. K-12 substr. MG1655 genome. (A) Map of the
E. coli str. K-12 substr. MG1655 genome. Tracks from the outside to inside
represent: (1) annotated coding sequences within the forward strand
(dark blue). (2) Annotated coding sequences within the complement strand
(light blue). (3) Stress-responsive smORFs discussed in this review, by color:
cold shock (blue),23,24 heat shock (red),21,25 antibiotic stress-inducible
(purple),26 and nutrient sensing (green).27–30 (4) Percent GC plot with
above average GC content in dark gray and below average GC content
in light gray. Genome sequence, annotated coding sequences, and stress-
responsive smORFs (tracks 1–3) were uploaded to DNAPlotter version 1.031

and selected to construct the map using NCBI RefSeq assembly accession:
GCF_000005845.2. (B) Scale diagrams of the cspG and cspI genomic
regions; previously annotated genes are depicted as gray arrows and recently
discovered cold-inducible smORFs are depicted as blue arrows.23,24
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of growth on glucose.44 Interestingly, preliminary studies sug-
gest that SEPs may be linked to monosaccharide utilization
in other organisms, such as Brucella abortus, in which three
recently identified, stress-inducible, membrane-localized SEPs
increase cell growth rate on L-fucose.45

Bacterial SEPs are also inducible and functional during
divalent metal ion stress. When intracellular Mg2+ is low, PhoPQ
upregulates gene expression, including the smORF mgrB.46

E. coli MgrB (Fig. 2c), a 47-amino acid SEP, interacts with PhoQ
to inhibit its autophosphorylation and activation.28 Induction of
the SEP MgtS (Fig. 2d) is also observed in a PhoPQ-dependent
manner. MgtS co-purifies with the Mg2+ ATPase MgtA, leading to
its stabilization and increased Mg2+ import.29 This membrane-
bound SEP also interacts with the PitA cation-phosphate trans-
porter to prevent Mg2+ export.47 In contrast, accumulation of
Mn2+ can be toxic to cells.48 The SEP MntS is repressed by the
manganese-dependent transcriptional regulator MntR at high
manganese, and overexpression of MntS leads to increased
manganese sensitivity.30 MntS may function to increase intra-
cellular Mn2+ at low Mn2+ concentrations.49

Prli42 and the Listeria monocytogenes stressosome

The stressosome is a B1 MDa cytosolic complex that regulates
the general stress response in Gram-positive bacteria.50 The
stressosome senses extracellular stress and, through a pre-
viously undefined mechanism, initiates intracellular signaling
to activate SigB. Cossart and colleagues recently utilized an
N-terminalomics approach to identify Prli42, a membrane-
associated, 31-amino acid SEP that binds to the stressosome
subunit RbsR and anchors RbsR to the membrane.51 Loss of
Prli42 or the Prli42–RbsR interaction renders cells sensitive to
oxidative stress and decreases expression of virulence factors in
Listeria, suggesting that Prli42 is required for signaling by the

stressosome during stress and host infection. Prli42 therefore
provides a model of a SEP–protein interaction that regulates
stress-response signaling in bacteria.

smORFs and eukaryotic stress
responses
Upstream smORFs (uORFs) and translational regulation during
stress

Translational regulation of the proteome is an important com-
ponent of eukaryotic stress responses and may occur more
rapidly than transcriptional responses; more expression-level
changes occur at the protein level (several thousand genes) than
at the mRNA level (hundreds of genes) during stresses such as
glucose and oxygen deprivation.52 Generally, global protein
translation is downregulated during cellular stress, while trans-
lation of a subset of stress-response proteins remains constant or
increases.53–55 A specific class of eukaryotic smORFs – upstream
ORFs (uORFs) – play a role in stress-dependent translational
regulation of downstream cistrons.56–58 Recent global profiling
studies in yeast, plants and mammals9,13,59,60 have shown that
uORF translation is widespread, especially following cellular
stress.61 Ribosome profiling of oxidatively stressed yeast results
in rapid accumulation of ribosomes on transcripts bearing
uORFs following five minutes of hydrogen peroxide exposure.62

This observation is paralleled in human cells affected by oxida-
tive stress,63 as well as oxygen and glucose deprivation.52

The prevailing model of uORF-mediated translational regu-
lation holds that translating a uORF prevents scanning and/or
re-initiation at the downstream coding sequence. Re-initiation
is dependent on the distance between the uORF and down-
stream cistron.64,65 While uORFs were initially reported to act
as cis-translational inhibitors of downstream coding sequences
within the same mRNA,56,66,67 it has become clear that uORFs
can either down- or upregulate downstream protein translation
depending on the uORF start codon. AUG-initiated uORFs
typically compete for translation with their downstream ORFs
under normal growth conditions.68,69 In contrast, uORFs initi-
ating with near-cognate (non-AUG) start codons are more likely
to exhibit positively correlated translation with downstream
coding sequences.70 Non-AUG initiated uORFs may also play a
role in upregulating downstream proteins previously thought to
undergo non-canonical initiation under stress conditions or
global translational arrest, as demonstrated during nutrient
starvation and meiosis.70,71 However, the presence or sequence
of a uORF is not sufficient to predict translational regulation
during stress.

uORF-mediated regulation of protein translation occurs as a
result of changes in the pre-initiation complex. During the
integrated stress response, the trimeric eIF2 complex, which
is responsible for initiator tRNA delivery to the 40S ribosome, is
repressed through phosphorylation of the eIF2a subunit.72 This
repression of eIF2 activity has several effects on translation:
global protein translation is downregulated,73 AUG-initiated
uORFs are skipped by the preinitiation complex, relieving their

Fig. 2 Putative functions of selected membrane-bound bacterial stress-
responsive microproteins. (a) AcrZ enhances export of specific antibiotics
by the drug efflux pump AcrAB-TolC;26 (b) SgrT expression is induced by
high intracellular levels of glucose 6-phosphate to inhibit glucose uptake;27

(c) MgrB regulates PhoPQ (green and orange circles) in low intracellular
Mg2+, decreasing expression of PhoPQ-dependent genes;28 (d) MgtS increases
Mg2+ uptake and prevents Mg2+ export.29,47
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inhibition of downstream protein translation,74 and the weak
eIF2 competitor eIF2A is de-repressed and delivers initiator
tRNA to selected sites75 including non-AUG codon-initiated
uORFs,76 driving their translation during stress (Fig. 3). For
example, eIF2A drives translation of two uORFs initiating with
UUG and CUG start codons and induces expression of the
downstream cistron encoding binding immunoglobulin pro-
tein (BiP), an ER-resident chaperone vital for the activation of
the integrated stress response.76 This mechanism also operates
in squamous cell carcinoma tumorigenesis, in which eIF2A-
dependent translation drives a 1.8-fold increase in uORF occu-
pancy by ribosomes.77

uORFs are generally thought to compete for scanning ribo-
somes, which can then only initiate translation of downstream
coding sequences via leaky scanning or re-initiation,73 implying
that the regulatory function of uORFs should depend only on their
translation and therefore be independent of their sequences. In a
few cases, however, the specific amino acid sequence of a uORF is
required for its regulatory activity.78–80 An early report of this
phenomenon described a uORF in the 50 untranslated region
(UTR) of DDIT3, which encodes the CHOP protein, a transcription
factor that promotes a switch from stress response signaling to cell
death.81 Translation of the uORF alone is insufficient to recapitu-
late translational downregulation of CHOP, as introduction of
nonsense and missense mutations within the uORF alleviated
translational repression of CHOP, whereas silent mutations did
not.81 Further mutational analysis defined an IPI motif within the
uORF that promotes ribosome stalling to inhibit CHOP translation
in cis.82 Fungal uORFs in the 50 UTR of arginine biosynthetic genes
ARG2 and CPA1 also regulate downstream protein production in
cis in a sequence-dependent manner via ribosome stalling.83–87

Taken together, these studies show that uORF translational
regulation plays a key role in proteomic reprogramming during
cellular stress responses. While several uORFs have been reported
to sequence-specifically induce ribosome stalling, translated pro-
ducts of uORFs have generally been assumed to lack function at
the polypeptide level (though the uORF-encoded MIEF1 micro-
protein, which binds to and regulates the mitochondrial ribo-
some, presents a counterexample74). In contrast, conserved
smORFs encoded in dedicated transcripts have been proposed
to be functional,20 and a number of these smORFs are involved in
mediating stress responses.76

Functional stress-response smORFs in eukaryotes

Characterization of SEPs that function in eukaryotic cellular
and organismal stress responses is dramatically accelerating.
Several recent reports have implicated SEPs in response to
infection and innate immunity. First, ribosome profiling of
influenza virus-infected human lung cancer cells identified
19 novel smORFs in long non-coding RNAs (lncRNAs) and
other non-coding RNAs that were either up- or downregulated
during infection.88 Among these, a SEP translated from the host
gene for miR-22, MIR22HG, was upregulated during infection
with both wild-type influenza and NS1-mutant influenza that is
rapidly cleared from cells due to interferon responses, suggest-
ing that the MIR22HG SEP may respond to cellular stress due to
viral particle exposure. More recently, ribosome profiling was
applied to identify differential translation of lncRNA-encoded
smORFs in lipopolysaccharide (LPS)-treated mouse macro-
phages.89 An LPS-upregulated smORF within the lncRNA
Aw112010 encodes a CUG-initiated SEP that drives interleukin-
12 beta expression. Characterization of a knockout mouse demon-
strated that the Aw112010 SEP is essential for mucosal immunity
during both Salmonella infection and colitis. While the molecular
mechanisms of the MIR22HG and Aw112010 SEPs remain unchar-
acterized, these studies provide a link between SEP expression
and infection in cells and in vivo.

The SEP humanin has been reported to protect cells from
stress-induced apoptosis. Humanin was first discovered in 2001
as a neuroprotective factor in Alzheimer’s disease, conferring
neuronal resistance to apoptosis by a disease variant of the
amyloid precursor protein.90 Humanin has subsequently been
reported to play additional intracellular roles in suppressing
apoptosis via Bax binding and inactivation.91 While these
functions suggest that humanin is protective against apoptosis
downstream of cellular stress, it remains unclear how humanin
is produced in cells, as its coding sequence may map to either
mitochondrial or genomic DNA.91

Extensive work has identified SEPs that participate in muscle
regeneration following injury. DWORF,92 a 34-amino acid SEP
that localizes to the sarcoplasmic reticulum membrane, was
identified in a lncRNA exhibiting heart- and muscle-specific
expression (Fig. 4a). DWORF is downregulated at the protein
and mRNA level during ischemic heart failure.92 DWORF
normally functions to increase Ca2+ uptake into the sarco-
plasmic reticulum via interaction with the Ca2+–ATPase SERCA
and displacement of three other polypeptide inhibitors.93–95

Fig. 3 Regulated translation of upstream open reading frame (uORF)-
containing transcripts under cellular stress. Under normal conditions,
active eIF2 is abundant and, in the subset of transcripts that contain them,
AUG-initiated uORFs are translated, downregulating expression of the
downstream ORF. Stress induces phosphorylation of the eIF2a subunit
and results in eIF2 inactivation. Limiting eIF2 concentrations cause ribo-
somes to bypass AUG-initiated uORFs and drive downstream ORF transla-
tion. Simultaneously, weak eIF2 competitor eIF2A can activate translation
of non-AUG initiated uORFs in the transcripts that contain them.
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Decreased contractility observed during heart failure can be caused
by reduced Ca2+ levels in the sarcoplasmic reticulum resulting from
insufficient activity of the SERCA pump.96 Activation of SERCA
through DWORF overexpression restored calcium levels and heart
contractility in a mouse model of heart disease.97 Another example is
SPAR,98 a SEP encoded by lncRNA LINC00961 which is downregu-
lated upon muscle injury (Fig. 4b). SPAR normally localizes to the
endosome/lysosome membrane to promote association between
lysosomal v-ATPase, Ragulator, and Rag GTPases, preventing
mTORC1 activation. Upon muscle injury, SPAR downregulation
promotes mTORC1 activation and muscle regeneration. Conversely,
Minion99 or Myomerger,100 is a SEP which is transcriptionally
upregulated in muscle tissue regeneration and development
(Fig. 4c). Skeletal muscle development and regeneration following
injury proceeds through temporally regulated stem cell activation
and differentiation, myoblast fusion and subsequent maturation
into myofibers,101,102 CRISPR/Cas9 knockdown of Minion results in
defects in myoblast fusion, while homozygous mutants are unviable,
most likely due to the inability to form multinucleate myotubes. In
summation, differential expression of a suite of SEPs is required for
response to injury in both cardiac and skeletal muscle.

Conclusion

Mounting evidence supports regulatory (in eukaryotes) and
functional (in both prokaryotes and eukaryotes) roles for smORF
translation in cellular stress responses. A future direction will be
elucidation of the functional, molecular, and phenotypic roles of
dozens of yet-uncharacterized SEPs that have been identified as
differentially regulated during various stress conditions in a wide
variety of organisms. While dozens of SEPs have been implicated

as differentially expressed at the RNA or protein level during stress
responses, post-translational regulation of SEPs, especially via
post-translational modifications (PTMs), has remained largely
unaddressed. Given the importance of PTMs in stress signaling,73,103

identification of stress-regulated PTMs may be informative in
elucidation of SEP functions. Finally, it is tempting to speculate
that the small size of smORFs allows rapid translation, consistent
with a need for rapid response to external stressors; measure-
ments of the dynamics and abundance of SEP expression relative
to the rate of production of known stress response proteins could
test this hypothesis. Taken as a whole, the growing literature
demonstrating roles for SEPs in cellular stress provides one
testable hypothesis for characterization of newly discovered
smORFs, and has also improved our understanding of the full
complement of regulatory factors in stress response pathways.
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