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A pattern recognition-based chemical sensor array is an efficient
approach to discriminating odours or a complex mixture of gaseous
molecules. In such an approach, solid materials are coated on
surfaces of sensors as probe receptors, and gaseous molecules
are exposed to those sensors as targets. Here, we propose the
reverse approach, that is, gaseous molecules as probes and solid
materials as targets, leading to pattern recognition of solid materials.
Using a nanomechanical sensor as an example of a sensing platform,
we have demonstrated that this approach can discriminate polymers
with different molecular weights as well as those having slightly
different functional groups evaluated through detailed classification
using a support vector machine in addition to principal component
analysis and linear discriminant analysis. Classification of those target
solid materials with 100% accuracy has been achieved with some
specific combinations of probe gases. Since any kind of gaseous
molecule and any kind of chemical sensor can be utilized as the
probe and sensing platform, respectively, this study will open a new
horizon for comprehensive analysis of solid materials through a
pattern formed by the gas—solid interaction.

Chemical sensor arrays have attracted significant attention as
a powerful tool for detecting, discriminating and identifying
target analytes, especially various odours composed of a com-
plex mixture of gaseous specimens. A large variety of chemical
sensor arrays have been utilized, including quartz crystal
microbalances (QCM), conducting polymers (CP), field-effect
transistors (FET) and nanomechanical sensors.'™ In a chemical
sensor array, sensing signals are obtained by measuring
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Conceptual insights

A conventional analysis of solid materials generally focuses on the
specific physical/chemical parameters of the materials. Here, we demon-
strate a novel concept - that is, analysis of solid materials through their
“pattern” formed as a result of dynamic interaction between solid and
multiple probe gases. Since gaseous molecules diffuse into solid materials
while interacting with most atoms inside, resultant dynamic responses
contain much information stemming from various physical/chemical
interactions. Thus, the pattern provides a high-resolution fingerprint
of the solid material, reflecting not only its intrinsic material properties
but also its myriad properties (e.g. detailed surface/internal/interfacial
structures and distribution of thickness/morphology-dependent physical
properties), which are usually difficult to be fully covered by conventional
approaches. Since any kind of gaseous molecule can be utilized as a probe,
this approach possesses unlimited possibilities to differentiate solid
materials and their properties. Moreover, the target is not limited to a
simple material but includes a complex mixture of functional materials
and various thin-film devices as long as gaseous molecules can interact.
In contrast to conventional materials science, which usually focuses only
on a certain aspect, this concept provides a novel insight in terms of a
comprehensive “pattern”, which contains much information including
properties inaccessible with existing approaches.

physicochemical interactions induced by the sorption of target
analytes in sensing materials designed to respond to a wide
range of chemical classes. Since such a multidimensional data-
set obtained by the chemical sensor array contains much infor-
mation, multivariate analyses and machine learning can be
effectively applied to discriminate and identify each specimen.
Although a wide range of applications have been demonstrated
in various fields, such as food, agriculture, medicine and environ-
mental science,”™ these pattern recognition-based analyses are
basically limited to gaseous analytes.

In this study, we propose a reverse approach, that is, pattern
recognition of solid materials. As the sensing signals of chemical
sensors are based on the interaction between gases and solids,
a sensing element and a target analyte should be exchangeable
(i.e. solid materials as target analytes and gaseous molecules as
sensing probes), leading to the pattern recognition of solid
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materials. To demonstrate this new approach, we focus on a
nanomechanical sensor as an example of a sensing platform.
A nanomechanical sensor detects mechanical information
derived from the interactions between gaseous molecules and
solid materials with high sensitivity. Since it has been confirmed
that almost all kinds of solid materials including organic small
molecules, polymers and inorganic nanoparticles provide some
signals as a result of the gas-solid interaction,"”° a nano-
mechanical sensor is an ideal platform to examine various kinds
of solid materials. We have demonstrated successful discrimina-
tion of polymers having different molecular weights as well as
those composed of different monomers by means of pattern
recognition. Furthermore, detailed analysis using support vector
machine (SVM)-based classification models has revealed that
only 2 or 3 selected probe gases can identify solid specimens
with high classification accuracy. Since any gas species including
the complex mixture can be utilized as a probe to increase the
variety of signal patterns, this approach is expected to provide
unlimited resolution of patterns of solid materials depending on
each purpose.

As an initial proof-of-concept, we performed identification
of 4 different polymers through pattern recognition using nano-
mechanical Membrane-type Surface stress Sensors (MSS).>"*?
We selected polystyrene (PS) and poly(4-methylstyrene) (PAMS) as
a set having similar chemical structures, and polycaprolactone
(PCL) and poly(vinylidene fluoride) (PVF) as a set with a
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hydrophobic nature (Fig. S1; see also the Supplementary Text,
ESIt). Each polymer was dissolved in DMF and deposited onto
each channel of MSS by inkjet spotting. Twelve different vapours
are used as probes to acquire signals for each gas-solid inter-
action (details are provided in the Experimental section). Upon
exposure to each vapour, the polymers exhibited unique responses
in terms of their intensity as well as their shape (Fig. 1a; see also
Fig. S2, ESL, 7 for all signal responses), reflecting the differences in
chemical and physical affinity between each polymer and vapour.
For the obtained dataset, we conducted unsupervised and super-
vised analyses, namely principal component analysis (PCA) and
linear discriminant analysis (LDA), respectively. Multiple para-
meters were extracted as feature sets from each decay curve of
each normalized signal response (Fig. 1b; details can be found
in the Experimental section).>*** With all the features from the
12 vapours, the 4 different polymers can be clearly distinguished
by forming well-separated clusters in the principal component
space (Fig. 1c; see also Fig. S3, ESLt for the PC1-3 and PC2-3
planes). On the PC 1-2 plane, PS and P4MS form clusters close
to each other, reflecting their similarity in the chemical and
physical affinity to each probe gas. With the LDA as shown in
Fig. 1d, each polymer was clearly classified without any overlaps,
demonstrating the feasibility of the present approach to dis-
criminating solid materials by pattern recognition. It should be
noted that several small sub-clusters can be found in each
cluster (Fig. 1c). Since each small sub-cluster corresponds to
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Fig. 1

Identification of polymers by pattern recognition using probe gases. (a) Typical signal responses of MSS. See also Fig. S2, ESI.1 (b) Schematics of

the methods for feature extraction from each normalized signal response. (c and d) PCA and LDA score plots of 4 polymers using 12 different probe
gases. PS(350k), polystyrene, M,, = 350000 (red); P4MS, poly(4-methylstyrene) (black); PVF, poly(vinylidene fluoride) (green); PCL, polycaprolactone

(blue). N = 11.
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each polymer layer coated onto each channel of the MSS
(11 channels for each polymer species), the differences between
these sub-clusters are regarded as the coating reproducibility
of each polymer layer. Thus, this approach is proved to have
enough resolution to discriminate such minute differences in
the quality of coatings as well as the different materials.

We also developed machine learning models based on a
SVM classifier with a non-linear kernel.>® The 36 feature sets
(3 parameters from each probe gas) of 132 samples (33 samples
from each polymer) were used in building an optimal SVM
model and its validation. Eighty percent of the samples
(105-106 samples) were used for the training dataset. After
tuning the hyperparameters of a radial basis function (C and ),
the remaining 26-27 samples were used for validation of the
SVM model. To calculate identification accuracy, 5-fold cross
validation was adopted.>® All combinations of each probe gas
were calculated to create SVM models. The number of trained
SVM models was 4095 (= 2'* — 1). The details of the SVM
classifier can be found in the Experimental section. Identifi-
cation accuracies depending on the combination of the probe
gases are shown as a dot plot in Fig. 2a, and the calculated
results of average accuracy obtained from the combinations
with selected probe gases are shown in Fig. S4, ESL.¥ By the SVM
analysis, the feature set from the 12 probe gases can clearly classify
each polymer with 100% identification accuracy. Remarkably,
almost a quarter of all combinations of the probe gases resulted
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in 100% identification accuracy with 2 to 12 kinds of probe gases.
The usage rates of all the probe gases are summarized in Table 1.
These results clearly indicate that the appropriate selection of
probe gases depending on the target solid samples leads to
highly accurate and efficient identification (Fig. 2b). For exam-
ple, in the present case, the specific combinations of two probe
gases (i.e. [ethyl acetate, ethanol], [ethyl acetate, toluene] and
[ethyl] acetate, chloroform]) achieved 100% identification accu-
racy, while another combination [ethyl acetate, propionic acid]
resulted in the worst accuracy with 75.5 + 14.1%. Based on
these results, we conducted PCA again for visual recognition
using the best and worst combinations of the two probe gases.
As expected, most of the clusters were well-separated in the best
combinations, while those in the worst combination densely
overlapped, especially between PS and P4MS (Fig. 2c-f). It is
assumed that high pattern recognition accuracy can be achieved
by a combination of probe gases discriminating polar PCL from
others and ones discriminating PS, PAMS and PVF from each
other (Table 1; see also Fig. S5, ESIT). It should be noted that
clear separation of clusters does not necessarily lead to high
classification performance.*”

To evaluate further the applicability of the pattern recogni-
tion of solid materials, we demonstrated the identification of
the molecular weights of polymers. Two additional polystyrenes
with different molecular weights, PS(35k) and PS(280k), were
also coated onto separate MSS channels in the same manner.
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Fig. 2 SVM classification for the identification of the molecular weights of polymers. (a) Dot plots of classification accuracy calculated by SVM with
5 x 2 cross validation as a function of numbers of combination of probe gases (n) used for the calculation. Histograms show the number of combinations
(top) and classification accuracy (right). (b) Dot plots of classification accuracy with the combinations of 2 probe gases. The best and worst cases
in accuracy are shown beside the plot. (c—f) PCA score plots for each combination of two probe gases, which result in the best or worst accuracy as
follows: the best combinations ethyl acetate/ethanol (c), ethyl acetate/chloroform (d) and ethyl acetate/toluene (e); and the worst combination ethyl

acetate/propionic acid (f).
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Table 1 Summary of SVM classification. (Usage rate columns) Usage rate of each probe gas achieving 100% accuracy in the identification of polymers
and molecular weight in all combinations. (Accuracy columns) Identification accuracy using one feature set from each probe gas. Each identification
accuracy is shown as a mean value + standard deviation of accuracy obtained in cross validation

Usage rate Accuracy
Probe gas Polymer (%) Mol. weight (%) Polymer (%) Mol. weight (%)
Water 82.1 53.5 58.6 + 6.3 65.4 + 15.7
Ethanol 59.1 51.0 82.0 + 7.7 78.4 + 16.9
1-Hexanol 34.6 51.9 78.2 £ 8.8 82.0 £+ 10.8
Hexanal 56.1 62.2 91.4 + 9.7 86.8 + 12.0
n-Heptane 51.6 67.9 85.8 £ 8.3 89.1 £+ 8.7
Methylcyclohexane 46.2 63.1 87.0 £ 3.2 78.3 + 3.7
Toluene 58.5 27.2 84.5 + 8.0 91.5 + 3.9
Ethyl acetate 70.9 78.5 94.0 £+ 3.8 80.7 £ 15.8
Acetone 52.8 97.4 83.7 £ 11.8 88.3 £ 6.6
Chloroform 65.6 14.7 99.3 + 1.4 71.1 + 13.8
Aniline 46.2 49.7 60.2 £ 8.8 77.9 £ 6.5
Propionic acid 60.4 53.8 84.5 + 15.7 78.8 + 10.5
No. of 100% combinations 1021 312

Total no. of combinations 4095 = (2" — 1)

Using these MSS channels, their responses to the probe gases
were measured. The same feature sets were extracted and com-
bined with the dataset of previously measured PS(350k) and
P4MS. The PCA and LDA were conducted using the 12 probe
gases. Although the PCA score plots resulted in some misclassi-
fication, especially between PS and P4MS, the LDA provided
clear discrimination of polystyrenes including PS and P4MS in
terms of molecular weight (Fig. 3). According to a previous

study,® a response of a nanomechanical sensor is strongly
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12 different probe gases. (Bottom right) LDA score plots of the polymers.

affected by the physical properties of a receptor layer, including
Young’s modulus. The Young’s moduli of polystyrene thin
films used in this study are reported to be in the range from
3.4 to 3.9 GPa.”® Thus, it is found that the current pattern
recognition approach can discriminate materials with such a
narrow range of Young’s moduli. The SVM classification was
also performed with all combinations of the 12 probe gases.
As shown in Fig. 4 and Table 1, 312 combinations (7.6%) can
identify the differences in molecular weight with 100% accuracy,
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Identification of the molecular weights of polymers. (Top left, top right, bottom left) PCA score plots of the 4 polymers coated on MSS using the

PS(350k), polystyrene, M,, = 350000 (blue); P4MS, poly(4-methylstyrene),

M,, = 72000 (black); PS(280k), polystyrene, M,, = 280 000 (red); PS(35k), polystyrene, M,, = 35000 (green).

This journal is © The Royal Society of Chemistry 2019

Mater. Horiz., 2019, 6, 580-586 | 583


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8mh01169a

Open Access Article. Published on 19 December 2018. Downloaded on 2/11/2026 11:46:53 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Materials Horizons

a # Combinations
1000

I N

L e |

Count
0 200 400

>

[}

o

=3

Q

Q

<

0.7 e
0.6 L
1234567 89101112
Number of solvents (n)
b 1.0[ .:<—— Accuracy 100%

8303032 Chloroform/Aniline
8988508

Z 09fc o

[

g o

Q [

1 o

< o

08F ¢

o

~<—— Accuracy 73.8 + 25.2%
Chloroform/Acetone

0.7*
n=2

Fig. 4 SVM classification for the identification of the molecular weights of
polymers. (a) Dot plots of classification accuracy calculated by SVM with
5 x 2 cross validation as a function of the number of gases (n) used for the
calculation. Histograms show the number of combinations (top) and
classification accuracy (right). (b) Dot plots of classification accuracy with
2 probe gases. The best and worst cases in accuracy are shown beside
the plot.

while the largest feature set extracted from all 12 probe gases
resulted in a lower accuracy of 95.0 + 0.10% (see also Fig. S6,
ESI1).2”%° 1t should be noted that a specific combination of two
probe gases, i.e. [chloroform, aniline], achieved 100% accuracy
(Fig. 4b). Furthermore, even one specific probe gas, i.e. toluene,
achieved 91.5 + 3.9% identification accuracy (Table 1), and most
PCA score plots of each probe gas provide rough discrimination
of the differences in molecular weights (Fig. S7, ESIt). These
results indicate that the pattern recognition can also be effec-
tively applied to solid materials to identify each analyte even with
similar chemical and physical properties by choosing a couple of
appropriate probe gases. As demonstrated in a previous study,"’
these patterns should be correlatable with other material para-
meters, such as Young’s moduli, leading to quantitative pre-
diction of such parameters using machine learning-based
regression analyses.

This approach will also be effective in the industrial phase.
In the industrial phase, for example, it is quite important to
assess the quality of sensor products, especially the coating
quality of receptor materials. As a proof-of-concept, we assessed
the coating quality of the receptor layers of MSS through this
pattern recognition-based approach. Sensing signals recorded
from 11 different sensors are analysed by PCA, followed by a
quality evaluation based on Mahalanobis distances.**

584 | Mater. Horiz.,, 2019, 6, 580-586
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As shown in Fig. S8 and S9 in the ESI,f it is possible to
quantitatively assess the coating quality of PVF and PCL,
respectively. Thus, this approach will provide various possibilities
in the industrial phase.

Conclusions

In this study, it has been demonstrated that solid specimens
could be identified by pattern recognition, achieving 100%
accuracy in the case of some specific combinations of probe
gases. As proved by means of SVM as well as PCA and LDA, even
slight differences in material properties such as molecular
weights could also be discriminated through this approach.
Since any kind of gaseous or volatile molecules can be poten-
tially utilized as a probe for this pattern recognition-based solid
material identification, this approach possesses unlimited pos-
sibilities to differentiate solid materials. The potential target
solid materials of this concept include inorganic nanoparticles,
functional organic materials and biomolecules such as pep-
tides, proteins and nucleic acids. It should also be noted that
this concept is not limited to nanomechanical sensors but
can be expanded to a variety of chemical sensors. Moreover,
this approach will also be effective in the industrial phase,
including the assessment of receptor coatings on sensor pro-
ducts as demonstrated in this study. Therefore, the presented
concept of the pattern recognition-based analysis of solid materials
will open a new horizon for chemical sensors and materials
science.

Experimental

Materials

Polystyrene (M, = 35 000) (PS(35k)), polystyrene (M,, = 280 000)
(PS(280Kk)), polystyrene (M,, = 350 000) (PS(350k)), polycaprolactone
(PCL), poly(4-methylstyrene) (P4MS), and poly(vinylidene fluoride)
(PVF) were purchased from Sigma Aldrich, and used in this study.
N,N-Dimethylformamide (DMF) as a solvent to prepare polymer
solutions for inkjet spotting was purchased from Wako Pure
Chemical Industries. Ethanol, 1-hexanol, hexanal, n-heptane,
methylcyclohexane, toluene, ethyl acetate, acetone, chloroform,
aniline and propionic acid (analytical or higher grade) used as
probe gases were purchased from Sigma-Aldrich, Tokyo Chemical
Industry, and Wako Pure Chemical Industries. All chemicals were
used as purchased. To obtain water vapour, MilliQ water was
used (Merck MilliPore).

Experimental procedure

To identify each polymer material, we coated polymer layers
onto an MSS chip by inkjet spotting. The detailed fabrication
process of the MSS chip has been provided in previous
reports.”*> An inkjet spotter (LaboJet-500SP, MICROJET
Corporation) equipped with a nozzle (IJHBS-300, MICROJET
Corporation) was used. Each polymer was dissolved in DMF
(1 mg mL™"), and the resulting solutions were deposited onto
each channel of the MSS. The injection speed, volume of a

droplet and number of inkjet shots were fixed at ~5 m s,

This journal is © The Royal Society of Chemistry 2019
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~300 pL, and 300 shots, respectively. A stage of the inkjet
spotter was heated at 80 °C to dry DMF. Each polymer was
coated at least 2 different channels to investigate the coating
quality: PS(35k), N = 3; PS(280k), N = 2; PS(350k), N = 11; PCL,
N =11; PAMS, N = 11; PVF, N = 11.

The coated MSS chips were mounted in a Teflon chamber,
which was placed in an incubator (Incubator-1) with a con-
trolled temperature of 25.0 = 0.5 °C. The chamber was con-
nected to a gas system consisting of two mass flow controllers
(MFCs), a mixing chamber, a purging gas line and a vial for a
solvent liquid in an incubator (Incubator-2) with a controlled
temperature of 15.0 = 0.5 °C. The vapour of each solvent was
produced by bubbling of carrier gas. Pure nitrogen gas was
used as carrier and purging gases. The total flow rate was kept
at 100 mL min~ ' during the experiments. The concentrations of
the 12 different solvent vapours were controlled using MFC-1 at
P,/P, of 0.1, where P, and P, stand for the solvent’s partial
vapour pressure and saturated vapour pressure, respectively.

Before measuring MSS signals, pure nitrogen gas was intro-
duced into the MSS chamber for 1 min. Subsequently, MFC-1
(sampling line) was switched on/off every 10 s with a controlled
total flow rate of 100 mL min~" using MFC-2 for 5 cycles (Fig. S2,
ESL, 7 for full signal responses). Data were measured with a bridge
voltage of —0.5 V, and recorded with a sampling rate of 10 Hz.
The data collection program was designed using LabVIEW
(National Instruments Corporation).

Pattern recognition procedure

Principal component analysis (PCA) and linear discriminant
analysis (LDA) were utilized for reducing the dimensionality of
the datasets. By projecting the data onto a lower-dimensional
space, one can visually recognize the coated materials according
to the cluster separation. To identify each coated material and
evaluate its accuracy, we developed classification models based
on a support vector machine (SVM) with a radial basis function
kernel. To assess the quality of sensor products, we used the
Mahalanobis-Taguchi system (MTS). Feature sets were extracted
from each decay curve of a normalized MSS signal measured
with the 12 different gases (Fig. 1b). Three different slopes mt,)
were extracted from the i-th channel with the j-th gas according
to the following equation: my(t,) = [I;{to) — I;(to + t,)]/t,, where
I;(?) and ¢, denote the signal output at time ¢ and the time when
the signal response starts to decay, respectively. In this study, we
chose 3 time points for ¢,; ¢, = 0.5, 1, 1.5 (s). Three sets of
parameters [m;(0.5), m;(1), m;(1.5)] were extracted from the last
3 signal responses from 40 to 100 (s) out of the 5 signal
responses in each measurement, because the latter signal
responses can provide more reproducible signal responses than
the former ones, which exhibit initial fluctuations associated
with mixing of sample gases and pre-adsorbed gases.

PCA and LDA were adopted using scikit-learn packages for
Python. PCA projects data onto lower dimensions so that the
variance of the first principal component (PC1) becomes the
largest. Successive principal components are determined to
maximize the variance under the constraint that the (n + 1)-th
principal component is orthogonal to the n-th component.

This journal is © The Royal Society of Chemistry 2019
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In contrast to PCA, LDA projects data onto lower dimensions
to maximize the cluster separation; LDA maximizes the dis-
tance between the classes and minimizes the variance in the
same class. Classification models based on a non-linear SVM
were developed using scikit-learn packages for Python. To opti-
mize and evaluate the models, we employed 5 x 2 cross valida-
tion. The whole datasets were first split into 5 datasets, of which
4 datasets were used as training datasets, and the remaining
1 dataset was used as a test dataset. The training datasets were
further split into 2 sub-datasets. Based on these sub-datasets,
the hyperparameters of the SVM (i.e. C and y) were optimized.
This validation process was repeated for all the combinations of
the 5 datasets for evaluating the classification accuracy of the
models.

The MTS was adopted by scikit-learn packages for Python.
To evaluate the Mahalanobis distance, the data were projected
onto a lower-dimension space (PC1-2 plane) by PCA. Then, the
Mahalanobis distances of each plot on the PC1-2 plane were
calculated by MTS.
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