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Design of multifunctional supercapacitor
electrodes using an informatics approach†

Anish G. Patel,a Luke Johnson,b Raymundo Arroyave*b and Jodie L. Lutkenhaus *ab

Multifunctional energy storage devices can greatly impact public safety and flexible electronics. For exam-

ple, mechanically strong energy devices can prevent catastrophic failure in batteries or act as structural ele-

ments, simultaneously dissipating energy and bearing a load. Herein we report on a nanoarchitectonics ap-

proach, which implements an optimal experimental design framework to optimize the electrochemical

and mechanical properties of a composite electrode. First, functional analysis was used to determine the

weight percentages of the electrode components as control variables of interest in this material system. A

utility function was then developed to measure the trade-offs between the electrochemical and mechani-

cal properties. Finally, Gaussian process regression was used to model initial experimental data and optimal

compositions were predicted using expected improvement acquisition methods.

1. Introduction

Currently, much research has gone into improving the energy
storage capabilities of promising materials, such as reduced
graphene oxide,1–5 due to growing energy demands. The fo-
cus on electrochemical properties ignores other performance
metrics of these materials. As a result, current energy storage
devices are prone to catastrophic failure6–9 and are unfit for
flexible or structural electronics. The use of multifunctional
energy storage materials, which can simultaneously deliver
energy and bear a mechanical load, is a new way to fabricate
flexible, bendable, and structural batteries and
supercapacitors.10–17 However, there is an inherent trade-off
between the electrochemical and mechanical performance of
multifunctional composite materials.16,18–20 Wetzel quanti-
fied this trade-off using a “multifunctional efficiency”, or util-

ity, which is an equally weighted linear combination of me-
chanical and electrochemical properties.21 Including
mechanical properties as a performance metric for energy
storage devices can improve the effective functionality of the
overall designed component by providing new opportunities
for a wide variety of design cases.16,17,22,23 Coupling this
multifunctional design with machine learning, which has
been used recently in materials science to aid in the discov-
ery and understanding of novel materials,24–30 can provide an
effective means of designing structural electrodes while mini-
mizing experimental cost and time.

Recently, we have studied structural supercapacitors
containing reduced graphene oxide (rGO) and Kevlar aramid
nanofibers (ANFs).18,19 Reduced graphene oxide, derived from
graphene oxide (GO), is a well-studied two-dimensional car-
bon material that is commonly used in supercapacitors due
to its excellent electrical conductivity, high surface area, and
good chemical stability.31,32 Bulk Kevlar fibers have a Young's
modulus of 90 GPa and a tensile strength of 3.8 GPa making
them ideal additives for enhancing the stiffness and strength
of composite materials.33 ANFs are nanoscale Kevlar fibers
formed from the dissolution of the bulk fibers.34 They are
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Design, System, Application

Today's growing energy demands require unique solutions. Structural energy and power devices offer one such solution by providing a device that can
accomplish two objectives at once: storing energy and withstanding mechanical loads. This device would reduce the mass and volume required to power
electric vehicles or enable flexible electronics that are common in wearable technology. However, there is a lack of suitable materials due to an inherent
trade-off between the electrochemical and mechanical performance. Therefore, materials design is a promising strategy for discovering novel materials for
structural energy storage devices. In this paper we present the use of data driven modelling for the design of multifunctional materials consisting of re-
duced graphene oxide, aramid nanofibers, and carbon nanotubes for their use as structural electrodes in supercapacitors. Experimental data were used
along with Gaussian process regression to predict and optimize the performance of the electrodes in an iterative manner. This work reports on the design
of multifunctional materials using materials informatics for efficient exploration and exploitation of the design space.
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promising building blocks for nanocomposite materials due
to their excellent mechanical properties and easy processabil-
ity. Incorporating ANFs with rGO allows for the nanofibers to
act as a mechanically reinforcing nanofiller that also prevents
the restacking of graphene sheets.19 This is due to hydrogen
bonding35,36 and aromatic stacking37,38 (or π–π stacking),
which lead to strong interactions between the two materials.
These interactions result in greatly improved mechanical per-
formance.18,19,35,36 ANFs have also been shown to improve
the mechanical properties in other composites.18,19,35,36,39–42

Carbon nanotubes (CNTs) are of interest here as additives
to the rGO/ANF electrode for several reasons. CNTs are rod-
like nanoparticles that are well known for their high electri-
cal conductivity and exceptional mechanical performance
making them an ideal nanomaterial for composite
electrodes.43–45 Carbon nanotubes have been used as super-
capacitor electrodes46 but they are more commonly used as
additives to increase the electrochemical performance and/or
mechanical capabilities (i.e. flexible electrodes).47–50 While
graphene is an excellent electrode material for super-
capacitors, its propensity to agglomerate and restack signifi-
cantly impedes electrochemical stability.5,51 Therefore, the
use of an additive that prevents restacking, such as CNTs,
leads to an improvement in the electrochemical performance.
It has been shown that CNTs act as a conductive bridge be-
tween graphene sheets to prevent agglomeration and pro-
mote conductive pathways.52,53 Carbon nanotubes have also
been used in composites with polyaniline49 and manganese
oxide50 to achieve similar results.

There has been a rapid increase in the use of machine
learning in materials science, which has led to the accelera-
tion of the materials discovery process.24,27,54–60 The need for
materials informatics partly arises from the large cost of run-
ning experiments when attempting to find optimal composi-
tions. For example, fabricating and fully characterizing one
of the aforementioned rGO/ANF electrodes can take two
weeks.18 Materials informatics provides powerful tools that
can take advantage of previously generated data to better un-
derstand the relationships between processing, properties,
and performance in order to predict new materials without
the traditional costs associated with experimental work. Cur-
rently, there has been no work on using data science to better
understand current materials, discover new materials, or
guide experimental design in the area of structural energy
materials. Due to recent successful implementation of infor-
matics in materials science,24–26,28–30,61,62 machine learning
methods are a promising alternative to traditional experimen-
tal approaches used for fabricating multifunctional energy
storage electrodes.

Here we present the first use of machine learning on the
design of structural electrodes for energy and power. We first
refine and re-examine Wetzel's utility metric in order to
broaden its applicability to a wider design space. By doing so,
we present a customizable utility function that allows the
user to adjustably weight the electrochemical and the me-
chanical performance metrics. This utility function guides

the design of the electrodes toward different regions of the
design space based on the application. The primary degrees
of freedom in the material system considered in this work
are the weight percentages of the electrode's constituents
(rGO/ANFs/CNTs). Herein, we focus on the combination of
data science and experiments to establish high-level connec-
tions between the composition and the electrochemical and
mechanical properties. Data driven models, in the form of
Gaussian processes, are used to establish links between
composition and performance without any knowledge of the
complex physical interactions within the electrode. These
models are used to predict compositions with promising
combinations of properties which are then validated experi-
mentally, within a Bayesian optimization framework. This
process is performed multiple times, creating a feedback
loop for efficient exploration of the design space. We apply
this methodology to the rGO/ANF/CNT supercapacitor sys-
tem as a test case.

2. Methodology
2.1 Design problem

In order for these tools to be combined in an effective way it
is necessary to establish a description of the system in terms
of functional dependencies. This is first done at the compo-
nent level to better understand how a structural energy stor-
age device might operate within an overall system. The com-
ponent level functional model indicates the appropriate
performance metrics and properties to consider in the mate-
rial level functional model. The material level functional
model captures relationships between the process, structure,
properties, and performance in the form of a system chart
similar to the type outlined in Olson's report on the design of
materials.63 The material level functional model allows for a
fair assessment of how to best combine data, models, and ex-
periments at the appropriate levels of abstraction.

A functional diagram for a structural electrode is used to
better understand the relationships between inputs and out-
puts at the component level, Fig. 1a. Also, it is used to inform
decisions concerning the best way to manipulate functions
and sub-functions to achieve objectives and goals. At the
component level, Fig. 1a, the function of a structural
electrode is to store and deliver energy to a system while still
being safe and stable after sustaining mechanical loads and
forces. This requires the consideration of both electro-
chemical and mechanical requirements.21

As stated above, the three potential materials of interest
for designing a multifunctional energy storage device are
rGO, ANFs, and CNTs. The system chart, Fig. 1b, summarizes
the fundamental functional interactions between the various
levels of the process–structure–property (PSP) hierarchy for
composite electrodes that contain these components. For ex-
ample, composition directly affects the composite interac-
tions and porosity of the structure, which, in-turn, affect the
electrochemical and mechanical properties listed.
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In order to effectively design a new material, the mechani-
cal and electrochemical properties should be combined into
a single performance metric (U, which varies from 0 to 1)
through a utility function which combines electrochemical
utility (ECU) and mechanical utility (MU). Eqn (1)–(3) define
the utility based on a combination of various performance
metrics where a is a weighting coefficient (which varies from
0 to 1), C is the specific capacitance of the electrode at differ-
ent scan rates ν, T is the toughness, σ is the ultimate tensile
strength, E is the Young's modulus, and ε is the strain at
break. These performance metrics were normalized by the
typical values for pure reduced graphene oxide electrodes
and pure ANF films denoted by subscript rGO and subscript
ANF, respectively. This means that the ternary composite ma-
terials are compared against pure reduced graphene oxide, a
commonly investigated material for supercapacitor
electrodes, and pure ANF which is known for its mechanical
properties. This allows the utility function to reflect the
change in the performance relative to the highest performing
unary component. ECU describes the capacitance values at 6
different scan rates (ν = 1, 5, 10, 20, 50, and 100 mV s−1) to
take both energy storage and rate capability into account. MU
examines 4 important metrics for structural materials and
combines them with equal weighting. The value of a is cho-

sen to bias the relative importance of electrochemical perfor-
mance against mechanical performance based on the
intended application. For this work, a was set to 0.5.

U = (1 − a)ECU + (a)MU (1)
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2.2 Model development

2.2.1 Data. High quality data are required to form effective
data-driven computational models. The primary source of
data for this work is experimental data generated in-house re-
garding the electrochemical and mechanical properties of
rGO/ANF/CNT composite electrodes. There are many advan-
tages associated with using this dataset. For example, using a
single set of experimental data eliminates many potential
confounding features such as the processing method, slight
variations in characterization techniques, and sample dimen-
sions because many design variables are controlled and held
constant. If external sources of data (regarding the raw mate-
rials or binary composites) were used, additional features
would be needed to properly model the data. This would pre-
vent experimental validation due to the lack of appropriate
processing equipment.

While using one set of experimental data is beneficial,
there are also challenges to this approach. The experimental
data available only explore a small portion of the entire de-
sign space as shown in Fig. 2. This may cause problems in
modeling the entire space because the model will have inac-
curate predictions away from the data heavy corner. However,
it is not necessary to explore the entire design space. Previous

Fig. 1 (a) Component level functional diagram of a typical structural
electrode where ME is mechanical energy, EE is electrical energy, and
CE is chemical energy. In this diagram, the structural electrode can
discharge electrical energy while also safely handling mechanical
loads. (b) Material level system chart of the interactions between the
process, structure, and properties within a composite electrode
consisting of ANFs, graphene, and CNTs.

Fig. 2 Ternary diagram describing the design space for rGO/ANF/CNT
supercapacitor electrodes. Original experimental data are plotted with
red circles while predicted compositions which were then validated
experimentally are plotted with blue circles.
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studies in the area of multifunctional composites showed
that using ANFs or CNTs as additives (in small quantities)
provides a large enhancement in the mechanical and electro-
chemical performance, respectively.33,35,36,39–42,50,53 Also, ex-
ploring high graphene content composites better tailors this
analysis to energy storage applications since graphene acts as
the primary electroactive component in the composite. Re-
ducing the design space to consider only high graphene con-
tent and low ANF and CNT content will provide the best anal-
ysis into multifunctional energy storage devices with the
current experimental dataset available.

2.2.2 Regression. A model was fit to the experimental
data and used to guide future experimental work. These
guided experiments were then used to update the model so
better predictions could be made in the next iteration. A
schematic of this feedback loop is shown in Fig. 3. This syn-
ergistic framework, combining experiments and modeling for
the purpose of optimal experimental design, is inspired di-
rectly by research which has laid the groundwork for efficient
global optimization (EGO) of expensive functions in general64

and, more recently, in materials science.65 In these studies,
Gaussian process models (GPMs) were fit to available data
and then coupled with an optimality metric called expected
improvement (EI) which balances exploration and exploita-
tion of the design space.

In order to effectively create a model from this dataset, ap-
propriate representations of the expected response surface of
such a model must be established. GPMs describe the
expected behavior of the experiment's response surface
according to the sensitivity of the data to each control vari-
able and the (statistical) correlation between points in the de-
sign space. The GPM is a non-parametric model such that
there is no assumed functional form of the solution. As such,
the model avoids the issue of underfitting or overfitting. Sen-
sitivity and correlation are encoded in a “kernel function”
through the use of hyperparameters which represent the
characteristic length and correlation distance of the response
surface, respectively. Selection of the kernel's functional form
(Matern, radial basis functions (RBFs), etc.) is often based on
the expected nature of the response surface a priori. Multiple
kernels were tested and compared based on their predicted
surfaces. With an appropriate kernel and relevant
hyperparameters defined, the GPM was fit to a dataset by
finding hyperparameter values that minimized the error be-

tween the response surface and the data points. The GPM,
with optimized hyperparameters, is then used to predict the
mean and variance of the response surface for the entire de-
sign space. The models are obtained from Scikit-learn, a free
machine learning library. Kennedy et al. also detailed the
Bayesian calibration process employed in Gaussian process
regression.66

Predicted response surfaces of GPMs were then used, in
conjunction with a leave-one-out (LOO) cross validation tech-
nique, to find the most predictive feature set. Four feature
sets (ANFs/rGO, ANFs/CNTs, rGO/CNTs, rGO/ANFs/CNTs)
were analyzed using this technique. In the LOO analysis, one
point was removed from the dataset and the model was
trained on the remaining data. The error of the model was
calculated as the difference between the model's predicted
value and the actual value at the removed point. This process
was repeated until all data points have been sampled. Each
feature set was analyzed with this approach and the resulting
distributions of errors were compared to select the best fea-
ture set. A summary of these analyses is given in the Results
and discussion section.

Once the final GPM and feature set combination were de-
termined, the mean and variance predictions of the model
were used with acquisition criteria to select new potential ex-
periments. The choice of acquisition criteria depends on the
objective of the design problem. Since the objective of this
work was to optimize the performance of a supercapacitor
electrode, criteria that sought the optimum value in a design
space were chosen: upper confidence bound (UCB), probabil-
ity of improvement (PI), and expected improvement (EI). It is
important to note that materials informatics methods can
also be used to identify properties that conflict with the de-
sign goal, as these would also provide valuable knowledge;
however, they are used here to identify the best composition
for future experimental design work.

UCB, the simplest approach, selects new experimental
points by finding the maximum value when the mean and
variance surfaces are added together. While easy to calculate,
UCB has the drawback of a slow convergence rate if the pre-
dicted variance dominates the mean response. PI selects the
next experiment by finding the point in the design space that
has the largest region of probability distribution above a
predefined target value of optimization. This target value is
typically selected as the best point found so far plus a con-
stant value. The magnitude of this constant term determines
the behavior of the search criteria with large values promot-
ing exploration and small values promoting exploitation. The
main issue with PI is the need to select this target offset a
priori. EI extends the idea of PI by including information
about the centroid of the same area considered by PI. By
using the centroid, EI considers both probability and magni-
tude of the improvement.67 This provides a balance between
exploration and exploitation in which points that have lower
probability but larger magnitudes of improvement can be se-
lected over points with higher probability but lower potential
improvement in the response surface. Analysis of these

Fig. 3 Schematic showing feedback between the experimental data
and the computational model. EI is expected improvement and EGO is
efficient global optimization.
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acquisition criteria for this particular design problem can be
seen in section 3.2 below. Finally, the efficacy of EGO to bal-
ance exploration of the design space and exploitation of
promising areas has been thoroughly proven by Jones et al.64

Thus, the model can obtain a global optimality and avoid lo-
cal minima.

All code and data pertaining to this work is available
on Github under the repository titled Design-of-Multifunc-
tional-Supercapacitor-Electrodes-using-an-Informatics-Approach.
(https://github.com/AnishGPatel/Design-of-Multifunctional-
Supercapacitor-Electrodes-using-an-Informatics-Approach).

2.3 Experimental

2.3.1 Electrode characterization. Briefly, rGO/ANF/CNT
electrodes were fabricated using vacuum filtration of a
graphene oxide/ANF/CNT dispersion in dimethyl sulfoxide
(DMSO). The electrodes were dried and thermally reduced to
obtain flexible and free-standing electrodes, Fig. 4a–c. For more
detailed experimental methods, see section S1 in the ESI.†

The composite electrode's thickness was characterized
using scanning electron microscopy (SEM, JEOL JSM-7500F).
Average thicknesses of 15–30 μm were obtained. Cross-
sectional SEM imaging of the composite revealed a tightly
packed and layered structure, Fig. 4d and e. However, the
ANFs and CNTs were not directly observed due to their small
size and low loading in the composite. CNTs were character-

ized using transmission electron microscopy (TEM, JEOL
JEN-2010), Fig. S1.† Samples were prepared by drop casting a
solution of CNTs in DMSO directly onto a TEM grid.

Electrochemical characterization was carried out using cy-
clic voltammetry (CV) on both a Gamry potentiostat and
Arbin instrument (Gamry Interface 1000, Gamry Instruments
and Arbin Battery Testing Instrument). The electrochemical
performance was tested using a two-electrode symmetric coin
cell with 6 M KOH as the electrolyte. The coin cell consisted
of, from bottom to top, a bottom metal covering, carbon pa-
per current collector, electrode, electrolyte, separator (Celgard
3501), electrolyte, electrode, current collector, spacer, spring,
and metal covering. The electrodes were prepared by cutting
a 16 mm circle sample out of the composite electrode. Cyclic
voltammetry was conducted at varying scan rates from a volt-
age of 0 to 1 V. Specific capacitance (F g−1) was calculated
from CV curves using eqn (4), where m is the mass of the two
electrodes (g), ν is the scan rate (V s−1), ΔV is the voltage
range (V), Vl is the low-voltage cutoff (V), Vh is the high-
voltage cutoff (V), and I is the current (A). Fig. 4f shows a CV
curve for an rGO/ANF/CNT composite with 90.25 wt% rGO,
4.75 wt% ANFs, and 5 wt% CNTs at 20 mV s−1. The electrode
stores energy through the electric double layer (EDL) capaci-
tance. This is evident through the lack of redox peaks in the
CV curves and the rectangular shape of the curve, which indi-
cates ideal capacitive behavior.

C
m V

I V V
V

V



 

2


d
l

h (4)

The mechanical performance was evaluated using quasi-
static uniaxial tensile testing using a dynamic mechanical
analyser (DMA Q800, TA Instruments). The electrode was cut
into rectangular strips approximately 2.5 mm in width and
20 mm in height, with thicknesses ranging from 15 to 30 μm.
The electrode samples were gripped using a thin film tension
clamp with a clamp compliance of about 0.2 μm N−1, and the
tensile tests were conducted in controlled strain rate mode
with a preload of 0.02 N and a strain ramp rate of 0.1%
min−1. A typical stress–strain curve of an rGO/ANF/CNT com-
posite with 90.25 wt% rGO, 4.75 wt% ANFs, and 5 wt% CNTs
obtained from tensile testing is shown in Fig. 4g. The me-
chanical properties obtained from the stress–strain curve in-
clude Young's modulus, strength, ultimate strain, and
toughness.

3. Results and discussion
3.1 Feature selection

Utility for the initial experimental data was calculated using
eqn (1)–(3) with an a value of 0.5, indicating equal weighting
of both the electrochemical and mechanical utility. The rela-
tionship between the three features (rGO wt%, ANF wt%, and
CNT wt%) and utility is shown in in Fig. 5a–c. This shows
that the regression model can be used to establish a direct
link between composition and performance. The features

Fig. 4 Digital images of (a) an rGO electrode and (b and c) an rGO/
ANF composite electrode (no CNTs). Cross-sectional SEM images of
(d) an rGO/ANF electrode without CNTs (95/5 wt% rGO/ANFs) and (e)
with 20 wt% CNTs (76/4/20 wt% rGO/ANFs/CNTs). (f) A representative
cyclic voltammogram and (g) a typical stress–strain curve for an rGO/
ANF/CNT composite electrode (90.25 wt% rGO, 4.75 wt% ANFs,
5 wt% CNTs).
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that are selected all affect the value of utility in a noticeable
way. However, a single feature alone cannot explain the utility
values and cannot capture the design space. For example,

from Fig. 5c, which focuses on CNT wt% as the single fea-
ture, it is evident that multiple samples with 0 wt% CNT have
different utility values and that additional information from
other features would be required in order to accurately pre-
dict the behavior of the composites. This can also be seen
with ANF wt% as a feature, Fig. 5b. Feature selection is re-
quired to find the best combination of features that can
model the design space. Lookman et al. also found that com-
position dependent features can be used to predict perfor-
mance and guide experimental exploration of the design
space.65,68

Feature selection was used to find the most predictive fea-
ture set. Four combinations of the three features (ANF/rGO,
ANF/CNT, rGO/CNT, rGO/ANF/CNT) were tested using leave-
one-out cross validation, as shown in Fig. 5d. The unary fea-
ture sets were disregarded due to their inability to describe
complete compositions. Unary feature sets would prevent ex-
perimental validation of predicted compositions. Each fea-
ture set performed almost identically. The leave-one-out error
for the complete feature set (rGO/ANF/CNT) was 19.9% while
the errors for the feature sets ANF/rGO, ANF/CNT, and rGO/
CNT were 19.6%, 20.1%, and 19.3%, respectively. The unifor-
mity in errors is expected because all four feature sets con-
tain enough information to define the entire system in terms
of composition due to mass conservation constraints. The
complete feature set with all three features (rGO wt%, ANF
wt%, and CNT wt%) was used as it contained the most infor-
mation and performed as good as the other feature sets.
Leave-one-out cross-validation trains the model by using all
the experimental data except for one data point and then vali-
dates using the data point that was initially left out. This is
then repeated until each data point is used to validate the
feature set. Analysis of variance (ANOVA) was used to com-
pare the variance between the 4 feature sets. There was no
statistical difference between the errors of the different fea-
ture sets meaning that the averages of the errors of the four
feature sets obtained using leave-one-out cross validation are
all equal.

3.2 Response surface

After considering multiple kernels, a combination of two RBF
kernels with different characteristic length limits was chosen
to allow the hyperparameter optimization subroutine to iden-
tify multiple characteristic frequencies of the response sur-
face. In other words, the use of these two RBF kernels allows
the response surface and acquisition criteria to balance ex-
ploration and exploitation. The two kernels prevent the
model from being trapped in local maxima but limit explora-
tion so that the potential absolute maxima can be identified
properly. A predictive model of the utility, calculated using
this kernel, was obtained using the regression techniques de-
scribed in section 2.2.2 and using the initial experimental
data. Plots of this utility and standard deviation vs. electrode
composition are displayed in Fig. 6 with the design space de-
fined as 0–30 wt% ANFs, 0–30 wt% CNTs, and 70–100 wt%

Fig. 5 Utility values for the features (a) GO wt%, (b) ANF wt%, and (c)
CNT wt% for each experimental data point. (d) Leave-one-out cross val-
idation error of four different feature sets. Boxes are a statistical repre-
sentation of the distribution of errors for each feature set. The top and
bottom lines are the maximum and minimum data points, the top and
bottom of the box are the 75th and 25th percentile markers, the middle
line is the median, and the point within the box is the mean.
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graphene. The model indicates that the utility is highest for
high rGO loading (>95 wt%). However, the model also shows
the potential for promising compositions near 80 wt% rGO, 5
wt% ANFs, and 15 wt% CNTs. This is most likely because
high rGO loading will lead to high capacitance values as it is
the main contributor in the composite due to its high surface
area and electrical conductivity. CNTs can also contribute to
the capacitance of the electrode while also potentially
imparting improved mechanical properties due to strong π–π

interactions between the CNTs, rGO, ANFs. Finally, adding
ANFs in small amounts will slightly reduce the specific capac-
itance of the electrode as it is an electrically insulating mate-
rial and will not contribute to the capacitance. However,
ANFs will greatly improve the mechanical properties by
strongly associating with the rGO sheets through hydrogen
bonding and π–π stacking.

The three acquisition criteria, expected improvement (EI),
probability of improvement (PI), and upper confidence bound

(UCB) (white star, blue square, and green triangle, respec-
tively, in Fig. 6b and c), all point to different locations on the
utility surface. UCB (green triangle) indicates the point that
has the maximum possible utility value when examining both
the mean and variance, PI (blue square) describes the highest
probability of improvement, and EI (white star) takes both
the probability and magnitude of improvement into consider-
ation. In this work, EI is selected as the acquisition criterion
instead of PI due to its lack of sensitivity to the target offset
value. The selection points for PI and UCB are plotted in
Fig. 6b and c along with EI selection points for comparison.
Both UCB and EI recommend testing in areas that have high
variance, or areas that have not been experimentally probed.
This is because the model requires more information across
the design space (exploration) before it can begin to search
for a maximum (exploitation). PI indicates a composition
near the highest experimental utility composition because it
exhibits a high chance of very minor improvement. The EI
predicted optimal composition for the first iteration was 74
wt% rGO, 14.5 wt% ANFs, and 11.5 wt% CNTs. As shown in
Fig. 3, the predicted composition was synthesized experimen-
tally and its mechanical and electrochemical properties were
characterized according to the methods described in sections
2.3 and S1.† The properties of the new composition are then
used to update the mean and variance of the utility predic-
tions. This process constitutes one iteration and is repeated
to find the composition with the highest utility.

The first iteration was found to have the highest utility of
the predicted compositions of U = 0.875 for 74 wt% rGO, 15.5
wt% ANFs, and 11.5 wt% CNTs, Fig. 7b. Not only that this
was the highest predicted utility, but it was also higher than
the utilities obtained from the initial experimental data. The
model was able to find a composition that had a 5.5% im-
provement in utility over the best performing composite
(92.625 wt% rGO, 4.875 wt% ANFs, and 2.5 wt% CNTs) from
the initial experimental data. The new composition also had
a Young's modulus of 18.9 GPa and a strength of 66.3 MPa,
which corresponded to an increase of 78.8% and 34.0%, re-
spectively, relative to the highest performing initial experi-
mental composition. However, the capacitance at 1 mV s−1

was 117.2 F g−1, representing a 29.6% decrease. This is
because the model equally weights the mechanical and
electrochemical performance while the initial experimental
data prioritize the electrochemical performance over the me-
chanical performance due to being focused around high rGO
loadings.

The model next explored relatively high ANF content com-
positions (such as 70 wt% rGO, 22 wt% ANFs, and 8 wt%
CNTs) only to find the utility in those areas to be fairly low.
This is due to the low surface area of the electrically conduc-
tive material in the composite resulting from the low rGO
content. This caused low capacitance values and poor cycle
stability leading to a reduced ECU. The model then
recommended relatively high CNT content compositions (such
as 70 wt% rGO, 0 wt% ANFs, and 30 wt% CNTs). While the
high CNT content electrodes performed well electrochemically

Fig. 6 Three-dimensional plot of (a) utility and contour plots of (b)
utility and (c) standard deviation vs. composition. Circular points
represent the initial experimental data while the star, square, and
triangle represent recommendations from the model based on either
expected improvement (EI), probability of improvement (PI), or upper
confidence bound (UCB), respectively.
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(due to the CNTs contribution to the capacitance), the
mechanical properties were found to be low due to the lack
of a mechanical nanofiller. This led to reduced interactions
between the electrode components and a reduced mechanical
utility.

After 6 iterations, the utility surface predicted using the
model, Fig. 7a, changed drastically as compared to the pre-
dicted utility using only the initial experimental data, Fig. 6a.
These results are significant because we were able to find the
highest utility composition (74 wt% rGO, 15.5 wt% ANFs,
and 11.5 wt% CNTs) in an area of the design space that
would not have been explored as rapidly when using only
experimental approaches. The use of materials informatics
reduced the number of experiments that would have been re-
quired to find this optimal composition when compared to
systematically exploring the design space. Furthermore, the
model gives additional insight into the trade-offs between
the electrochemical and mechanical performance when con-
sidering composite materials by predicting maxima and min-
ima in the response surface at certain compositions.

Conclusions

In summary, functional analysis was used to identify the vari-
ables that control the electrochemical and mechanical prop-
erties of a composite electrode. This process provided valu-
able information regarding what properties (electrode
composition, capacitance, Young's modulus, strength, ulti-
mate strain, and toughness) would be of interest in this
work. This method has great potential in other areas of mate-
rials science by identifying key aspects of a materials problem

that controls desired performances or outcomes. The use of
this approach can also aid in the discovery and understand-
ing of functional relationships in a materials problem which
can lead to more accurate solutions that directly target the
appropriate inputs. With these properties, a utility function
was developed for evaluating the performance of the
multifunctional material. The utility incorporated material
properties such as specific capacitance, strength, Young's
modulus, ultimate strain, and toughness. These properties
were combined in a weighted fashion to allow for adaptation
to user preferences of the electrode's electrochemical or me-
chanical properties. Next, feature selection, using leave-one-
out cross validation, was performed to find the subset of fea-
tures that captured the response surface most accurately.
From this feature set analysis, a Gaussian process regression
model that used rGO wt%, ANF wt%, and CNT wt% as fea-
tures was selected and fitted to the data by tuning the
hyperparameters. EI was used as the acquisition method for
predicting the next best composition to test experimentally.
After 6 iterations, the model identified a maximum in the de-
sign space in a previously unexplored area. The model was
able to find a composition with a higher overall utility (5.5%
increase), Young's modulus (78.8% increase), and strength
(34.0% increase) than the best initial experimental composi-
tion. This approach can be used to map out the design space
in an optimal manner reducing the number of experiments
required to find the optimal combination of rGO, ANFs, and
CNTs for multifunctional structural energy and power.
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