Lab on a Chip

CORRECTION

View Article Online

Cite this: Lab Chip, 2019, 19, 2619

Correction: UniChip enables long-term recirculating unidirectional perfusion with gravitydriven flow for microphysiological systems

Ying I. Wang (1) and Michael L. Shuler (1)*ab

DOI: 10.1039/c9lc90073i

rsc li/loc

Correction for 'UniChip enables long-term recirculating unidirectional perfusion with gravity-driven flow for microphysiological systems' by Ying I. Wang and Michael L. Shuler, Lab Chip, 2018, 18, 2563-2574.

The authors regret that the reference to eqn (7) in the sentence beginning "UCNs can maintain continuous unidirectional flow..." in section 3.4 should instead be a reference to eqn (12). The corrected sentence reads: "UCNs can maintain continuous unidirectional flow $(A_i \rightarrow B_i)$ with no backflow) even when inlet and outlet (O_1) and (O_2) swaps if eqn (12) is satisfied."

In addition " $a_i \rightarrow b_i$ " in the last sentence of the caption of Fig. 8 should read " $A_i \rightarrow B_i$ ". The corrected caption is included below.

Fig. 8 Schematic of UniChip design in general. The fluidic network includes a pair of inlet/outlet (O_1/O_2) for reciprocating flow input, one or more unidirectional channel network (UCN, U_1 , U_2 , ..., U_n), and a supporting channel network (SCN, a_1 , a_2 , ..., a_n , and b_1 , b_2 , ..., b_n) including valving devices $(v_1 \text{ and } v_2)$. Fluid flows in UCN from inlets to outlets $(A_i \rightarrow B_i, i = 1, 2, ..., n)$.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^a Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853-7202, USA. E-mail: mls50@cornell.edu; Fax: +607 254 5375;

^b Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA