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Flow sculpting is a powerful method for passive flow control that uses a sequence of bluff-body structures

to engineer the structure of inertially flowing microfluidic streams. A variety of cross-sectional flow shapes

can be created through this method, offering a new platform for flow manipulation or material fabrication

useful in bioengineering, manufacturing, and chemistry applications. However, the inverse problem in flow

sculpting – designing a device that produces a target fluid flow shape – remains challenging due to the

complex, diverse, and enormous design space. Solutions to the inverse problem have been constrained to

single-material fluid streams that are shaped into top–bottom symmetric shapes due to the bluff-body

structures available in current libraries (pillars) that span the height of the channel. In this work, we intro-

duce multi-material design and symmetry-breaking flow deformations enabled by half-height pillars,

presented within an extremely fast simulation method for flow sculpting yielding a 34-fold reduction in

runtime. The framework is deployed freely as a cross-platform application called “FlowSculpt”. We detail its

implementation and usage, and discuss the addition of enhanced search operations, which enable users to

more easily design flow shapes that replicate their input drawings. With FlowSculpt, the microfluidics com-

munity can now quickly design flow shaping microfluidic devices on modest hardware, and easily integrate

these complex physics into their research toolkit.

1 Introduction

Shaping inertial microfluidic flow using sequences of pillar
structures has recently gained traction in the microfluidic
community as a method for passive fluid flow engineering.
When laminar fluid flow with finite inertia (1 < Re < 100,
with the Reynolds number Re = ρUDh/μ, for fluid density ρ,
characteristic velocity U, viscosity μ, and channel hydraulic di-
ameter Dh) moves past a pillar in a microchannel, induced
secondary flow alters the cross-sectional fluid shape in a
time-invariant deformation to the structure of the flowing
fluid.1 Using this concept as a fundamental building block, a
sequence of intelligently placed obstructions in a micro-
channel can produce a desired net flow deformation – a pro-
cess we call “flow sculpting” (see Fig. 1(a)).

Flow sculpting enables new levels of passive flow control
for a wide range of applications at the microscale. For exam-
ple, although the fluid itself will be manipulated by a se-
quence of well-spaced micropillars, larger finite-sized parti-
cles may experience practically negligible deflection from
their initial cross-sectional location in the stream.1 This en-
ables carrier fluid to be shifted away from focused streams of
particles or cells, which can be leveraged for solution transfer
or high-throughput extraction.2 Advanced manufacturing pro-
cesses are also enabled, with continuous-flow lithography cre-
ating multi-material polymers with 3D cross-sections, altering
their mechanical or functional properties.3 This can be ex-
tended via stop-flow like processes to create shaped 3D parti-
cles at millimeter4 and micrometer5,6 scales, which have ap-
plications in cell culture and analysis, tissue engineering,
protein analysis, and additive manufacturing.7 We envision
future use of flow sculpting in biology and chemistry related
applications by utilizing its unique ability to passively manip-
ulate the cross-sectional distribution of fluid elements. For
example, novel multi-material chemical concentration gradi-
ents could be generated in flow (or in UV-cured bio-compati-
ble hydrogels) to study cellular chemotaxis.8,9 Laminar flow
reactions from co-flowing streams could be enhanced by opti-
mizing micropillar sequences to maximize mixing while
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minimizing pressure drop, potentially avoiding issues with
clogging in standard chaotic micromixers.10 Microfluidic bio-
sensors could be designed that use a micropillar sequence to
concentrate a rare target analyte toward a sensor embedded
within a microchannel.11

Despite the apparent simplicity of incorporating inertial
flow sculpting within a microfluidic device (adding cylindri-
cal pillars), the difficulty and tedium in designing an appro-
priate pillar sequence makes its implementation more diffi-
cult in practice. Many current applications of flow sculpting
were devised and implemented by inertial microfluidics ex-
perts, and even then, they sculpted relatively simple flow
shapes that were achieved through trial-and-error design. A
clear example of this difficulty is particle fabrication via flow
sculpting, which remains competitive with state-of-the-art
methods such as PRINT,12 SEAL,13 two-photon lithography,14

and hollow fiber templating15 due to the ability to create
multi-material shaped 3D particles at high-throughput using
basic microfluidic tools such as soft lithography16 and 3D
printing.6 However, the flow sculpting approaches currently
require the target 3D particle shape to comprise of the inter-
section of two orthogonally extruded 2D shapes: one from
the shape of the sculpted flow stream (which contains a poly-
mer precursor with a photoinitiator), and the other from an
optical mask (which shapes polymerizing ultraviolet light).
Such 3D particle shapes are thus limited not only to what is
physically possible through inertial flow sculpting, but more
practically, to a designer's ability to correctly arrange a se-
quence of pillars and inlet flow pattern to sculpt a desired
cross-sectional flow shape. This highlights the broad neces-

sity for a user-friendly tool to rapidly and accurately explore
what flow deformations are possible, and aid multi-disciplin-
ary, non-expert users in efficiently designing flow sculpting
devices tailored to their needs.

Challenges typically encountered in modeling inertial
flows (i.e., nonlinearity in the governing equations, and
fluid–structure interaction17) are significantly reduced in flow
sculpting by the ease with which devices leveraging these
physics can be simulated: if the distance between pillars is
large enough to prevent cross-talk, each obstacle acts as an
independent operator on the distribution of fluid elements
within a channel cross-section. This allows for a library of
pre-computed flow deformations known as advection maps
(see Fig. 1(b)) to be rapidly concatenated for real-time flow
simulation, as demonstrated in the freely available software
“uFlow”.18,19 uFlow is a powerful visualization tool for manu-
ally exploring inertial flow sculpting, allowing users to rapidly
build intuition with the complex design space. However,
using uFlow to solve the inverse problem in flow sculpting –

designing a flow sculpting device that produces a target fluid
flow shape – is a monumental task given the enormous com-
binatorial difficulty, which is compounded by the nonlinear
physics of flow sculpting.

Consider a library of 32 pre-computed deformations as
used in uFlow in our previous exploratory work.18 These 32
deformations were simulated for pillar geometries consisting
of four diameters of d/w = {0.375, 0.5, 0.625, 0.75} (for channel
width w), and eight locations uniformly spanning the width of
the channel, at Re = 20 and channel aspect ratio h/w = 0.25
(for channel height h). Complex fluid flow structures were

Fig. 1 Overview of flow sculpting. (a) A sequence of obstacles (pillars) deforms an inlet flow pattern (sculpted flow is colored blue and orange),
with each obstacle contributing its own flow deformation to the overall net deformation at the outlet. In this illustration, the inlet flow pattern is a
central stream of a width w/5 for a microchannel width w. (b) To accelerate flow sculpting device simulations, advection maps are created for a
library of pillar geometries (shown is the advection map and flow deformation for a pillar of diameter d/w = 0.5 and lateral location y/w = 0.0),
making whole-device simulation a matter of sampling stored 2D vector fields. Note the top–bottom symmetry in the advection map and flow de-
formations, due to the pillar spanning the height of the channel. For this figure, the channel aspect ratio is h/w = 0.25 and Re = 20.
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demonstrated for sequences up 12 pillars in length,18 of
which there are 3212 ≈ 1018 possible pillar sequence configu-
rations. The swirling, vortical nature of flow sculpting's advec-
tion maps further complicates design, where seemingly
straightforward flow shapes may require an unintuitive path-
way of intermediate structures that ultimately yields the de-
sired result. Combined with the choice of how the fluid flow
shape is configured at the microchannel inlet (called the inlet
flow pattern, seen in Fig. 1(a)), a manual search for a particu-
lar flow deformation quickly becomes impractical. In fact, an
analogous problem of choosing some set of nonlinear state
transformations to match a desired net transformation has
been shown to be NP-hard§ (nondeterministic polynomial
time hard).20 Hence, an automated – and possibly heuristic
optimization – routine is required to make flow sculpting de-
sign accessible to the broader microfluidics community.

Heuristic searching methods have proven effective in solv-
ing inverse problems with discrete, non-differentiable, and
multimodal design spaces.21,22 In particular, the genetic algo-
rithm (GA) has been shown to successfully optimize system
geometry and operating conditions for fluid flow
problems,23–26 including flow sculpting.27,28 The GA is based
on the mechanisms of natural selection, where a population
of candidate solutions randomly mutate and exchange design
parameters according to stochastic selection and genomic
modification processes, all attempting to maximize their in-
dividual fitness.29 This technique was first employed for flow
sculpting by Stoecklein et al.27 to optimize pillar sequences
for known fluid flow transformations, and search for arbi-
trary hand-drawn flow shapes. However, this framework had
a very limited scope with considerable drawbacks: the appli-
cation utilized commercial software (MATLAB) for deploy-
ment, users were required to specify the inlet design, the ob-
jective (fitness) function was a simple pixel-to-pixel image
comparison on binary-valued images, and runtime was less
than ideal at ≈24 hours per search. A 2nd generation GA
framework for flow sculpting was created,28 improving on
some of these shortcomings with a freely available software
“FlowSculpt”. The FlowSculpt software included a customized
GA framework that allowed for GA-designed inlet flow pat-
terns and a reduced runtime of ≈2 hours, within a simple
graphical user interface (GUI).

Still, the platform lacked sufficient features and utility to
enable microfluidic researchers to employ flow sculpting in
cutting-edge microfabrication approaches. Specifically, design
was limited to single-material, top–bottom symmetric flow
shapes. The ability to locally functionalize the surface of
micro-particles or fibers with different materials is a signifi-

cant strength of flow sculpting,5 but with single-material de-
sign (i.e., one color of sculpted fluid), users must first find a
desired (single-material) shape, and then manually modify
the inlet flow pattern to attain their intended material (color)
distribution. Additionally, the use of pillars spanning the
height of the microchannel enforced top–bottom symmetry
in all flow deformations.¶ Runtime for the 2nd generation
FlowSculpt is also quite lengthy at 2 hours, making rapid de-
sign iterations tedious and less approachable. This is exacer-
bated by the use of a pixel-to-pixel correlation objective func-
tion, which matches sculpted flow to the precise pixel
locations in the target flow shape. This often leads to re-
peated design iterations, as a target flow shape may only be
possible in a particular region of the cross-section, requiring
the user to laterally shift target flow shapes based on the re-
sponse from an initial guess. Finally, restricting flow to a sin-
gle Reynolds number and aspect ratio can hinder the broad
application of flow sculpting while constraining the design
space: Amini et al.1 established that varying either of these
parameters (Re and h/w) can dramatically alter the flow defor-
mation for a fixed pillar geometry (constant d/w, y/w), imply-
ing that a fully-featured tool for design in flow sculpting
should allow variation of these terms.

In this work, we introduce multi-material design along with
describing new asymmetric flow physics, and ameliorate all
previously described shortcomings to the FlowSculpt frame-
work. Simultaneous multi-material design is achieved with a
new fluid state representation and objective function, and fully
asymmetric flow sculpting is enabled by the use of half-height
pillars, allowing deformations with both non-mirror symmetric
vertical and lateral displacement of fluid. We couple this asym-
metric design component to the FlowSculpt software with a
new library of advection maps, including multiple channel as-
pect ratios and Reynolds numbers. We showcase fully asym-
metric, multi-material inertial flow sculpting by using
FlowSculpt with a continuous inlet flow pattern, demonstrating
a variety of newly available flow stream topologies, and design-
ing letters of the Roman alphabet from sculpted fluid, the lat-
ter of which we experimentally validate with confocal images of
sculpted flow from fabricated devices. These advances are inte-
grated with a 3rd generation of the FlowSculpt framework,
which brings significant runtime improvements, design export
functionality, and a rebuilt graphical user interface (GUI). We
begin with a discussion of how devices are modeled within
FlowSculpt, followed by a description of the new multi-mate-
rial, symmetry-breaking flow physics, and asymmetric design
capabilities. We then give an overview of how these compo-
nents are implemented in the FlowSculpt software, and finish
with benchmarks and experimental validation of the new flow
physics.

§ The inverse problem in flow sculpting as defined in this work is in fact more
difficult than that of ref. 20, as the target here is a scalar-valued result of an un-
known (perhaps impossible) transformation, rather than the transformation it-
self. Here, it is unknown what state the flow must begin in, nor the route to
their desired shape – only how we want the flow to appear at the end of a pillar
sequence.

¶ Paulsen and Chung obviate this restriction by using mismatched densities in
their sculpted streams.30 This approach, while elegant, makes design much
more tedious, and confines asymmetric flow sculpting to stopped-flow
applications.
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2 Modeling of flow sculpting devices

FlowSculpt's genetic algorithm relies on a forward model to
generate a flow shape image for each candidate solution,
which is evaluated within a fitness function – a process that
is repeated many times throughout a single search. Hence, it
is critical that the forward model accurately represents real-
world device performance while executing quickly in silico.
The forward model used in FlowSculpt computes net fluid
displacement for a flow sculpting device by marching in se-
quence from pillar to pillar, sampling each pillar's advection
map and displacing a set of cross-sectional fluid elements ac-
cordingly. Note that this method – and the entire scope of
flow sculpting – is based on manipulating the cross-sectional
structure of flowing single-phase Newtonian fluid, and does
not predict how immiscible materials or finite-sized particles
will behave. This method of device simulation has been well-
validated in our previous work.1,18,27 Here, we significantly
improve the speed of FlowSculpt's forward model (by a factor
of 34) without loss of accuracy, and enable multi-material de-
sign, by the use of index maps. We first discuss advection
map generation and the forward model, and then describe
the implementation of index maps.

2.1 Advection map generation

Advection maps are 2D vector fields describing the net lateral
displacement of fluid flowing through a 3D microchannel do-
main (see Fig. 1(b)). Previously, FlowSculpt used advection
maps created from simulated 3D domains containing pillars
spanning the height of the microchannel, with normalized
diameter d/w and location y/w for microchannel width w. In
theory, any structure which induces secondary flow can be
used, as long as it conforms to the constraints of flow
sculpting. These constraints – necessary for accurate predic-
tions of sculpted flow in our forward model – are enumerated
here:

1. Each structure-induced flow deformation must be com-
pleted before the fluid begins to interact with neighboring
pillars (i.e., no cross-talk).

2. The structure-induced flow deformation must not vary
in time (e.g., no periodic motion or shed vortices).

3. For a set of obstacles to be used in a flow sculpting se-
quence, each neighboring obstacle's domain must match
flow conditions (Re) and channel geometry (h/w).

These rules for flow sculpting allow a broad set of usable
flow physics and geometry. To generate advection maps, we
solved the 3D Navier–Stokes equations using our experimen-
tally validated in-house finite element method (FEM) soft-
ware18,27 and the Gmsh meshing software31 for a multitude
of microchannel and pillar geometries, and Reynolds num-
bers, as described below. Each simulated 3D domain has
≥2d/w of empty channel spacing upstream of the pillar, and
≥6d/w spacing downstream, which allows flow deformation
to saturate before exiting the domain.1 The resulting 3D ve-
locity fields are then streamtraced with neutrally buoyant, in-
finitesimal particles, yielding 2D cross-sectional fluid dis-

placements – an advection map – for each flow sculpting
component.

2.2 The forward model

The forward model predicts how a sequence of flow sculpting
components will deform an inlet flow pattern (see Fig. 1(a)).
Computing the flow deformation caused by each sculpting
component starts with a costly 3D CFD simulation (described
above) which is reduced to a 2D advection map. The forward
model then computes fluid displacement by sampling a li-
brary of advection maps in sequence. Stoecklein et al.27 fur-
ther reduced the complexity of flow shape simulation by
discretizing the microchannel cross-section into a set of cells
representing fluid elements as binary states (either 1 for
sculpted flow, or 0 for co-flow). In this scheme, advection
maps are converted into sparse transition matrices which de-
scribe how fluid will transition from one discretized cell to
another.27,28 Simulating a flow sculpting device then becomes
a matter of linear algebra, with matrix–matrix multiplication
producing a net transition matrix, which can be multiplied
by a 1D vector representing the (reshaped) inlet flow pattern,
returning a 1D vector representing the outlet fluid states. The
vector can be reshaped back into a 2D matrix and processed
as an image, with each fluid cell being a pixel.

This approach is easily ported to various CPU or GPU ar-
chitectures, and readily pipelined directly into optimization
routines. However, a tradeoff is made between speed and ac-
curacy based on the number of fluid cells in the discretized
cross-section. For a coarse discretization of fewer (but spa-
tially larger) cells, the number of linear algebra operations
are minimized, thus making for a faster forward model.
Larger fluid cells could mean a significant loss of informa-
tion in the advection data, as the characteristic size of the
cells determines the degree to which more subtle fluid flow
displacement is captured in the transition matrix. On the
other hand, a high resolution discretization with smaller
fluid cells will retain more information, but at the cost of ad-
ditional operations during flow sculpting simulation. We pre-
viously27 conducted a study of discretization resolution by
comparing information degradation vs. speed for the advec-
tion maps used in FlowSculpt, and found that for micro-
channel aspect ratio h/w = 0.25, a resolution of NY = 800 cells
along the width of the channel and NZ = 200 cells along the
height gives a satisfactory tradeoff between accuracy and
speed.

There are additional tradeoffs in describing continuous
fluid displacements – each having a unique time-of-flight
through the 3D domain – using a discrete grid. Consider
fluid streamlines in a forward direction from inlet-to-outlet
in a 3D domain containing a flow-deforming pillar: some
fluid parcels at different inlet cells will displace to the same
cross-sectional cell at the outlet, due either to information
loss in converting from continuously-valued advection to a
discrete transition, or different fluid arrival times. This po-
tential for a many-to-one mapping results in an apparent
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increase in the density of tracked fluid at destination cells,
while “empty” cells are formed in neighboring regions, creat-
ing a pockmarked image that poorly represents a sculpted
fluid's real-world continuous shape, and making image com-
parison algorithms less useful. In our previous work,27 we
used outlet-to-inlet streamtraces (reverse advection) to create
a one-to-one mapping that “pulls” fluid from a cross-
sectional distribution at the inlet into a uniformly discretized
grid at the outlet. This creates flow shapes with a continuous
(filled) shape, but allows fluid to displace from one cell at
the inlet into two (or more) cells at the outlet, potentially in-
creasing the apparent fluid mass. However, since our overall
goal is based on flow shape comparisons to a target image,
the loss of perfect mass conservation is not at all detrimental
when compared to the boost in image quality (though other
measures that consider material concentration, for example,
would suffer).

It is important to note that the CFD simulations that cre-
ate the advection maps used in FlowSculpt's forward model
are non-dimensional, scaling by the Reynolds number, Re,
using the channel hydraulic diameter DH as the characteristic
length. Therefore, the predictions of the forward model (and
designs created by FlowSculpt) can be used at any lengthscale
where the relevant physics are matched. That is, Re should
match for Newtonian fluids used in simulation and experi-
ment, and the Péclet number Pe = UDH/D (with material dif-
fusivity, D), which represents the balance between advection
and diffusion in flow, should be large enough reflect the
diffusion-free predictions from the forward model.

2.3 Fast index maps and multi-material design

In this work, the fluid advection operation is further reduced
into a one-to-one index mapping. Rather than using the ma-
trix–vector multiplication scheme from our previous forward
models, we leverage the one-to-one mapping inherent to re-
verse advection streamtracing to create index mappings,
which relay the same displacement information as a transi-
tion matrix, but in a simple 1-dimensional (1D) vector. For a
set of uniformly discretized cells A = {ai} in an inlet cross-
section (flattened into a 1D array), and the corresponding
output cross-section B = {bj}, we define an index mapping f: A
→ B that relates an output cell index j in B to an input cell in-
dex i in A. A transition for a given mapping f and input cross-
section a is performed by computing

bj = af(j)

For all bj in the outlet cross-section. The function f is one-to-
one since each output index has exactly one input index.
Fig. 2 shows this mapping visually.

Index mappings provide the same black-box forward
model the previously used transition matrices, but with less
computation. Instead of performing matrix–matrix multipli-
cation, which in general has a worst case runtime complexity
greater than  n2  ,32 the index mapping method is essen-

tially a lookup table, with a runtime complexity33 of  1 .
Moreover, the use of a lookup table over matrix–matrix multi-
plication allows for arbitrary value types to be used for fluid
states, enabling simple multi-material design. We now allow
integer values 0 through 5 to populate the fluid states, where
each value is considered a separate neutrally buoyant mate-
rial within the fluid. We emphasize that this is not modeling
a multi-phase system, and that each material used should
have similar physical characteristics (e.g., miscibility, viscos-
ity, and density), as the forward model treats each material
equally.‖

This kind of similar-property, multi-material flow
sculpting has been demonstrated in ref. 5 and 16, where ad-
jacent flow streams of polyĲethylene glycol) diacrylate and
polyĲethylene glycol)-acrylate-biotin were sculpted to create 3D
shaped microparticles with biotinylated surfaces, enabling
functionalization via streptavidin-linked functional groups
(e.g., incubating biotinylated microparticles with streptavidin
and biotinylated collagen to create microcarriers for collagen-
receptive cells16). In ref. 5, two materials of varying viscosity
(Norland Optical Adhesive 89 and triethylene glycol
dimethacrylate) were co-flowed, creating microparticles with
some small error in comparison to their predicted flow
shape, hinting that some discrepancies between material vis-
cosity can be allowed. In these works, the flow shapes were
designed in a manual fashion, either by adjusting the pillar
sequence and inlet flow pattern simultaneously using the
uFlow software,5 or by first finding the desired flow shape,
and then tuning the inlets in the hopes of preserving the de-
sired spatial distribution of material in the final sculpted
flow shape.16 FlowSculpt's multi-material model does away
with this tedium, simultaneously optimizing flow shape and
material distribution in a fast, automated framework.

2.4 The FlowSculpt library

FlowSculpt's advection maps previously sampled from a li-
brary of pillars of a height hp/h = 1.0 (for pillar height hp and
channel height h) at a fixed channel aspect ratio h/w = 0.25,

Fig. 2 Diagram depicting the operation performed by an index
mapping on a 1D vector of eight fluid states (colored blue and orange
to show tracked fluid) from inlet to outlet. In addition to significantly
improved speed, index maps enable simple multi-material design.

‖ Fluids are assumed to be nearly identical, with negligible interfacial tension.
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and fixed Re = 20, thus limiting cross-sectional flowshapes to
have symmetry across the horizontal mid-plane (see Fig. 1),
and restricting the flow physics based on Re and channel con-
finement. Below, we describe FlowSculpt's expanded set of
flow transformations and their impact on the design space.

2.4.1 Half-pillars and additional Reynolds numbers. We
break horizontal mid-plane flow shape symmetry by adding
partial-height pillars for which hp/h = 0.5 (see Fig. 3) to
FlowSculpt's library of flow deformations. While additional
pillar heights would provide more diversity in the design
space, we focused only on half-height pillars for now, in or-
der to simply break symmetry while retaining a degree of
control over local flow disturbances akin to full-pillars.
Moreover, mixing-and-matching pillar heights in multi-stage
lithography greatly increases the complexity in fabrication,
though it could be more easily accomplished as 3D printing
precision improves. We define the two pillar geometries as
full-pillar (hp/h = 1.0) and half-pillar (hp/h = 0.5). For each
type, we simulated 3D flow fields for pillar locations
spanning y/w = [0 : 0.125 : 0.5], with y/w = 0 being the center
of the microchannel (pillars for which y/w < 0 simply mir-
ror their counterparts across y/w = 0). Pillar diameters for
full-pillars were d/w = {0.375, 0.5, 0.625, 0.75}, while half-
pillars used the same set, but appended with two larger
diameters d/w = {0.875, 1.0}. Four different Reynolds num-
bers were computed (based on hydraulic diameter, as de-
fined prior in the text) for each geometry: Re = {10, 20, 30,
40}. Analysis of deformation saturation length Ls for half-
pillar simulations determined the same guidelines of full-
pillars, which require downstream inter-pillar spacing Ls ≥
6d/w.

Secondary flows induced by half-pillars tend to affect fluid
primarily in the lower-half of the channel near the pillar.
However, full-width (d/w = 1.0, depicted in Fig. 3) half-pillars
force all of the fluid into the top-half of the channel as it

flows past the pillar, with fluid entering the bottom-half of
the channel first at the point where the pillar's geometry is
tangent to another surface – either the channel walls (for
y/w = 0.0 – see Fig. 3(a)), or where the pillar meets its periodic
counterpart (e.g., in the middle of the channel for y/w = 0.5 –

see Fig. 3(b)). In examining the d/w = 1.0, y/w = 0.0 geometry,
the full-width pillar's edge is tangent with both channel
walls, allowing fluid to re-enter the lower half of the channel
near the walls before fluid passes over the center-line edge of
the pillar, which creates a secondary flow forcing fluid from
the walls to the center of the channel, and then up toward
the top-wall of the channel (see the advection map and flow
deformations in Fig. 3(a)). Conversely, for d/w = 1.0 and y/w =
0.5 (with periodic geometry) fluid re-enters the lower half of
the channel in the center, with its inertia forcing displace-
ment out toward the walls (Fig. 3(b)). Overall, these full-width
half-pillar flow deformations introduce a powerful set of
transformation to the flow sculpting toolkit, for which we
show experimental validation in Fig. 3. As we will see, these
effects are diminished in higher aspect-ratio channels, but at
h/w = 0.25, the unique forcing of fluid toward the upper or
lower surfaces of the channel could be exploited for enhanc-
ing the efficiency of sensors embedded in the micro-
channel,34,35 for example.

2.4.2 Increased channel aspect ratios. Preliminary work in
flow sculpting showed that varying channel aspect ratios and
Re will alter the mode of advection, changing the distribution
and strength of induced secondary flows.1 FlowSculpt now
gives access to multiple channel aspect ratios h/w = {0.25, 0.5,
1.0} (for channel height h and width w) and Re = {10, 20, 30,
40}. A variety of deformations are shown in Fig. 4, where pil-
lar geometries using the same blockage ratio β = 0.5 are com-
pared with two lateral offsets (y/w = {0, 0.5}) and different as-
pect ratios for full-pillars in Fig. 4(a and b), and half-pillars
in Fig. 4(c and d).

Fig. 3 Top–bottom asymmetric fluid flow transformations from half-pillar obstacles. (a) A full-width (d/w = 1.0) half-pillar (hp/h = 0.5) placed at y/
w = 0.0 will drive fluid in the center of the channel upward, resulting in central flow streams being displaced to the upper-half of the micro-
channel. The 3D view shows streamtraces originating from a flat line from y/w = −0.1 to y/w = 0.1 at z/h = 0.04, colored with a non-dimensional
velocity u* = u/U, for downstream velocity u and characteristic velocity U. Note the post-pillar velocity increase, due to the streamtraces being
advected into a faster region closer to the center of the channel. This is seen in the advection map, and the deformation of an inlet flowpattern
using a sequence of 10 such half-pillars. (b) Full-width half-pillars at y/w = 0.5 (with periodic pillar geometry) create a flow transformation
complementing that of y/w = 0.0, with fluid being forced into the lower-half of the microchannel near the channel center, seen in the 3D view
streamtraces and the resulting advection map, along with the deformation of the same inlet flow pattern used in (a) from a sequence of 10 half-
pillars. We validate these predictions with confocal imaging from experiments (see Methods section). The scale bar is 20 μm.
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We observed that as the aspect ratio of the channel in-
creases, stronger flow displacements tend to be more local-
ized to where the pillar meets the walls at the top and bottom
of the channel (or the side walls, for off-center pillars), in
contrast with the lowest aspect ratio of h/w = 0.25, where the
fluid displacement magnitude is more uniformly distributed
throughout the channel cross-section. This influence of con-
finement on local velocity gradients correlates with observa-
tions of inertial flow past a 3D confined cylinder by Ribeiro
et al.,36 who showed that a higher aspect ratio channel (low
confinement) increasingly separates the end-wall sources of
vorticity from the interaction of the fluid with the pillar alone
near the symmetric mid-plane. For half-pillars, increasing the
channel aspect ratio does modify how the fluid is sculpted,

but most of the deformation is within the lower-half of the
channel near the half-pillar, occurring closer to the channel
floor as confinement decreases.

For each pillar geometry, the same lateral offsets are com-
pared for Re = {10, 20, 30, 40} at h/w = 0.25. As expected, in-
creasing Re tends to exaggerate characteristic features of the
flow deformation, eventually introducing new features to the
sculpted form. In general, higher Re seems to enable a more
diverse and capable flow sculpting design space.

3 FlowSculpt software methods

Solving inverse problems related to fluid–structure interac-
tions usually requires high-performance computational

Fig. 4 We use our forward model to demonstrate the variety of sculpted flow shapes arising from changing channel aspect ratio h/w, pillar
location y/w, pillar height hp/w, and flow Reynolds number Re, by transforming the same inlet flow pattern depicted in Fig. 1. Four pillar
geometries are compared: full-pillars (hp/w = 1.0) (a) d/w = 0.5, y/w = 0.0, (b) d/w = 0.5, y/w = 0.5; and half-pillars (hp/w = 0.5) (c) d/w = 1.0, y/
w = 0.0, (d) d/w = 1.0, y/w = 0.5. These geometries have the same blockage ratio, and are symmetric across the vertical centerline of the channel.
For brevity, we show only the left-hand (+y) side of the flow deformation, using dashed lines to indicate the plane of symmetry. For each geome-
try, three channel aspect ratios h/w = {0.25, 0.5, 1.0} are shown for Re = 20, and four Reynolds numbers Re = {10, 20, 30, 40} are shown for h/w =
0.25 (a commonly used aspect ratio due to relative ease of fabrication).
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resources that preclude widespread adoption by non-experts
or users with modest computing power. Instead, we embed
flow sculpting's fast forward model within an evolutionary al-
gorithm (the GA), and make automated flow sculpting design
easily accessible via the FlowSculpt software.** In the follow-
ing sections, we describe FlowSculpt's optimization process,
fitness functions, and GUI usage.

3.1 Genetic algorithm (GA) optimization

We quickly outline the GA and describe how it can solve the
inverse problem in flow sculpting. The GA is initialized by
generating a random population of candidate solutions
known as chromosomes, each of which contains a standalone
design for the problem of interest. The population of chro-
mosomes is then evaluated using a “fitness function” (objec-
tive function), which returns a scalar value representing the
fitness of each chromosome, with higher fitness being more
desirable. Fitness is used to determine the next generation of
chromosomes by a stochastic selection process, which
chooses parents from the current generation to exchange
components of their design variables via crossover to form
offspring for the next generation. Higher fitness is rewarded
with a greater chance of selection, thus propagating genetic
material associated with successful design throughout the
population. Conversely, chromosomes with poor fitness are
less likely to be selected, and their designs will tend to wash
out of the population. Chromosomes are also randomly se-
lected to have their genetic material perturbed (mutated),
and placed in the next generation. The best-performing chro-
mosomes are chosen as elites and passed on untouched to
the next generation, thus preserving a running optimum so-
lution. The population will then step forward, repeating the
processes of evaluation, selection, crossover, and mutation to
create a new generation of chromosomes. This evolutionary
step is repeated until some termination criteria are met, and
the best-performing chromosome is output as the solution.
The GA is a stochastic process, so finding the global opti-
mum is not guaranteed; therefore, it is important to re-run
the GA some number of times (usually at least 10 times) in
order to attempt statistical exploration of the space.

There are two essential components of the GA to be
implemented to solve an inverse problem: a chromosome
containing problem-specific design parameters as genetic
material, and a fitness function to evaluate each chromosome
during the GA's evolutionary step.

3.1.1 GA chromosome. Flow sculpting device design is
encoded into a chromosome as two separate parts: an inlet
flow pattern and a pillar sequence. The inlet flow pattern in
this work departs from previous binary-valued descrip-
tions,27,28 instead using a continuous-valued design for the
flow rate fractions, where locations σi for i = {1, …, n} delin-

eate n + 1 boundaries between the co-flows, with accompany-
ing integer-valued material indicators Sj for j = {1, …, n + 1}
materials (see Fig. 5). This description of the inlet flow pat-
tern is a more appropriate match for real-world microfluidic
devices, in which co-flow fractions at the inlet can be con-
trolled by continuously tuning inlet flow rates. In this
scheme, the number of possible inlet volumes and material
types must be supplied (currently limited to 9 inlets and 6
different materials), and a minimum flow cross-section size
must be enforced to maintain inlet flow patterns which can
be reasonably achieved in practice. The pillar sequence is de-
scribed in the chromosome as a fixed-length real-valued se-
quence with separated diameter and location values for each
pillar. To account for half-pillars, we add an extra component
to each pillar's design to select the pillar height.††

3.1.2 GA fitness function. FlowSculpt's default pixel-to-
pixel fitness function employs the same correlation coeffi-
cient r(Isim, IT) as used in ref. 27 and 28, which compares a
chromosome's simulated flow shape image Isim to a target
flow shape IT. The correlation function r is a measure of simi-
larity between the two images Isim and IT, with a value of r =
1.0 meaning that both images match pixel-to-pixel. For multi-
material design, we use a modified correlation function
which only counts matched materials, and report the average
result as a chromosome's fitness.

To allow designs for which precise flow shape location is
not important, we have included a translation invariant fit-
ness function (which is currently valid for single-material de-
sign only). We have also provided hooks within the
FlowSculpt code to easily access the open source computer vi-
sion library (OpenCV),37 which has many image processing
routines, thus making the creation of customized fitness
functions a more simple task. These implementations are de-
tailed next.

3.1.2.1 Translation invariant fitness function. To provide a
translation invariant fitness function which searches for a
target flow shape at any translated position within the
channel, we exploit the “shift” property of the Fourier
transform, whereby the translation of an image will be

** Binary executables for FlowSculpt on Windows, MacOS, and Linux, as well as
its source code, are freely available at www.flowsculpt.org.

Fig. 5 FlowSculpt's inlet design uses continuous-valued parameters σi
to describe the inlet flow co-flow cross-sectional fractions, while each
co-flow's material is described by the integer-valued Sj. Here, three
co-flows containing materials S1, S2, and S3 are separated by bound-
aries at σ1 and σ2.

†† Because the top-half of the channel is completely open in half-pillar geome-
tries, larger diameters of d/w = {0 : 875, 1 : 0} can be utilized without drastically
increasing pressure drop. We therefore constrain the chromosomes to prevent
full-height pillars from attaining these larger, infeasible diameters.
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reported as a phase shift in frequency space, while the
magnitude of the transforms will remain the same.38 Within
this fitness function, we compute the fast Fourier transform
(FFT) of the target IT and chromosome-produced simulated
image Isim. By comparing the magnitude of each image's FFT
we introduce translation invariance to the measure of fitness,
thereby searching for a fluid flow shape without regard to
where it is located within the microchannel cross-section. In
FlowSculpt, this is accomplished by using the previously de-
scribed correlation function r on the difference between the
images' magnitudes in Fourier space, which are computed
using FFTW:39

fitness sim T     r I I , (1)

3.1.2.2 Custom fitness functions and OpenCV. We have
separated the implementation of fitness functions from
FlowSculpt's primary routines as a standalone source file
fsfitness.cpp. This allows users to specialize their flow
sculpting design optimization based on domain knowledge
and problem-specific criteria. As an additional aid to re-
searchers designing their own fitness functions, we have also
added support for the OpenCV library. OpenCV is a freely
available computer vision library that contains a multitude of
techniques for image processing and comparison. We antici-
pate our future publications will explore OpenCV methods
for flow sculpting, but researchers can begin utilizing it in
their own work immediately.

3.2 Graphical user interface

We have embedded the FlowSculpt software (written in C++)
within a GUI using the cross-platform application framework
Electron.‡‡ The FlowSculpt app which uses the GUI (shown in
Fig. 6) is freely available at www.flowsculpt.org, and can be eas-
ily installed on Windows, MacOS, and Linux operating systems.

The top section of the GUI is dedicated to user input for
the target flow shape, with a drawable canvas and modifiable
drawing brush. There are also entries for flow conditions
(Re), channel geometry (h/w), and a selection to enable half-
pillars. If half-pillars are disabled (full-pillar design only),
anything drawn in the top-half of the canvas will be automat-
ically mirrored in the lower-half, and vice versa; otherwise,
the entire canvas is open to shape design. Finally, in addition
to a button to clear the drawing canvas, the “Load image”
button allows users to import target flow shapes from images
made outside of FlowSculpt. Here, the user should be aware
that some images will have aliasing or compression effects
on the edges of shapes, creating additional colors within the
image. FlowSculpt will use a nearest-neighbor algorithm to
flatten these colors, but there is no guarantee of matching
the user's intent.

The middle section of the GUI configures runtime param-
eters for FlowSculpt: pillar sweep start/stop will choose the‡‡ https://github.com/electron/electron.

Fig. 6 (a) The graphical user interface (GUI) for FlowSculpt, created
using electron. The top section (target design) contains a drawing
canvas for the user-designed target flow shape, with adjustable marker
size and fluid material color. By default, FlowSculpt will use pillars
spanning the height of the channel, forcing symmetric design within
the canvas. By choosing to use half-pillars, the entire canvas can by
drawn on. The middle section (GA controls) configures parameters for
FlowSculpt's optimization. The lower section contains the results of
the last search, and a button to export the design to OpenSCAD. (b) An
example output from FlowSculpt to OpenSCAD, with a zoomed-in
portion of the device showing the inlet junction and individual pillars
with numbered labels. (c) An image of a PDMS device fabricated from
the OpenSCAD design in (b) using soft lithography (see Methods sec-
tion). The scale bar is 500 μm.
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allowable number of pillars; GA repetitions determines how
many times the GA is repeated per pillar sequence length;
population size controls the GA population; number of
threads chooses how many threads (i.e., CPU cores) to use
during parallel evaluation; number of inlets limits how many
channels the GA can use to create an inlet flow pattern; fixed
inlet design allows the user to force a particular inlet flow
pattern (e.g., [0, 0.4, 0.2], [0, 1, 0] for a single sculpted stream
in the center one-fifth of the channel); fitness functions can
be selected from a small menu. The default values for each
configuration are sufficient to provide a quick result within a
well-resolved design space (4–8 pillars), but users are encour-
aged to modify these values to ensure a more exhaustive
search that is tuned to their experimental constraints. The
lower part of this section contains buttons to run FlowSculpt
on the target design or cancel a run that has started, as well
as a window that provides updates on the status of
FlowSculpt as it is working.

The bottom section of the GUI gives the resulting design
from FlowSculpt optimization, along with the number of pil-
lars used, inlet flow pattern, and pillar sequence. The pillar
sequence design can be exported to the open source
computer-aided design (CAD) software “OpenSCAD”§§ (see
example output in Fig. 6(b)). Devices using half-pillars will
automatically generate two masks for two-stage soft lithogra-
phy, which we use for creating pillars of different height.

4 Experimental methods
4.1 Fabrication

For verification of devices designed in the following section,
microfluidic channels incorporating the designed pillar se-
quences were fabricated from the CAD drawings exported
from FlowSculpt using soft lithography. The molds corre-
sponding to the channel design were created on a silicon
master coated with two 25 μm layers of KMPR 1010 (Micro-
Chem Corp.) to form devices with cross-sections of width ×
height of 200 μm × 50 μm, each patterned in sequence using
standard photolithography techniques. Polydimethylsiloxane
(PDMS) base and curing agent (Sylgard 184 Elastomer Kit,
Dow Corning Corporation) were mixed at a ratio of 10 to 1,
poured onto the molds in petri dishes, put in vacuum to re-
move bubbles, and cured in an oven at 65 °C to replicate the
structure of the microchannels. The PDMS devices were
peeled from the mold and punched with holes at the inlets
and outlets. The PDMS devices and glass cover-slips (no. 1.5,
Electron Microscopy Sciences) were then activated via air
plasma (Plasma Cleaner, Harrick Plasma) and bonded to-
gether to enclose the microchannels. The PDMS devices were
then infused with rhodamine B (0.1 mg mL−1, Sigma-Aldrich)
to help visualize the channel walls.

4.2 Confocal imaging

Confocal images of the fluid flow deformation for optimized
designs were taken downstream of the fabricated pillars
using a Leica inverted SP5 confocal microscope at the Califor-
nia NanoSystems Institute. For each design, syringes on sepa-
rate syringe pumps (Harvard Apparatus PHD 2000) were
connected to the inlets of the microchannel using PEEK tub-
ing (Upchurch Scientific product no. 1569). We visualized
sculpted flow streams using deionized (DI) water with fluo-
rescein isothiocyanate dextran 500 kDa (5 μM, Sigma-Aldrich)
while co-flow streams contained DI water only. The total vol-
ume flow rate was 7.5Re μL min−1 (based on microchannel
hydraulic diameter), with the flow rate of each inlet stream
configured to its cross-sectional area before the first pillar in
the design. Confocal images of the cross-sectional planes
were taken at locations approximately four times the channel
width w downstream of the pillars. For each measurement,
random noise was eliminated by averaging six images taken
over 3 second intervals to arrive at a final image.

5 Results and discussion

We tested the FlowSculpt framework in two campaigns: (1)
benchmarking and (2) flow shape demonstration. The bench-
marks are intended to showcase the speed of the index maps
and the tradeoffs of translation invariant design. For the
demonstration of flow shapes, we used FlowSculpt to design
several multi-material and asymmetric flow shapes, including
letters of the Roman alphabet for which we fabricated some
corresponding devices to visualize the sculpted flow, and
used confocal imaging for validation.

5.1 Benchmarks

We recorded results for benchmark images with several test
cases to evaluate the modifications to FlowSculpt. All tests
were run on a system with a 6-core (12 thread) Core i7 4960X
processor and 32 GB of memory running Ubuntu 16.04. The
cases ran were the following:

Case study 1: index map runtime A speed comparison of
the forward model using index maps model vs. matrix
multiplication.

Case study 2: translation invariant runtime testing the rel-
ative speed of the new GA with and without an FFT pass for
translation invariance.

Case study 3: translation invariant design evaluating the
benefits of translation invariance on artificially perturbed
flow shapes.

5.1.1 Case study 1: index map runtime. A set of 60 ran-
domly generated target flow shapes were used to compare
FlowSculpt's forward model using index maps vs. matrix-mul-
tiplication, as used in ref. 27 and 28. These flow shapes are
the same set used in ref. 28. The purpose of this test was to
compare the use of transition matrices (using matrix–matrix
multiplication) to the index maps introduced in the present
work. We used the same parameters for both GA setups aside§§ www.openscad.org.
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from the modified fitness evaluation. GA parameters were a
population size of 100, sweeping from 5 to 10 pillars with 10
repetitions of the GA at each step (for a total of 60 GAs per
flow shape search). For all runs in case 1, we used 800 × 100
resolution cross-sections (half-channel, for h/w = 0.25), and
fixed the inlet flow pattern.

Results are shown in Fig. 7(a). The speedup from the use
of index maps is significant, with no practical difference in
accuracy. Where matrix–matrix multiplication required, on
average, ≈5000 seconds (1.4 hours) per image search, index
maps required ≈145 seconds (2.5 minutes), on average. This
is a 34× reduction in runtime, with the same quality of re-
sults. Such drastic improvements in forward model runtime
are critical for optimization problems, as they allow for over-
all optimization routines to favor coverage of the search
space with little to no deference to runtime. In FlowSculpt,
this means a single flow shape search can use hundreds of
GA repetitions per pillar sequence length, in the same time
that only 10 repetitions were previously used. A faster forward
model also provides additional breathing room in the fitness
function pipeline to implement computationally costly
methods, such as the translation invariant FFT post-
processing presented in this work.

5.1.2 Case study 2: speed comparison with translation in-
variance. Here, we analyzed FlowSculpt runtime and GA con-

vergence for the translation invariant fitness function. We use
the original set of 60 target flow shapes from case study 1 in
order to isolate differences in performance to the FFT-based
function's difficulty in searching a translation invariant de-
sign space. That is, both fitness functions are equally capable
of finding exact solutions to these target flow shapes, but the
FFT-based fitness function will have a more difficult search.

Fig. 7(b)(i) shows the number of generations needed for
GA convergence across the entire test set, while Fig. 7(b)(ii)
shows a comparison of FlowSculpt runtime with and without
translation invariance. Both fitness functions find good re-
sults for each target flow shape. However, FlowSculpt's trans-
lation invariant searches required more generations to con-
verge, with an average of 120 generations until convergence
with FFT vs. 89 generations without FFT. This is expected
due to the larger and more diverse translation invariant
search. Use of the FFT increases FlowSculpt runtime by a fac-
tor of ≈3, with an average FlowSculpt runtime of ≈442 sec-
onds with FFT vs. ≈145 seconds without.

Despite the increase in runtime in using the FFT-based fit-
ness function when compared to the correlation function,
conducting a translation-invariant search using the FFT fit-
ness function avoids a campaign of manually-translated tar-
get flow shapes. In fact, for these test images, a user need
only attempt four such manual translations before their

Fig. 7 (a) Results from case study 1, which compares the accuracy and performance of index maps to the previously used transition matrices,
showing (i) matching values in GA fitness for the test set, with (ii) drastically reduced framework runtime. (b) Results from case study 2, a runtime
comparison of FlowSculpt using the translation invariant (FFT) and pixel-to-pixel correlation (no FFT) fitness functions. (i) A translation invariant
search space requires more generations within a GA to converge, which, in addition to increased computational effort in using the FFT, contributes
to an increased runtime (ii) from an average of ≈145 seconds to ≈442 seconds. (c) Results from case study 3, comparing the pixel-to-pixel correla-
tion fitness function to FFT-based translation invariance. (i) Target images with known solutions are artificially translated and (ii) used in FlowSculpt,
with results shown from the correlation and translation invariant fitness functions.
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campaign runtime exceeds FlowSculpts FFT-based translation
invariant design, which searches a continuously translated
space in an automated fashion.

5.1.3 Case study 3: translation invariant design. To test
the efficacy of our translation invariant fitness function, we
artificially translated each of the 60 target flow shapes from
case study 1 as depicted in Fig. 7(c)(i), where a flow shape
produced by the forward model is translated to the left edge
of the channel cross-section. By translating flow shapes cre-
ated by the forward model, we can test the FFT-based transla-
tion invariant fitness function against targets with known so-
lutions. We simultaneously used the per–pixel correlation
fitness function for comparison. In this case study, we allow
FlowSculpt to design the inlet flow pattern.

The translation invariant search successfully found
matching flow shapes for each altered target image, while the
pixel-to-pixel correlation searches were pinned to the shifted
location within the channel with poorly matching results.
Fig. 7(c)(ii) shows an example target flow shape with a com-
parison of the result from the use of only the correlation
function, and with use of the FFT-based translation invariant
search. When FlowSculpt uses the correlation function only,
it capably matches the horizontal location of the target flow
shape, but fails to accurately capture details of the shape. On
the other hand, the FFT-based translation invariant searches
show a well-resolved flow shape, though at a different loca-
tion within the channel cross-section.

Despite the considerably expanded search space,
FlowSculpt was still able to effectively design both the inlet
flow pattern and pillar sequences for known transformations.
Going forward, users can use this fitness function to sculpt a
particular flow shape without regard to its location in the
channel, and avoid iterations of manually translating their
target shape. On the other hand, for situations where the lo-
cation of the sculpted flow is important, the default correla-
tion function should be used. Still, these results are encour-
aging not only for the immediate use of translation invariant
design, but for additional post-processing operations within
FlowSculpt's fitness function that focus different user-
specified qualities or quantities related to the sculpted flow.

5.2 Flow shape demonstration

FlowSculpt's expanded advection map library unlocks asymmet-
ric flow shape design using half-pillars, and new flow physics
from additional Reynolds numbers and channel aspect ratios.
In Fig. 8, we show how FlowSculpt fares in arbitrary asymmetric
shape design by searching for devices which create the capital-
ized letters of the Roman alphabet, and experimentally validate
the device designs which create the letters in “UCLA”. These tar-
get flow shapes were created in Microsoft's PowerPoint software
(using the “Arial” font), exported as bitmap images, and loaded
directly into FlowSculpt. For GA parameters, FlowSculpt was
free to design the inlet flow pattern, all four Reynolds numbers

Fig. 8 Search results for all 26 (capitalized) letters in the Roman alphabet using h/w = 0.25 and Re = 10, 20, 30, 40, shown as rotated images for
clarity. We show additional details for the letters in “UCLA”, with each designs' Reynolds number shown inset with the image, and optimized inlet
flow pattern below. These device designs were exported to OpenSCAD and fabricated using soft lithography (see Methods section), and sculpted
flow was imaged using confocal microscopy.
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were searched to maximize odds of success, and the correlation
fitness function was used to ensure the letters are in similar re-
gion of the microchannel cross-section (rather than a scattered
set of locations, a likely result in using the FFT search). Com-
plete designs and per-pillar flow images for the “UCLA” devices
at h/w = 0.25 in Fig. 8 are shown in ESI† Fig. S3–S6, with movies
stitching each transformation together in sequence in ESI†
SV01–SV06. Results for the higher aspect ratio channels (h/w =
0.5, 1.0) are in ESI† Fig. S8. We attribute differences between
the experimental “UCLA” flow images and those predicted by
FlowSculpt to errors in fabrication, which we verify using mea-
sured pillar diameters with the uFlow software's interpolative
model19 (see ESI† Fig. S7), and diffusion of the fluorescent dye
as it traverses the length of the microchannel.

Close examination of the per-pillar image sequences (ESI†
Fig. S3–S6) reveals a significant source of difficulty in solving
the inverse problem in flow sculpting, particularly in the case
of the “A” shape (ESI† Fig. S6): until the flow is deformed by
the final pillar, it is not necessarily obvious what the
resulting flow shape will look like. In other words, one can-
not assume that pursuing the desired flow shape with every
additional pillar will achieve a good result, which impedes
the simple application of greedy algorithms. For the higher
aspect ratio channels (ESI† Fig. S8), the modified flow phys-
ics appear less capable overall in matching the target alpha-
bet flow shapes. This is not surprising given the previous ob-
servation that high aspect ratio channels produce less
powerful flow deformations in the center of the channel,
which is where the alphabet target flow shapes are placed.

We demonstrate multi-material and asymmetric design
using 2- and 3-material target flow shapes, shown in Fig. 9.
The left column of Fig. 9 shows two 3-material target shapes,
each with two materials fully encapsulating a third material.
These shapes are well represented by the top results found by

FlowSculpt, with matching flow shapes shown in the right
column. Asymmetric design is also shown with the last 4 tar-
get flow shapes, with 2-material designs having their material
interface rotated at angles of 30°, 45°, 75°, and 90°. In the
right column, FlowSculpt's top results competently match the
targeted material partitions, including the rotated interface.
We also performed an experiment with multi-material flow
sculpting using two different materials, polyĲethylene glycol)
diacrylate (PEGDA; Mn ∼ 575; 437441, Sigma-Aldrich) and
polyĲpropylene glycol) diacrylate (PPGDA; Mn ∼ 800; 445024,
Sigma-Aldrich), blending each material with ethanol (60%
PEGDA, 40% ethanol; 90% PPGDA, 10% ethanol) to match
their densities to avoid issues with buoyancy (see ESI† Fig.
S9). However, their viscosities (PEGDA/ethanol: 6.99 mPa s;
PPGDA/ethanol: 52.32 mPa s) remain unmatched. A 9-pillar
multi-material flow sculpting device was designed using
FlowSculpt (ESI† Fig. S9(b)), targeting a nested 2-material
flow shape. We used a modified version of our in-house
microparticle fabrication technique, transient liquid mold-
ing5 (TLM, ESI† Fig. S9(a)), to create 3D microparticles in a
1200 μm × 300 μm channel (ESI† Fig. S9(c)). This experiment,
along with previously published work,5 shows that single-
phase simulations using FlowSculpt's forward model are
valid for some mismatch in fluid properties (viscosity, in this
case), but results will vary depending on how large the dis-
parity and which properties remain matched.

While these examples generally demonstrate a good match
between their targets and results, iterative design is often re-
quired for arbitrary searches where there is no guarantee of
finding a matching flow shape. This iterative process would
begin with a user-provided target flow shape to serve as an
initial guess. FlowSculpt will attempt to match this shape,
but if the result is not sufficient for the user's application,
this initial domain response can be used as an indication of
what is possible, and inform subsequent FlowSculpt
searches. This indicates the need for a first-pass “reality
check” on target flow shapes – a problem beyond the scope
of the FlowSculpt software in its current form, and likely
made more difficult as the search space expands with new
advection maps and choice of flow materials.

6 Conclusion

The FlowSculpt software provides an intuitive and easy to use
graphical user interface for researchers to leverage when de-
signing fluid deformations. It allows users to design a target
flow shape graphically or to import an externally created im-
age (e.g., in Adobe Photoshop or PowerPoint), and gives a
rich set of options for optimization including the number of
threads to use for parallel evaluation, use of symmetry-
breaking half-pillars, constraints on the size of the pillar se-
quence, and translation invariant search. The GUI is freely
available as a user-friendly, cross-platform app, which we
hope sees widespread adoption by the microfluidics commu-
nity. We believe FlowSculpt sets a good standard for using
software to relieve experts and non-experts alike of heavy

Fig. 9 Left column: Target flow shapes used to demonstrate multi-
material and/or top–bottom asymmetric design. Right column: Top re-
sults from the FlowSculpt software for the left-column targets.
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computational effort, and will help usher in a new generation
of microfluidic devices for flow engineering, whether to ad-
vance microscale manufacturing processes, enhance existing
bio-sensing platforms, or devise new bioengineering technol-
ogies. FlowSculpt's cross-platform architecture, combined
with its newfound computational efficiency, should allow
users with extremely modest computing hardware to engage
in flow sculpting design optimization.

With this work, we not only present a highly functional
application for design, but a significant step forward in its
evolution. The elements we have added to the FlowSculpt
framework vastly increase its capability through multi-
material design, additional microfluidic components (half-
pillars), and advanced fitness functions to modify the design
space. Future work will likely continue along these routes, in-
corporating new geometries such as curved channels for
Dean flow induced flow deformation, and more specialized
fitness functions for unique flow shapes. We anticipate fur-
ther development on user-provided microfluidic parts,
allowing easier integration of FlowSculpt with researchers'
existing microfluidics-based projects. Although there is some
demonstration of multi-material flow sculpting using co-
flowing fluids with varying physical properties in literature
and in this work, additional characterization of multi-
material constraints is warranted, as it is not clear how much
the properties can differ before the forward model breaks
down, or if a new model is required to more accurately cap-
ture interfacial physics; however, such a study is beyond the
scope of this work, where we find the ability to design simi-
lar-property, multi-material flow shapes to be a highly useful
advancement alone.

Eventually, the uFlow and FlowSculpt may merge into a
single software, but their current architectures have different
intent from the ground-up: uFlow for visualization (with little
regard for efficiency), and FlowSculpt for optimization (which
would be encumbered by uFlow's processes), making integra-
tion complex and a low-priority goal. Beyond these develop-
ments in the software, FlowSculpt itself can be brought into
other regimes of hierarchical design, such as tailored 3D par-
ticles via stop-flow lithography,4,6 transient liquid molding,5

or continuous-flow lithography,14 enabling a new class of
complex microfluidic engineering. We also anticipate that
FlowSculpt will find more general use in engineering flow
streams as more disciplines become aware of its capability,
especially in manipulating material concentrations or distri-
butions in microfluidic flow applications.
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