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Microfluidic-based microencapsulation requires significant oversight to prevent material and quality loss

due to sporadic disruptions in fluid flow that routinely arise. State-of-the-art microcapsule production is la-

borious and relies on experts to monitor the process, e.g. through a microscope. Unnoticed defects dimin-

ish the quality of collected material and/or may cause irreversible clogging. To address these issues, we de-

veloped an automated monitoring and sorting system that operates on consumer-grade hardware in real-

time. Using human-labeled microscope images acquired during typical operation, we train a convolutional

neural network that assesses microencapsulation. Based on output from the machine learning algorithm,

an integrated valving system collects desirable microcapsules or diverts waste material accordingly. Al-

though the system notifies operators to make necessary adjustments to restore microencapsulation, we

can extend the system to automate corrections. Since microfluidic-based production platforms customarily

collect image and sensor data, machine learning can help to scale up and improve microfluidic techniques

beyond microencapsulation.

1 Introduction

Microencapsulation is a technique where an active substance
is encased in thin, protective shells, generally of 500 μm di-
ameter or smaller.1 Microencapsulation is widely-used in the
pharmaceutical2,3 and personal care industries4 and food sci-
ences,5 with emerging applications in diverse areas such as
measuring6 or accelerating7 chemical reaction kinetics, ther-
mal management,8 self-healing materials,9–11 reflective dis-
plays,12 gas separations,13 and others. For most of these appli-
cations, large quantities of microcapsules are necessary. A key
advantage to microfluidic-based production of microcapsules
is the precise control of the microcapsule size and properties,
unlike with alternative methods, such as bulk emulsion.14

However, microfluidic encapsulation has so far proved chal-
lenging to scale up.15

Microfluidic systems, such as inkjet print heads,16 DNA
microarrays,17 biosensors,18 and lab-on-a-chip devices,19 rely
on sub-millimeter plumbing components to precisely manip-
ulate fluids. Due to the low Reynolds flow characteristics
within microfluidic channels, these systems are often amend-

able to physics-based models that inform suitable geometric
designs and/or operating conditions for a wide variety of
microfluidic applications.20 However, the small scale of com-
ponents leads to an inherent sensitivity of the system to per-
turbations. For instance, unexpected clogs, air bubbles,
chemical impurities, particulates, pressure fluctuations in ex-
ternal pumps, fluid property changes, among other issues,
can lead to disruptions in normal operation. These disrup-
tions result in time and material loss, reduce production or
detection quality, and, depending on the severity, damage to
the microfluidic device. Microfluidic systems can be scaled
up for industrial use by parallelization,21–23 but how to moni-
tor and manage upsets in a massively parallel array is a cen-
tral challenge of scale up. Laboratory-scale systems typically
require monitoring and intervention by a human operator, a
process which is time consuming and unlikely to scale.

Machine learning offers a route to enable automated mon-
itoring of microfluidic systems by converting routinely col-
lected sensor and image data into actionable information in
real-time.24 An appealing characteristic of machine learning
algorithms is that they dispense with the need for precisely
modeling the environment. Instead they leverage direct expe-
rience gathered from real executions or “learn by example” in
order to derive meaning from (possibly) complicated or im-
precise data.25 Depending on the assessment output by the
algorithm, the algorithm can then trigger pre-programmed
adjustmentĲs) to modulate the operation of a given system
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without requiring human intervention. Furthermore, algo-
rithms are agnostic to the data streams and/or the apparatus
they monitor. Although re-training may be necessary, the cod-
ing framework and implementation strategies of these algo-
rithms are often general to any device, sensor modalities,
and target application. Thus, these algorithms could be
deployed on a wide variety of microfluidic platforms to in-
crease operational efficiency and address challenges inherent
to scale up via automated error detection and rectification.

In this work, we demonstrate a machine learning based
control system for microfluidic microencapsulation, which is
a common technique that traditionally requires human over-
sight to produce microcapsules. We develop a convolutional
neural network machine learning algorithm that assesses the
state of the system via real-time microencapsulation images.
Using assessments from the detection algorithm as input, a
separate control algorithm triggers valves that sort “good”
and “bad” microencapsulation events. The control algorithm
accounts for the time between image capture and capsule
sorting, while mitigating disruptions the sorting valves may
introduce to the flow field at the site of microencapsulation.
We describe the machine learning model development in
three straightforward steps: data collection, data labeling,
and neural network training. We assess the integrated detec-
tion and control algorithms in operation and demonstrate
high-quality microcapsules after on-the-fly sorting. Although
we demonstrate this approach using image detection of an
assembly for microcapsule production, due to the inherent
generalities of neural networks26 and diverse sensors com-
mon to microfluidic set ups, we envision our approach
should benefit other microfluidic systems given sufficient
training data.

2 Methods
2.1 Double-capillary microencapsulation

We apply and test our machine learning technique to a
model system: the microfluidic production of micro-
encapsulated CO2 sorbents (MECS), a material developed for
the separation of CO2 from mixed gas streams.27,28 We test
and produce MECS routinely in our lab, which consist of
cores of sodium carbonate solution with pH indicator
encased in UV-curable silicone shells. The microfluidic set-up
is a standard hand-made glass capillary device described in
detail elsewhere.1,29 This junction consists of a square glass
capillary that encompasses tapered cylindrical inlet and out-
let capillaries. A gap separates the openings of the inner cap-
illaries where immiscible “middle” (silicone) and “inner”
(carbonate) fluids meet to form double-emulsions in the pres-
ence of an “outer” (water) fluid that directs flow out of the cy-
lindrical capillary. Using independently controlled syringe
pumps, the middle and outer fluids flow in opposite direc-
tions into the square capillary, while the inner fluid flows
from the inlet capillary. Under ideal operating conditions
characterized as the “dripping” regime, as the three immisci-
ble fluids exit via the outlet capillary, the middle fluid encap-

sulates the inner fluid and pinches off into droplets near the
orifice that the outer fluid sweeps downstream. In our set up,
the inner fluid is an aqueous sodium carbonate solution with
a pH indicating dye and the middle fluid is a photocurable
silicone that solidifies in the presence of UV light located
downstream of droplet formation, creating solid shells.
Within the dripping regime, nearly monodisperse microcap-
sules form at rates of 1–100s Hz with tunable diameters rang-
ing from 100–600 μm, depending on the flow rates of the
three fluids and dimensions of the three respective
capillaries.

During typical operation, the system may transition to
non-dripping regimes in which droplet formation is inconsis-
tent or does not occur at all. Non-idealities may arise for a va-
riety of (sometimes combined) effects, including clogs, bub-
bles, pressure fluctuations, viscosity changes of the photo-
curable middle and/or other fluids or device irregularities
such as acentricity of the nozzles or poor capillary alignment.
For instance, at higher fluid flow rates characterized by the
“jetting” regime, inertial forces exceed surface tension be-
tween the dispersed phase and outer carrier fluid causing
aspherical, polydisperse, and/or multi-core droplets to form
farther into the outlet capillary, leading to suboptimal micro-
capsules and potential clogging. When the middle fluid
poorly envelops the inner fluid, droplets may rupture or
break. “Rupturing” events are uncommon and often self-
correcting. Finally, the most severe failure is the “wetting” re-
gime in which the middle fluid wets the exit channel, making
droplet formation unstable. Since wetting does not readily
self-correct, significant material and time losses occur until
the operator interjects. Furthermore, if the middle fluid ex-
cessively fills the exit channel near the UV light source, clogs
may destroy the device, thereby disrupting the entire produc-
tion campaign.

In order to observe microencapsulation, an operator typi-
cally positions the microfluidic device under a microscope
and manually focuses the field of view at the double-capillary
junction. From this vantage, the state of the microencapsula-
tion is readily apparent to a trained operator. Thus, microen-
capsulation devices require an operator to notice any devia-
tions from desired behavior that may arise. Depending on
the observed non-dripping state, an operator may attempt to
adjust fluid flow rates to restore the device to dripping. Until
dripping is restored, ideal and non-ideal microencapsulation
products accumulate in a container downstream unless man-
ually directed into collection and waste containers. Due to
phase separation, the entire production batch can be ruined
by forming a continuous mass instead of discrete
microcapsules.

To move beyond limitations of existing microencapsula-
tion devices, we automate the processes of (1) image collec-
tion, (2) microencapsulation classification, and (3) trigger
valves to sort dripping from non-dripping events as detailed
in Fig. 1. A commercial-grade computer with a single NVIDIA
TITAN X GPU executes these three functions at ∼40 Hz. A
trained convolutional neural network (CNN)30 takes

Lab on a Chip Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
A

pr
il 

20
19

. D
ow

nl
oa

de
d 

on
 7

/1
2/

20
25

 3
:2

1:
06

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8lc01394b


1810 | Lab Chip, 2019, 19, 1808–1817 This journal is © The Royal Society of Chemistry 2019

individual images as input and predicts the state of microen-
capsulation according to one of the four possible classifica-
tions: dripping, jetting, wetting, or rupturing. Based on a se-
ries of predictions from the CNN, a separate control
algorithm triggers a valving system that sorts acceptable from
defective microencapsulation events. Microcapsules sent to
the collection line pass under a UV lamp and photo-cure be-
fore accumulating into a collection jar. Material in the rejec-
tion line avoids UV light (as to prevent clogging) and accumu-
lates in a separate rejection jar. This two-part system relies
on an image classifier and valve controller working conjointly
to assess and sort microencapsulation events, respectively.
We coded all software using open-source NumPy, OpenCV,
pyduino, and ToupCam DCM1.3 Python libraries. The total
cost of hardware that is external to the microencapsulation
system is amendable to most research budgets.

2.2 Convolutional neural network training

As with any supervised machine learning algorithm, the de-
velopment, training, and testing of our CNN requires a la-
beled dataset that suitably captures the expected range of
phenomena witnessed during typical operation. Thus, when
collecting training data and validating the overall sorting sys-
tem, the operator adjusts the microencapsulation system set-
tings (e.g., fluid flow rates) to create microcapsules within the
dripping regime as often as possible. Dripping arises when
using flow rates resulting in 80 : 20 core : shell volumetric ra-
tios. Non-dripping events occur by increasing the inner fluid

flow rate until an instability occurs, typically at 95 : 5 core :
shell volumetric ratios. In total, we collected ∼74 000 images
to train the CNN over four production runs, totaling ∼10
hours of data collection. We use a new microfluidic device
each collection campaign. This ensures our training set cap-
tures the natural variance inherent to the hand-made double-
capillary junctions used for microencapsulation, which
should yield a fully-trained model that outputs more robust
classifications when applied to new microencapsulation de-
vices. Expert operators then classify, i.e. label, each image
into one of the four aforementioned categories over the
course of 30 person-hours. From these labeled images, we
found our devices during typical operation exhibit dripping
states ∼80% of time, while the occurrence of wetting, jetting,
and rupturing is approximately 10%, 8%, and 2%, respec-
tively. We chose to exclude images of rare events such as dou-
blet or triplet microcapsules that appear in <0.01% of all col-
lected images. Nevertheless, it is straightforward to
accommodate additional classes of microencapsulation
events that occur appreciably during production.

In practice, an operator manually places the microfluidic
device somewhere onto the microscope and adjusts the focus
to observe microencapsulation. To ensure the CNN is suffi-
ciently robust to accommodate images taken during routine
operation, we perform standard data augmentation tech-
niques to simulate anticipated variations in image sharpness
and orientation using our original image set. By applying af-
fine transformations in different combinations of shift, ro-
tate, and blur via Gaussian filters – all while preserving image

Fig. 1 Schematic of automated microencapsulation sorting system. (1) A digital camera captures images of microencapsulation events in real-
time. (2) An image classification algorithm assesses whether microencapsulation is the desired dripping state (A) or the undesired wetting (B),
jetting (C), or rupturing (D) states. (3) In this work, the predicted class of microencapsulation informs a valving system that sorts desired and
undesired events. (4) Sorted UV-cured microcapsules and non-dripping events accumulate in collection and rejection jars, respectively, for later
comparison.
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labels – we expand our image set by a factor of 91, from ∼74
000 to ∼6 700 000 samples. Finally, experts used full 680 ×
720 square-pixel resolution color images during the labeling
process. The computational requirements for training on im-
ages typically reduces when images are represented by a
square matrix whose entries are grayscale intensity values, as
opposed to tuples of red, green, and blue, i.e. (R, G, B), inten-
sity values that triple the file size. Furthermore, additional
computational gains are possible by reducing image resolu-
tion, provided image compression does not render the clas-
ses indecipherable. Our experts could reliably distinguish the
classes using grayscale images at resolutions at or higher
than 32 × 32 square-pixels. Thus, while developing the CNN
architecture (see ESI†), we noticed considerable model com-
putational speed reduction during training using downsized
32 × 32 square-pixel grayscale images, without any loss in
performance. During real-time operation, the computer pulls,
pre-processes, and predicts the class of each image before ex-
ecuting the valve actuation routines.

Using our assembled a labeled set of images, we train our
CNN to classify images according to the four classes de-
scribed above. In the process of training our deep CNN, we it-
eratively compute a cost function that essentially represents a
tally of all incorrectly classified images during training. The
goal is to minimize this cost function by systematically vary-
ing all (in our case) 80 000 model weights via batch gradient
decent. Considering non-dripping images comprise only
∼20% of the training set, a trivial image classification algo-
rithm that always predicts dripping is guaranteed 80% accu-
racy. To compensate for the imbalance of class representa-
tion in our training set, we add to the standard cross-entropy
cost function31 the following class weighting scheme to com-
pute the cost for each class,

s N
Nc
c




















max ln , 1 (1)

where constant μ = 2.75, N is the total number of samples in
the training set, and Nc is the number of samples for each
class c. To avoid the pitfalls of a trivial algorithm, the cost
function strongly penalizes misclassifications of images be-
longing to underrepresented non-dripping classes via eqn (1)
thereby achieving higher precision and recall scores during
training. We initialize the model with random weights before
training for a total of 8 epochs, i.e. 8 cycles through the entire
training set. As training progresses, we vary the learning rate,
which controls the extent the weights vary at each training
step. In an attempt to reduce training time, we set the learn-
ing rate at 10−2 for the first 4 epochs and reduce it to 10−4 for
the remaining epochs to ensure more accurate convergence.
We set all of these hyperparameters, e.g. number and size of
layers, number of epochs, learning rates, etc., through trial
and error. We adopt a randomized 70–10–20 training–valida-
tion–testing split32 wherein we train, i.e. update the model
weights, on 70% of the entire image set, curate the best

performing model according to the validation loss computed
from 10% of the images, and evaluate final model perfor-
mance using the remaining 20% of test data. Thus, we com-
pute and report model performance metrics using only
randomly-drawn “unseen” images from the overall training
dataset.

2.3 Sorting valves controller

The valving system consists of custom 3-way junction made
of flexible tubing that connects to the microfluidic device's
outlet and branches into collection and rejection lines. Based
on outputs from the CNN, the controller sends opposing, i.e.
open/close or close/open, signals to a pair of Arduino-
operated solenoid pinch valves that diverts flow as desired.
Before triggering the valves, the controller accounts for the
pre-determined time it takes material to travel from the im-
age capture site to the branch point, τ ≤ 10–30 seconds. To
do this, the computer generates a “prediction buffer” that
stores a queue of CNN predictions spanning τ seconds of de-
tection time. Sometimes actuating the valves induces pres-
sure fluctuations that disturb microencapsulation upstream,
e.g. dripping ceases temporarily, the system transition from
wetting to jetting, etc. In order to mitigate these disturbances,
the controller interrogates upcoming segments of the predic-
tion buffer before triggering the valves. For instance, if the
prediction buffer exhibits two long non-dripping sequences
interrupted by only a brief period of dripping, the valving
controller may not collect anything, as to maintain high pu-
rity of dripping events in the collection jar. Conversely, the
controller may collect a long series of dripping events that
contains a small number of intermittent rupturing events,
provided the collection jar meets end user's specifications.
Ultimately, the optimal controller logic depends on a variety
of factors, including, but not limited to application-specific
quality metrics, valving limitations, stability of the micro-
fluidic device, image classification accuracy, and available
budgetary and computational resources. Furthermore,
retrofitting our microencapsulation devices with the valving
system described above imposed various design constraints.
Given the broad design space and diverse quality constraints
inherent to microencapsulation (and, more generally, micro-
fluidics), it is beyond the scope of this work to create the op-
timal valving system. For the demonstration of our system in
this manuscript, the controller interrogates the portion of the
prediction buffer that pertains to microencapsulation mate-
rial directly upstream of the valves, i.e. τ* ≈ 2 seconds. When
τ* contains more than 1 second of non-dripping classifica-
tions, the valves actuate to reject the material. Conversely,
when τ* contains more than 1.5 seconds of dripping classifi-
cations, the valves actuate to collect the material.

3 Results and discussion

Having described our integrated microencapsulation classifi-
cation and sorting system, here we detail training and testing
our CNN, including how to mitigate problems due to class
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imbalance and training size limitations. Using a simulated
sequence of labeled microencapsulation images, we explore
the interplay between image classification accuracy and false
rejection and collection rates events, i.e. accidental collection
of undesirable non-dripping events and rejection of desirable
dripping events, respectively. After implementing the CNN
that minimizes false rejection and collection rates, we dem-
onstrate actual use of our sorting system and compare con-
tents within the collection and rejection jars. Finally, we dis-
cuss methods to improve to our existing system and how to
adapt it to other microfluidic applications.

Fig. 2 shows how the training set size influences both
training time and the following model performance metrics:
precision (or positive predictive value), recall (or sensitivity),
and F1 score (the harmonic mean of precision and recall).
Both model performance and computational time generally
increase with the training set size. The non-monotonic form
results from randomly culling the overall training set at each
iteration. We could perform multiple training sessions at the
lower training sizes to smooth the curves and determine er-
ror bounds, however, we restrict our attention to the best
performing models for this application. As expected from sce-
narios where training data is limited, Fig. 2 demonstrates
training with larger data sizes increases CNN model perfor-
mance, in addition to the originally intended purpose of en-
hancing robustness of the model against device rotation and
shifting and image focus. Model performances begin to satu-
rate above 90%. Nevertheless, we obtain an F1 score of 95.5%
by training on all available data from the augmented dataset.
Although the trend in Fig. 2 indicates we can continue
collecting and labeling data to achieve better performance, it
is evident this laborious process will yield diminishing
returns with this CNN model architecture. As shown in the
ESI,† other model configurations that use different model
structures and/or input image resolutions can elevate predic-

tion accuracy. However, deeper CNNs incur additional com-
putational cost during training and operation and may re-
quire larger datasets to prevent overfitting. Although
performance requirements vary by application,3,33–37 Fig. 2 is
useful when estimating model performance relative to the ef-
fort of acquiring additional labeled data.

For our sorting system, we select the highest performing
CNN that requires the largest training set and longest train-
ing time. We present a confusion matrix in Fig. 3 to visualize
the per-class accuracy and limitations of this CNN using a se-
ries of example input images. The row, Ri, and column, Cj,
pertain to one of four respective algorithm-predicted or
human-labeled classes, arranged in order of increasing preva-
lence in the training set. The accompanying percentages,
P(Ri, Cj), give the frequency the CNN predicts an image with

ground truth class Cj to be class Ri and P R Ci j
i

,  

 1
1

4

. The

class averaged accuracy computed from the diagonal entries

P R C( )  95 5% is high compared to a trivial model that

only predicts a single class in the training set, i.e.

P R( ) % dripping 25 . Furthermore, the prediction accuracy

is lowest for the least-populated (left column, rupturing) and
increases for more commonly occurring microencapsulation
events. This is due to class imbalance inherent to capillary-
based microencapsulation and the resulting collected and

Fig. 2 Model classification accuracy and required training time for a
given training set size. Computed model classification accuracy rate
(legend) and training time (left and right y-axes, respectively) generally
increase as a function of post-augmented training set size for our
model using a NVIDIA GPU card TITAN X Pascal. Although we expect
these general trends to hold for any given model and/or computational
resource, the exact ranges of the left and right axes may change. The
highest-performing model that we use in our system requires 80% of
the augmented image set and longest training time.

Fig. 3 Normalized confusion matrix that demonstrates the operational
model's performance. Rows represent the algorithm-predicted class,
while columns represent “ground truth” human labels. Images provide
examples of CNN inputs (displayed at 4× resolution) that the model
correctly or incorrectly classifies in the diagonal and off-diagonal en-
tries, respectively. Percentages indicate the prevalence of a given (mis-)
classification, thus the average of the diagonal (orange) numbers gives
the model accuracy of 95.5%.
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labeled image set. Despite the large disparity in the quantity
of dripping versus non-dripping images, the average

misclassification frequency is low, P R C( ) %  1 49 , because

of imbalance correction. We suspect the most common
misclassification, e.g. 7.79% likelihood of confusing ruptur-
ing capsules with dripping, results from two concordant
causes: extreme class imbalance (80% versus 2% representa-
tion) and apparent visual similarity between these classes.
Images labeled as rupturing often contain a single ruptured
capsule accompanied by as many as three dripping capsules.
Since rupturing-labeled images are both infrequent and con-
tain features common to dripping-labeled images, we hypoth-
esize the distinction between these classes is difficult to tease
out during training. Indeed, trained experts spent the most
time distinguishing these classes from each other during the
labeling process.

The effectiveness of our sorting system depends on the
interplay between the image classification algorithm and
valve control logic. For instance, even if we implemented a
perfect microencapsulation classifier, undesirable sorting

could result from the constraints we impose on the valve re-
sponses. To mitigate disruptive pressure fluctuations induced
by our pinch valves, our system collects material only when
≥0.75τ* is dripping and reject material only when ≥0.50τ* is
non-dripping, where τ* = 2 seconds as described in Methods.
Thus, the valves may falsely reject (or collect) material during
continuous sub-second non-dripping to dripping (or vice
versa) fluctuations. In practice, this constraint is not limiting
because our capillary-based microencapsulation system has
never exhibited this behavior over any appreciable duration
of time. Nevertheless, other valving mechanisms38 and micro-
fluidic devices might enable faster switching and/or require
different control settings based on allowable τ*.

Irrespective of the microencapsulation detection method
and/or valving systems used, optimal performance is difficult
to intuit and assess before or during actual production runs.
For this reason, we present a general simulation-based ap-
proach to evaluate sorting that relies on sequenceĲs) of
human-labeled images in Fig. 4. We curate a list of 4000
randomly-chosen microencapsulation images from the aug-
mented image set to simulate ∼100 seconds of operation for

Fig. 4 Sorting simulations show the valving system's effectiveness for image detection algorithms with varying prediction accuracy. (a) the valving
system triggers sorting responses based on predictions from the image detection algorithms. Fewer false sorting events result in improved quality
of the collection and rejection containers. Subplots (b) and (c) evaluate the fraction of false rejection and false collection events for CNNs that vary
by F1 score and training set size, respectively.
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the simulation (see ESI†). The curated sequence of events
contains uninterrupted non-dripping and dripping events,
with periods of moderate and high frequency fluctuations.
We feed this sequence to all the trained image detection algo-
rithms in Fig. 2 that vary by training set size and F1 score,
then trigger valves based on the predicted state of the system.
We identify the algorithm-predicted class during false collec-
tion of non-dripping events or false rejection of dripping
events. Fig. 4 illustrates how the quality of collection and re-
jection containers improve with diminishing false sorting
events. Ideal collection containers will include only microcap-
sules and carrier fluid, without any inner fluid in the contin-
uous phase. Conversely, the ideal rejection container eventu-
ally contains a mixture of the inner and outer phase with
dispersed droplets of pure shell material, without any micro-
capsules present.

Using the 15 differently-trained CNNs in Fig. 2, we evalu-
ate sorting error fraction, e.g. false collection over all collect-
able events, etc., as a function of F1 score and training set
size in Fig. 4(b) and (c), respectively. Although the trend is
non-monotonic, the general trend is that the fraction of false
sorting events decreases with increasing training set size and
F1 score. In all cases, false rejection rates are low because the
system collects dripping events, which is the largest class in
the training set. The operational model with the largest train-
ing set and F1 score exhibits the lowest fraction of both
sorting error types. Additionally, systems that utilize more ac-
curate CNNs signaled the operators more quickly as shown
in ESI.† Training the CNN on only 1000 images produces a
trivial detection algorithm that always predicts dripping. Con-
sequently, the valving system always collects non-dripping
microencapsulation events (false collection fraction ≡1) and
never rejects dripping events (false rejection fraction ≡0). No-
tably, the quantity of sorting errors is considerably lower than
the number of anticipated misclassifications based on esti-
mations from F1 scores. Therefore, our valve triggering strat-
egy, which mitigates disruptions to microencapsulation, has
the added benefit of minimizing sorting errors. In other
words, the confusion matrix analysis in Fig. 3 would be more
useful for estimating the sorting accuracy of a more respon-
sive valving system, e.g. one that could switch according to
every classified microencapsulation event. Fig. 4 isolates and
evaluates sorting errors that stem from image detection accu-
racy alone. However, it is straightforward to repeat simula-
tions with different model architectures, image sequences,
valve controller constraints, etc. to help estimate sorting accu-
racy before performing experiments during production.

Having selected our CNN image detection algorithm, we
implement and test our sorting system in an actual microen-
capsulation production run using a new microfluidic device
that was not used to collect training data. As was the case
with training data collection, during the test, an operator ad-
justs relative volumetric flow rates of core : shell fluids to re-
sult in both “good” and “bad” events that the overall system
detects and sort. Fig. 5 compares material that accumulated
in the collection and rejection containers. “Rupturing” and

“wetting” events were the dominant non-dripping events,
causing unencapsulated inner fluid to concentrate in the
outer continuous phase. As a result, the structures primarily
present in the rejection container are single emulsions of the
silicone shell phase dispersed in a mixture of the inner and
outer fluids. Due to the inclusion of a pH indicating dye into
the core phase, an apparent shift from blue to yellow pro-
vides a qualitative visual confirmation for the mixture of in-
ner and outer fluids. In contrast to the rejection container,
pristine monodisperse microcapsules are found in the collec-
tion container and the fully encapsulated inner fluid retains
the initial blue color, indicating proper microencapsulation.

In Fig. 5, we also compare the particles sorted into the col-
lection and rejection containers through image analysis.
Using ImageJ,39 we measure particle diameters, d, and com-
pute the polydispersity index (PDI) from the quadratic ratio
of the standard deviation of the diameter to the average di-
ameter, PDI = (σd/d̄ )

2. The PDI measurement is more tradi-
tionally appropriate for the collection container than the re-
jection container. The rejection container had a variety of
different particle morphologies including single emulsions,
double emulsions, and multiple core emulsions. Further-
more, larger aggregates of silicone (<2 mm) could also be
found which were difficult to include in the PDI measure-
ment. However, the PDI of the particles that could be mea-
sured in the rejection container still shows the systems
sorting capabilities. Collected particles have a diameter of

Fig. 5 Automated sorting of microencapsulation results in high quality
microcapsules according to polydispersity index (PDI) measurements
obtained via image analysis of collected and rejected particles.
Collected particles exhibited monodispersity (PDI = 0.001), indicating
collection of desirable dipping events. Conversely, rejected particles
are undesirably polydisperse (PDI = 0.658).
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429.5 ± 11.5 μm, i.e. PDI = 0.001, whereas rejected particles
have a radius of 37.7 ± 30.6 μm, i.e. PDI of 0.658. The col-
lected particles' PDI indicates monodispersity and highlights
the system's ability to sort the “good” events from the “bad”
events.

4 Conclusion

As with many other microfluidic systems, microcapsule pro-
duction campaigns historically require humans to monitor
the system and perform post-production sorting to guarantee
desired quantities of desirable microcapsules. We demon-
strate and evaluate a machine learning based system that au-
tomatically detects and sorts microcapsules on-the-fly. Classi-
fication accuracy improves, but saturates, with training set
size and augmentation and predominant events are easier to
detect than rare examples. By training on progressively larger
subsets of data, it is straightforward to estimate the time to
acquire, label, and train a model on additional data relative
to the performance of the trained model (and accuracy re-
quirements for a given application). We explore the interplay
between image classification accuracy and accidental collec-
tion of undesirable events and rejection of desirable events.
When the system detects continuous non-ideal microencap-
sulation events, it notifies the operators via text message to
interject and mitigate time and material loss. In addition to
triggering a sorting mechanism and issuing warnings, an im-
proved controller might also adjust fluid flow rates to restore
or maintain desirable production states, reducing the time
and expense of constant operator oversight. While we
implemented a retrofitted sorting mechanism, a fully inte-
grated valving system with minimal distance between droplet
formation and sorting, i.e. τ* → 0 seconds, should result in
an overall system that is more responsive.40

Considering the low hardware costs of our system and
generalizability inherent to machine learning, we expect our
system can benefit other microfluidic systems beyond micro-
encapsulation. Furthermore, results here point the way to-
ward massively parallel microfluidic arrays41 with active mon-
itoring of individual channels, giving control of overall
product quality. Considering the small 32 × 32 size of images
input to our classifier, a high resolution image of an entire
parallelized microfluidic array could be subdivided into
smaller images of individual droplet generation sites in prep-
aration for a machine learning algorithm. In this way, auto-
mated process monitoring via machine learning may solve
one of the central challenges to scale up of many promising
microfluidic systems. However, automated process control,
which triggers corrective action(s) based real-time assess-
ments, is increasingly complex in cases where the perfor-
mance of a given droplet generators is confounded with
others in the array.

This work provides a general overview as to how super-
vised machine learning approaches might operate for related
microfluidic systems and applications. Irrespective of the
type(s) of data collected by a microfluidic sensor, supervised

machine learning may offer a route for real-time processing
in cases where it is feasible to label the data. Generally, in-
creasing model accuracy requires suitably-large and informa-
tive datasets at increasing computational expense. We
strongly emphasize that the “garbage in, garbage out” princi-
ple42 still applies to machine learning. Notwithstanding, the
microfluidics field43 routinely produces rich and vibrant vi-
sual and/or other high signal-to-noise sensor data44 to infer
the state of a given microfluidic system. Indeed, human-
discernable images arguably represent the gold standard for
assessments in microfluidic devices for commercialized
point-of-care diagnostics like pregnancy45 and diabetes
tests,19 visual chemotaxis assays,46 high throughput cell char-
acterization,47 or miniaturized artistic media.48 Semi- or
unsupervised machine learning may be necessary for other
microfluidic applications where it is not possible to label all
(or any) data. In such cases, transfer learning49 may help, in
which a previously-trained model is used as a starting point
to accelerate (and possibly improve) the training of the same
model on separate, new set of training data. The degree to
which transfer learning will accelerate ultimate model perfor-
mance depends on a variety of factors,50 including (at least)
similarity between the sparse and original training datasets,
size and quality of training datasets, model architecture, and
so on.

Complementary physics- and data-driven approaches can
help to overcome limitations stemming from the inherent
variability to our (and many other) microfluidic systems. At
present, a deep investigation into a given machine learning
model does not reveal the same physical insights that stem
from conventional modeling with constitutive equations and
conservation laws.20 However, machine learning can assist
where physical insights fail to yield practical solutions. For
example, it is well understood, theoretically and practically,
how clogs disrupt flow, but real-time machine learning based
monitoring can mitigate production losses caused by such
spontaneous events. This by no means downplays the rele-
vance of traditional models and simulation, especially since
they are crucial to revealing operating conditions and flow
restoration strategies of many microfluidic platforms. Indeed,
we initialize our system using predictions from idealized
models, but, since our devices are handmade and subject to
variability, each requires slightly different process conditions.
Thus, in the future, physical models can guide reinforcement
machine learning51 approaches to rapidly converge on opti-
mal processing conditions for reproducibility.

Although we demonstrate success with single image detec-
tion, other labeling schemes and/or recurrent neural network
machine learning architectures may be able to exploit tempo-
ral relationships among collected images. In addition to in-
stantaneous classifications, labels can incorporate informa-
tion from future portions of image sequences within training
sets. For instance, a “good” image can also be labeled with
the time until long periods of interrupted “bad” events occur.
With temporal labels, it may be possible to train machine
learning algorithms to predict the onset of production
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failures. The controller could then use these predictions to
modulate the operating conditions to enhance sorting accu-
racy and minimize disruptions, leading to improved quality
of microcapsules or output from other microfluidic produc-
tion systems.
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