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Resistive switching random-access memory (ReRAM) is a two-terminal device based on
ion migration to induce resistance switching between a high resistance state (HRS) and
a low resistance state (LRS). ReRAM is considered one of the most promising
technologies for artificial synapses in brain-inspired neuromorphic computing systems.
However, there is still a lack of general understanding about how to develop such
a gestalt system to imitate and compete with the brain’s functionality and efficiency.
Spiking neural networks (SNNs) are well suited to describe the complex spatiotemporal
processing inside the brain, where the energy efficiency of computation mostly relies
on the spike carrying information about both space (which neuron fires) and time (when
a neuron fires). This work addresses the methodology and implementation of
a neuromorphic SNN system to compute the temporal information among neural
spikes using ReRAM synapses capable of spike-timing dependent plasticity (STDP). The
learning and recognition of spatiotemporal spike sequences are experimentally
demonstrated. Our simulation study shows that it is possible to construct a multi-layer
spatiotemporal computing network. Spatiotemporal computing also enables learning
and detection of the trace of moving objects and mimicking of the hierarchy structure
of the biological visual cortex adopting temporal-coding for fast recognition.

1 Introduction

The most relevant advances of artificial intelligence (AI) are currently in the area
of deep neural networks (DNNSs)," which enable the learning and recognition of
images, sounds, and speech. Despite the broad success of DNNs, their supervised
training requires a huge amount of computational resources, while their energy
consumption is several orders of magnitude higher than the human brain. Since
DNNs are implemented in conventional computers, such as the graphic
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processing unit (GPU) utilizing the complementary metal-oxide-semiconductor
(CMOS) technology, the slowing down of Moore’s law may create a critical issue
for the future progress of DNNs. Another possible roadblock for conventional
computers is the memory bottleneck, arising from the large latency and energy
consumption due to the physical separation between memory and computing
circuits according to the von Neumann architecture. The memory bottleneck
critically affects the implementation of DNNs, which are inherently data hungry.
On the other hand, the brain adopts an in-memory computing approach, where
there is no distinction between memory and computing units. Neuromorphic
computing takes inspiration from the brain to achieve a higher energy efficiency
than software-based DNNs for solving Al tasks.>* Resistive memory devices,>®
including resistive random-access memory (ReRAM) and phase change memory
(PCM), can be used as artificial synapses with analog plasticity, similar to bio-
logical synapses.”™*

Resistive switching synapses are used in neuromorphic systems according to
two approaches. In the first approach, an artificial neural network (ANN) is
trained by supervised learning, e.g., the backpropagation (BP) algorithm,"**® to
construct a hardware accelerator for DNNs.'*"*' The major issue for this approach
is the non-linear weight update and the large variability of resistive switching
devices.?**> On the other hand, brain-inspired spiking neural networks (SNNs)
aim at replicating the brain structure and computation in hardware. Learning
usually takes place via spike-timing dependent plasticity (STDP),>?*” where
synapses can update their weight according to the timing between spikes of the
pre-synaptic neuron (PRE) and post-synaptic neuron (POST). This approach
provides a more biologically plausible way to implement neuromorphic
computing. Spikes convey information which can be coded in their rate, namely
a high rate of the spikes represents a high intensity of the external/internal
signal,®® or by more efficient types of coding,>*" namely spatiotemporal
coding®"** or precise spiking coding.**** Spatiotemporal coding, in particular,
contains information about space (which neuron is spiking) and time (when
a neuron is spiking in relation to other neurons). The neuron corresponding to
stimuli with the highest intensity spikes first, while neurons with lower intensity
spike later. Spatiotemporal coding is a sparse coding method with high infor-
mation capacity, and the neural systems based on such coding method theoret-
ically show much larger solution space than the perceptron-based ANN.***

Here we aim at addressing the methodology and implementation of neuro-
morphic computing based on spatiotemporal coding, also exploring possible
applications of temporal computation using ReRAM synapses. We proposed
a hybrid system combining CMOS neurons and ReRAM synapses. STDP is ach-
ieved in ReRAM synapses for both long-term potentiation (LTP) and long-term
depression (LTD), while CMOS neurons provide the necessary spiking excita-
tion for realizing plasticity. We first experimentally demonstrate the learning and
recognition of spatiotemporal-coded spike sequences, enabling the wide appli-
cation potential, e.g., spell checking and DNA analysis. Multi-layer spatiotemporal
computing within ReRAM synaptic arrays is also presented. We show that
spatiotemporal computing can enable learning and detection of the trace of
a moving object. We then design and simulate a pattern recognition system
mimicking the hierarchy structure of the biological visual cortex. The results
confirm the ability of the temporal computing of ReRAM synapses and the

454 | Faraday Discuss., 2019, 213, 453-469 This journal is © The Royal Society of Chemistry 2019


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c8fd00097b

Open Access Article. Published on 11 July 2018. Downloaded on 1/7/2026 12:02:49 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online

Paper Faraday Discussions

feasibility of ReRAM synapses for the implementation of a brain-like neuro-
morphic system with efficient spatiotemporal coding.

2 Results and discussion
2.1 ReRAM device as an artificial synapse

Despite the complexity of the human brain, which still defies understanding
nowadays, the individual building blocks in the brain are relatively well known, as
shown in Fig. 1a. Here, a PRE is connected to a POST via a synapse between the PRE
axon and the POST dendrite. The synapse dictates the amount of signal passing
from the PRE to the POST, according to the synaptic weight. The latter can be
modified throughout the life of the synapse by plasticity, which is responsible for
the learning process of the brain. The signal transmission, weighting and
plasticity behavior can be mimicked by the two-terminal, non-volatile, and nano-
scale ReRAM device shown in Fig. 1b.

The biological synapse weights the signal from the PRE by releasing a certain
amount of neurotransmitters and activating the dendrite membrane with receptors.
The synaptic plasticity derives from the regulation of the amount of neurotrans-
mitters and the number and distributions of receptors. On the other hand, the
ReRAM synapse can be viewed as a variable conductance which transforms a voltage
signal into a current proportional to the synaptic conductance, which thus plays the
role of the weight. The ReRAM conductance can be modified by a higher voltage
excitation, thus mimicking the plasticity of the biological synapse.®**

2.2 Computation of the temporal correlation of spikes

The computation of the temporal information among spikes is illustrated by the
computation of the temporal correlation between the two spikes in Fig. 2.
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Fig. 1 (a) Illustration of a building block of the biological neural system, consisting of
a pre-synaptic neuron (PRE), a post-synaptic neuron (POST), and a synapse between the
PRE axon and POST dendrite. (b) Comparison between the biological synapse (left) and
electronic synapse (right, resistive switching memory, ReRAM).
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Fig. 2 (a) Schematic view of the temporal computation between the two spikes using
ReRAM synapses. To enable the interference of the two temporally separated PRE spikes,
the PREs convert the spike signals into exponentially decaying voltage signals applied to
the gate of the one-transistor/one-ReRAM (1T1R) synapses. Inset: the conductance of the
two ReRAM devices. (b) The exponentially decaying signals of the output of the two PREs
(upper panel) and the internal potential (Vi) of the POST (lower panel). (c) Maximum V., as
a function of the temporal correlation (the time difference of the two PRE spikes, t.).

Assuming a simple network of 2 PREs, 2 synapses, and 1 POST (Fig. 2a), the
temporal correlation between the PRE spikes can be denoted as their time delay
t.. The CMOS PRE circuits convert the spikes into exponentially decaying pulses,
mimicking the shape of the action potential reaching the axon (Fig. 1a). Each
exponential pulse Vg is applied to the gate of a one-transistor/one-ReRAM (1T1R)
synapse, and is given by:

i —1

Vsi(t) =V exp( )H(t —t), (1)

Ts
where ¢ is time, ¢; is the spiking time of the i-th PRE, 1, is the decay time constant
of the exponential pulse, V, is a parameter controlling the maximum value of the
signal, and H(¢) is the Heaviside function. The voltage applied on the gate
terminal excites a synaptic current given by:

Vread

Ly (1) = / ’
Y () l/W,"I‘l/kmos(VGl([)_ VT)

(2)

where V,..q is the read voltage applied to the top electrode of the ReRAM, w; is the
weight (ReRAM conductance) of the i-th synapse, and ks and Vi are the
parameters describing the transistor characteristics. The time-dependent total
current entering the POST is determined by the temporal correlation of the two
PRE spikes and the conductance of the two ReRAM devices. The CMOS POST
circuit sums all the synaptic current by Kirchhoff’s law, and converts the total
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current into an internal potential Vine = Rra leyni (t) by a trans-impedance
amplifier (TIA) with a feedback resistance Ryps. !

Fig. 2b shows the exponentially decaying signals of the output of the two PREs
(upper panel) and the resulting Vi,,; (lower panel), showing the incremental steps
following each individual PRE spike, where each increment is proportional to the
synaptic weight (the weights of the 2 ReRAM synapses for the demonstration are
given in the inset of Fig. 2a). The voltage decay between each increment
contributes to the overall evolution of the Vi, which is responsible for the
temporal correlation among the PRE spikes. Fig. 2¢ gives the maximum V;,, as
a function of ¢.. Note that similar results of the temporal computation can be
obtained with regular spikes applied to the gate terminal of the synapse and with
a leaky integrate & fire (LIF) POST neuron. Here we move the leakage function
(decaying signal with time) to the PRE to mimic the shape of the action potential,
as well as to enable the weight update algorithm related to the temporal infor-
mation among the PRE spikes, as described in the following section.

2.3 Learning of the temporal correlation

We adopt a Widrow-Hoff (WH) learning rule for the weight update of the ReRAM
synapses in our SNN during the training process. In the WH rule, each synaptic
weight is updated according to a weight change given by,*®

Aw; = nxi(ya — o), 3)

where 7 is the learning rate, x; is the input variable, y, is the output, and y, is the
expected output. Note that the output difference (yq — y,) can be viewed as the
error, which generally drives the supervised training of a multi-layer perceptron
by gradient descent techniques.* In the original WH rule, the variables (x;, y4 and
Yo) in eqn (3) are real-valued vectors. In SNN, the input and output signals are
described by the spike timing, thus a WH-like learning rule for the precise-timing
learning algorithm can be obtained by modifying eqn (3) as,***°

A1) = VG (Olsa(t) — so(0], (4)

where sq4(f) = 6(¢ — tq) and s,(t) = 6(t — ¢,) are the teacher signals of the supervisor
circuit and the actual output spike of the POST, with ¢4 and ¢, denoting the timing
of the teacher spike and the actual output spike, respectively, and 6(*) being the
Dirac delta function. The value of s4(f) — s,(¢) can only be 0, —1, or 1, denoting the
true fire, false fire, or false silence situations of the POST, respectively, thus
guiding the weight update.

Fig. 3 shows the implementation of the temporal weight update algorithm in
eqn (4). The inset in Fig. 3a gives the two typical I-V curves of the ReRAM device,
demonstrating the synaptic plasticity by the set/reset processes. With a high
positive voltage applied on the top electrode (Vi) of the ReRAM device, the device
can switch from a high resistance state (HRS) to low resistance state (LRS), also
called set transition. On the other hand, when a high negative voltage is applied,
the device can switch from LRS to HRS, which is called reset transition. The LRS
conductance after set transition can be regulated by a compliance current I,
which is controlled by the gate voltage applied to the series transistor. In the reset
transition, varying the gate voltage also controls the HRS conductance (not shown
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Fig. 3 (a) The building block in a fully functional neuromorphic system implementing the
weight update algorithm. Inset: The /-V characteristics of a single ReRAM device. (b—d)
The weight updating rule implemented in the neuromorphic building block, showing: (b)
the PRE signal applied to the gate terminal of 1T1R synapse; (c) the voltage applied to the
top electrode of the ReRAM device, generated by the supervisor circuit; and (d) the weight
update of the synapse. The direction of the weight update is decided by the polarity of the
top electrode voltage, and the amount of weight change is related to the gate voltage of
the transistor at the time of updating, which incorporates the temporal information of the
PRE spikes.

here), since a lower gate voltage results in a higher voltage drop between the
source-drain terminals of the transistor, thus lowering the voltage drop across the
ReRAM device.

Fig. 3b-d illustrate the operation scheme of the potentiation/depression of the
synaptic weight in the building block. When the internal voltage Vi, of POST
exceeds a threshold Vi, a spike is immediately generated and read by a supervisor
circuit. The supervisor circuit compares the POST output signal with a teacher
signal, which marks the presence of a ‘true’ sequence. There are three possible
cases: (i) if the teacher signal and POST spike occur at the same time, this
corresponds to a “true fire”, thus no weight update is needed; (ii) if the teacher
signal occurs with no POST spike, this corresponds to a “false silence” case; (iii) if
the POST spike occurs with no teacher signal, this corresponds to a “false fire”
case. In the case of true fire (i), the top electrode voltage Vrg remains at the low
level read voltage Vieaq (Fig. 3¢). On the other hand, for the false silence (ii), a high
positive voltage Vyg. is applied by the supervisor circuit to induce synaptic
potentiation. Conversely, a high negative voltage Vig_ is applied to induce
synaptic depression for the false fire case (iii). False fire/silence cases are shown in
Fig. 3d, indicating that, in the correspondence of the Vig, or Vig_ pulses, the
exponentially decaying voltage on the transistor gate provides temporal infor-
mation about the PRE spikes. As a result, the synaptic weight change is a function
of the temporal information, allowing spatiotemporal learning.

2.4 Learning and recognition of the spike sequence

To demonstrate learning and recognition of the spatiotemporal patterns, we
considered spike sequences where neurons generate spikes sequentially with
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a fixed time interval. For instance, Fig. 4a shows the 4-spike sequences generated
by 16 PREs, where the sequence [1, 4, 9, 16], namely the sequential spiking of the
1%, 4™ 9™ and 16™ PREs (cycle i), is considered as the ‘true’ sequence. Sequence
learning was demonstrated by using a 16 x 1 spatiotemporal neuromorphic
network, consisting of 16 PREs, 1 POST, and 16 ReRAM synapses. The goal of the
training is that the POST spikes only in response to the true sequence [1, 4, 9, 16],
while keeping silent in response to other sequences. During training, 4-spike
sequences are submitted at each training cycle (Fig. 4a left panel), while the
teacher signal generates a spike in correspondence of the true sequence [1, 4, 9,
16]. The input spikes and the teacher signals are provided by a microcontroller,
although all the learning functions took place locally and independently at the
CMOS-neuron/ReRAM synapse network. Fig. 4b shows the measured evolution of
the synaptic weights during training: after training, the 1%, 4™ 9™ and 16®
synapses were potentiated to LRS, while other synapses were depressed to HRS.
The four synapses in LRS show distinct conductance levels following the rule wy,
> wg > W, > Wy, which evidences the learning of the temporal information in the
true sequence [1, 4, 9, 16].

After the training process, we measured Vj,; in the POST in response to the
submission of all the spike sequences (Fig. 5). For the true sequence, the
successive accumulation of V;,,, reaches the threshold Vy,, thus leading to POST
fire (Fig. 5a). The increments of V;, in correspondence with each PRE spike can be
clearly seen, each step increase being determined by the corresponding ReRAM
synapse weight. On the other hand, Vi, remains below Vy, for false sequences. For
instance, Vi, of the false sequence [16, 7, 4, 1] is far below the threshold (Fig. 5b),
as a result of the 7 synapse being in HRS. The permutations of the spiking

(a) Training cycle

cycle1 ... cyclei ...cyclen Synapses
Y A & & (ﬁ\ J Teacher signal
£ 1L 1L 1L 9
= 4

L B L Q) JL'\\ w

AG: 0. A®: PREs
\’\‘g, \"\‘bn \g‘b“

Spike sequence

Training cycle

Fig. 4 (a) A schematic illustration of the input spiking patterns submitted to a 16 x 1
spatiotemporal network supervised by a teacher signal. (b) The experimentally measured
evolution of the synaptic weights during training.
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Fig.5 Measured V., indicating spike accumulation by the POST for (a) the true sequence
and (b) false sequences.

pattern, e.g., [9, 16, 1, 4], also lead to insufficient accumulation due to the time/
weight mismatch.

2.5 Recognition of long sequences

The recognition of spiking sequences requires that the ReRAM synapses are
potentiated to distinct LRS levels, thus longer spiking sequence might face the
issue of the limited number of LRS levels in the ReRAM.*"**

A feasible solution to this issue is to introduce a multilayer neural network. For
instance, Fig. 6a shows a neural network with 13 input neurons, 4 hidden
neurons, and 1 output neuron, with 13 x 4 ReRAM synapses connecting the input
neurons and hidden neurons in the first layer and 4 x 1 ReRAM synapses con-
necting the hidden neurons and output neuron. Fig. 6b and c shows the
conductance map of the ReRAM synapses of the two-layer network, where the
conductance states are assigned according to the result of the trained network in
Fig. 4b. The network is designed to recognize the true spiking sequence of prime
numbers from 1 to 13, i.e., [1, 2, 3, 5, 7, 11, 13]. To this purpose, the first neuron in

(@) (b)

Synapses

15t layer 2" layer
13X 4 4x1 a8

Hidden Output

Fig. 6 (a) lllustration of a two-layer spatiotemporal network to recognize a relatively long
spiking sequence. (b and c) The conductance map of the synapses in the two-layer
network.
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the hidden layer is designed to recognize the subsequence [1, 2, 3, 5], while the
second neuron recognizes the subsequence [2, 3, 5, 7], and so on. The output
neuron recognizes the successive spikes of the hidden neurons, thus leading to
recognition of the long sequence [1, 2, 3, 5, 7, 11, 13].

Fig. 7a shows the internal potential V;,. of the hidden layer neurons for the true
sequence input, while Fig. 7b shows the response of the output neuron, where V;,¢
reaches the threshold thus demonstrating sequence recognition. On the other
hand, submission of a false sequence [4, 2, 3, 5, 7, 11, 13] does not reach the
threshold in Fig. 7c and d, as a result of substituting the first ‘1’ with a ‘4’ causing
the silence of the first neuron in the hidden layer.

Note that the maximum value of V;, (Fig. 5b and 7d) indicate the similarities of
the test sequences with the true sequence, enabling even the toy neural network
with wide application potential. For instance, with 26 PREs representing one
letter each, the network can be used to check spelling errors of word. The Vj,,
similarities of sequences can be compared with the Damerau-Levenshtein (DL)
distance*>** of sequences, which is widely used in spell checking, speech recog-
nition, DNA analysis, etc. The calculation of the DL distance requires many steps
of comparing each element of the sequences within at least two programming
loops.** On the other hand, the POST Vj,, can assess the similarity between the
patterns with analog behavior, and only requires one inference step in a spatio-
temporal SNN after training.

2.6 Learning of a spiking sequence

In a multilayer spatiotemporal network, the output spikes of one layer must be
spatiotemporally-coded to act as the input of the next layer.*® Though a complete
training algorithm of a multilayer spatiotemporal network is still missing,
training the network to map a spatiotemporal input into a spatiotemporal output
(Fig. 8a) is a critical step.*® Fig. 8b shows a randomly generated spatiotemporal

Hidden neuron: ( )
= [1,2,5,8,7,11,13] =2 15

—4

Time [ms] Time [ms]

Hidden neuron:
15 iy 1.5
[4,2,3,5,7,11,13] o

—4

0 5 10 15 0 5 10 15
Time [ms] Time [ms]

Fig. 7 (a and b) The internal potential of the hidden layer neurons (a) and of the output
neuron (b) under the submission of the true sequence. (c and d) The same, but under the
submission of a false sequence.
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Fig. 8 (a) Illustration of a neural network for the mapping of a spatiotemporal pattern. (b)
Randomly generated spatiotemporal input pattern; (c) spatiotemporal output pattern; (d)
the training of mapping a complex spatiotemporal pattern to a simple one.

input pattern for 250 input neurons, and Fig. 8c shows a spatiotemporal pattern
as the training target of the two output neurons. To associate these two spatio-
temporal spiking patterns, a network consisting of 250 PREs, 2 POSTs, and 250
ReRAM synapses is needed. Following the same learning rule shown in Section
2.3, the 250 x 2 neural network is successfully trained to generate the target
spiking pattern when the input spatiotemporal pattern was presented (Fig. 8d).

‘I HEEE

time

%O.rizontally
Spatial pattern | . i X’
recognition Spatiotemporal moving X
pattern recognition
> diagonally
i el moving ‘X’
AN v J LE v » |
1stlayer 2nd Jayer

Fig. 9 (a) lllustration of a dynamic "X" pattern moving horizontally (first row) or diagonally
(second row). (b) Illustration of the two-layer neural network for the recognition of
a moving object.
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2.7 Detection of a moving object

The spatiotemporal sequence learning and recognition lies at the basis of the
ability to interact with a dynamic environment, e.g., for speech and gesture
recognition. Fig. 9a illustrates the detection of moving objects by a spatiotem-
poral network, where the moving trace of pattern “X” can be represented by
a spatiotemporal spiking pattern with each spiking neuron corresponding to the
position of the pattern “X” at any given time. Fig. 9b shows the neural network for
movement detection, where the first layer is a conventional spatial-pattern
network for the recognition of the pattern ‘X’,* while the second layer is
a spatiotemporal network to detect the trace of the pattern.

The spatial network can be trained, for instance, by unsupervised learning
method,? so that only the pattern “X” would induce a spike in the corresponding
inter-layer neuron representing the position of “X”. The moving object, then,
would result in a sequential spiking of the interlayer neurons. Output neurons
can thus be trained to recognize spatiotemporal sequences representing the
various directions of the pattern.

Retina Simple Cell Complex Cell Higher-Level
( a) — — —r Visual Cortex

Gabor filters Spike coding MAX pooling  Fully connected layer
AN v J ¢ )
Simple Cell Complex Cell

Fig. 10 (a) Illustration of the hierarchy structure of the biological visual system. (b)
Schematic diagram of the artificial visual system for feature extraction and classification
using spatiotemporal spike coding.
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Fig. 11 (a) The optical digital character for training (clean pattern) and testing (noise
pattern) of the artificial hierarchical visual neural network. (b) The recognition rate of the
trained network as a function of the noise level of the optical digital character.

2.8 Spatiotemporal network for pattern recognition

Vision in the mammalian brain follows hierarchical rules,” where signals from
the retina are first projected to simple cells with orientation sensitivity to extract
the basic features of the image, then more complex cells are used to increase the
visual system’s invariant to the input image. Finally, the higher-level cortex
participates in the detection of basic features in the image, enabling pattern
recognition (Fig. 10a).*®

Here, we propose an artificial visual system (Fig. 10b), where Gabor filters with
various sizes and orientations are used to mimic the receptive fields of the simple
cells. The output of the simple cells is converted into spatiotemporal spikes by
amplitude-time conversion, i.e., the neuron with the highest signal spikes first.
Then max-pooling neurons acting as complex cells select the most salient features
in nearby receptive fields. The spatiotemporal patterns from complex cells are
finally used to train a fully-connected spatiotemporal network.

To validate this artificial visual system, we used a simple pattern recognition
task, i.e., optical character recognition (OCR). The synapses of the fully connected
layer are initially prepared in a random conductance map. The network is trained
with the ideal character image (Fig. 11a), then inference was tested with a set of
noisy patterns. Fig. 11b shows the results of the testing, in terms of the recog-
nition rate of noise pattern as a function of the noise level. The recognition rate
remains higher than 90% percentage with the noise level lower than 7%, thus
demonstrating the accuracy of spatiotemporal coding for spatial pattern
recognition.

3 Experimental
3.1 ReRAM synapse

The ReRAM device® used in this study consists of a 10 nm thick switching layer of
Si-doped HfO, deposited by atomic layer deposition (ALD) on a confined 50 nm
diameter TiN bottom electrode and a Ti top electrode on the HfO, dielectric layer.
A forming operation was initially conducted by the application of a pulse of 3 V
amplitude and 100 ms pulse width to initiate the conductive filament path. The
ReRAM was connected via the bottom TiN electrode to a field-effect-transistor,
which was integrated in the front-end of the same silicon chip by
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a conventional CMOS process. The resulting 1T1R structure was controlled during
forming, set, and reset processes by applying pulses to the top electrode and gate
contacts, with grounded source contact.

3.2 CMOS neuron

In the network, each PRE represents a neuron cell and its axon terminal. Each
axon terminal is connected to the gate terminal of a 1T1R synapse. All synaptic top
electrodes were controlled by CMOS circuits providing a constant bias Vieaq =
—0.3 Vto induce the synaptic current Iy, in response to an axon spike.? All source
terminals were connected to the POST input (virtually grounded),*****° consisting
of a trans-impedance amplifier (TIA) to convert the summed synaptic currents
> Isn into the internal potential V;,.. The latter was compared with the threshold
voltage Vi, to induce fire for Vi, > Vi, During supervised training, a teacher spike
was applied to the top electrode to induce potentiation or depression. The voltage
of the top electrodes was switched from V,e,q to a pulse of positive voltage Vyg, =
3V after false silence or negative voltage Vg = —1.6 V after false fire to induce
time-dependent potentiation or depression, respectively.

3.3 Training and test control system

The synaptic network was connected to an Arduino Due microcontroller (uC) on
a PCB for the training and testing of the synaptic network. To operate the network,
the PRE spike sequence was first stored in the internal memory of the uC, then the
sequence was launched while monitoring the synaptic weights and internal
potential V;,, at each cycle. The spike and fire potential and input currents were
also monitored by a Lecroy Waverunner oscilloscope. The pC only provides
spiking information (including the teacher signal) during the training and test
stage, whereas all learning processes, i.e., the adjustment of synaptic, were ach-
ieved by the network of hybrid CMOS-neurons/ReRAM synapses in real time. For
best accuracy in our PCB system, we adopted an axon potential decay constant 7 =
8 ms.

4 Conclusions

ReRAM devices are among the most promising technologies for artificial synapses
in neuromorphic computing systems. To construct an artificial neural network
competing with the brain’s functionality and efficiency, a ReRAM based SNN that
can replicate the temporal computing in the brain is critical. This work addresses
the methodology and hardware implementation of a neuromorphic SNN system
to compute the temporal information among neural spikes using ReRAM
synapses capable of STDP. We first experimentally demonstrate the learning and
recognition of spatiotemporal-coded spike sequences, enabling the wide appli-
cation potential, e.g., spell checking and DNA analysis. Cascade spatiotemporal
computing within the multilayer networks of ReRAM synapses are also presented.
Utilizing the temporal computing between spikes, it is possible to learn and
detect the trace of a moving object. We then design and simulate a pattern
recognition system mimicking the hierarchical structure of the biological visual
cortex using ReRAM synapses and the proposed methodology. The results
confirm the ability of the temporal computing of ReRAM synapses and the
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feasibility of ReRAM synapses for the hardware implementation of “brain-like”
neuromorphic system with efficient spatiotemporal coding.
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