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COMBI, continuous ozonation merged with
biofiltration to study oxidative and microbial
transformation of trace organic contaminants†
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Investigating the biodegradation of ozonation products of trace organic contaminants is important to fur-

ther elucidate their fate and to assess the efficiency of advanced water treatment processes. In this study, a

continuous ozonation merged with biofiltration (COMBI) laboratory system based on an electrochemical

ozone generation method was developed. The system can be operated continuously and resource-

efficiently over several months by supplying ozone doses typically used for water treatment and providing

stable conditions for the establishment of microbial communities in biofiltration columns. Five trace or-

ganic contaminants, acesulfame, carbamazepine, diclofenac, dimethylsulfamide and fluoxetine, were inves-

tigated under drinking water and secondary treated wastewater ozonation conditions. After an equilibration

time of three weeks, biodegradable ozonation products, for example N-nitrosodimethylamine (NDMA) and

an acesulfame product, were removed in the filtration columns. Recalcitrant oxidation products such as

trifluoroacetic acid (TFA) and two products of diclofenac either passed through the columns at unchanged

concentration or were removed to a minor extent. The formation of a secondary biotransformation prod-

uct from carbamazepine ozonation products could be also observed. In summary, the results show that

the developed system is a valuable tool to investigate complex transformation processes of ozonation

products during biofiltration. COMBI will simplify future ozonation-biotransformation studies and enable

more comprehensive investigations with a wider range of contaminants under different conditions.

Introduction

Trace organic contaminants (TrOCs) are a diverse class of or-
ganic compounds comprising pharmaceuticals, personal
care products, hormones, pesticides and specialty chemicals
that are frequently present at nanogram to microgram per
liter concentrations in surface water, ground water and drink-

ing water.1–4 The main entry pathways for TrOCs into water
bodies are direct sources from agriculture, aquaculture and
urban stormwater runoff,5,6 and indirectly through wastewa-
ter treatment plants.7–9 The occurrence of TrOCs in the
aquatic environment poses a threat to various sensitive organ-
isms10,11 and may adversely affect whole ecosystems.12 Fur-
thermore, the detection of TrOCs in drinking water13,14 has
raised public concerns.15,16 In 2015 the European Commission
published a first watch list of emerging water contaminants
with the aim to create a reliable information base on the
occurrence of selected substances across the EU.17 As a conse-
quence, more stringent measures to reduce concentrations of
TrOCs in water bodies can be expected, including the wide-
spread application of advanced water treatment approaches.

Ozone is a traditional drinking water disinfectant18 and
ozonation is among the most promising technologies to de-
grade TrOCs during advanced wastewater treatment, water
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Water impact

A continuously operating ozonation biofiltration system was developed and tested in a proof-of-concept study by following the fate of ozonation products of
five exemplary trace organic contaminants during both a drinking water and a wastewater effluent ozonation scenario. The resourceful and flexible lab-
scale system will lead to a better understanding of complex contaminant transformation processes during advanced water treatment schemes.
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recycling and for drinking water production.19–22 Ozone
attacks electron rich moieties of organic substrates such as
double bonds, tertiary amines, organosulfur compounds and
activated aromatic systems.23 Secondary oxidants derived
from ozone decomposition, in particular hydroxyl radicals,
react less selectively mainly by hydroxylation, hydrogen ab-
straction and electron transfer.24 At ozone doses typically
applied for water treatment, primary and secondary oxidation
reactions do not lead to significant mineralization but gener-
ate biodegradable assimilable organic carbon25–28 and trans-
formation products of TrOCs.29 Some products are recalcitrant
to further degradation.30 Ozonation is usually combined with
a biofiltration step such as sand filtration to remove biode-
gradable organic carbon and to further break down transfor-
mation products.31 Ozonation can be also applied prior to
natural engineered water treatment, including constructed
wetlands, soil aquifer treatment and riverbank filtration.32

Biofiltration and post-ozonation engineered natural treat-
ment stages contribute to reducing ecotoxicity indicators of the
treated water, which in some cases have been found to increase
after ozonation,30,33 depending on treatment conditions.34

Therefore, the combined effect of ozonation and subsequent
biofiltration leads to significant reduction of the ecotoxicity of
the treated water.35–40 The degradation of TrOCs during bio-
filtration depends on several factors, such as contaminant con-
centration,41 retention time,42,43 age, diversity and adaptation
of the microbial community,44,45 substrate availability and
composition for microbial metabolic processes,46,47 redox
conditions,48,49 and temperature.50 Similar relationships
during biofiltration can be expected for the removal of trans-
formation products. However, extended studies are needed to
further understand the fate of transformation products
during biofiltration and to optimize removal efficiency under
different conditions. A recent review concluded that the bio-
degradability of ozonation products of TrOCs depends on the
reactive site of the target contaminant and on its reaction
mechanism with ozone.51 Although ozonation products of
numerous TrOCs have been identified, there are currently
only a limited number of studies that investigate the biode-
gradability of ozonation products such as N-oxides.52–54

In the lab, ozonation of a water sample can be readily
performed, while biological treatment processes following
ozonation must be continuous to provide a stable and
adapted microbiological community. The available studies
have therefore employed batch ozonation followed by bio-
filtration or were carried out in pilot-scale and full-scale
systems. These approaches have disadvantages because they
are either laborious or require access to large infrastructure.
An alternative is to perform batch biodegradation tests with
ozonation products. However, the results of batch experi-
ments might not be transferrable to continuous processes
used in water and wastewater treatment. The kinetics in
batch processes are different, the water matrix changes over
time, and short-lifetime transformation products can only be
studied through the online coupling of ozonation and
biofiltration.

The goal of this study was to develop a cost-efficient con-
tinuously operating lab-scale system for the investigation of
the ozonation of TrOCs and the fate of their ozonation and
bio-transformation products during subsequent biological
treatment steps. Two equivalent continuous ozonation sys-
tems with miniaturized electrochemical ozone generators
followed by biologically active sand filtration columns were
used, to test both a drinking water production scenario and a
tertiary wastewater treatment scenario, which are two of the
main applications of this treatment scheme. The selection of
the target TrOCs was based on their diverse physicochemical
properties and their relevance for drinking water (dimethyl-
sulfamide, a pesticide metabolite, and acesulfame, an artifi-
cial sweetener), and wastewater (the pharmaceuticals carba-
mazepine, diclofenac, and fluoxetine). Through the analysis
of literature-known transformation products the results could
be compared with the ones from full-scale treatment plants
and the capability of the COMBI setup could be proven.

Methods
Chemicals

All chemicals, including solvents, analytical consumables,
TrOCs and ingredients for the preparation of synthetic waste-
water were purchased from commercial sources. A list for
TrOCs and analytical standards is provided in the ESI†
(Text S2.1), including a table of molecular and structural data
of parent compounds and their investigated ozonation prod-
ucts (Table S2†). Aqueous stock solutions were prepared from
ultrapure water (resistivity >18 MΩ cm−1) from Milli-Q (Merck)
or ELGA (Veolia) water purification systems. Synthetic wastewa-
ter (ESI,† Table S5) was prepared from tap water or deionized
water according to OECD guidelines for synthetic sewage.55

Experimental setup

The initial small-scale column setup for studying continuous
ozonation merged with biofiltration (COMBI) was designed
and built at DVGW-Technologiezentrum Wasser, Germany
(System 1). This setup was used to investigate dimethyl-
sulfamide (DMS) and acesulfame (ACE) in a waterworks sce-
nario. A similar setup was built at the University of Bath, UK
(System 2) and used to investigate the fate of carbamazepine
(CBZ), diclofenac (DF) and fluoxetine (FLX) in a wastewater
effluent ozonation scenario.

A schematic of the setup is shown in Fig. 1. Photographs
are shown in ESI,† Fig. S1 and a summary of costs for parts is
listed in Table S1.† The setup consisted of an ozonation col-
umn and three post-ozonation filtration columns, feed and
effluent storage tanks, a pump and an ozone generation ves-
sel. An ozone micro-cell (Innovatec Gerätetechnik GmbH,
Germany) was used to generate ozone by electrolysis of
demineralized water. The cell consists of porous stainless-
steel frits that are used as electrodes, which are contacted
with an ion-conducting membrane (solid electrolyte of a poly-
mer, <0.2 mm). The amount of ozone generated is deter-
mined by the number of electrolysis cells and the DC current
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applied. Head-space ozone, including oxygen and hydrogen
as byproducts, flowed continuously via the intrinsic pressure
of the electrochemical gas production through a tube
connected to a sparger into the ozonation column. Water was
delivered from the storage tank into the ozonation column
using adjustable membrane pumps or gear pumps. The water
was then gravity-fed from the ozonation column into the sub-
sequent filtration columns.

Operational parameters

The operational parameters of both systems are summarized
in Table 1. System 1 used anthracite (Everzit) as filtration
medium for the first column C1, and sand from a drinking
water treatment plant for columns C2 and C3. The sand had
been used for several years in a sand filter after an ozone
treatment, and was used in the COMBI columns without any

cleaning. For System 2 water filtration sand (0.7 mm to 1.2
mm, 1.0 to 2.0 mm, Long Rake Spar, UK) was used as pur-
chased. A 1 cm-layer of the coarser sand served as bottom
support over a metal mesh in each column. System 2 was
inoculated with secondary treated wastewater effluent, while
System 1 was not specifically inoculated. Both systems had
been operating continuously at room temperature in the
presence of target trace contaminants for at least three weeks
before sampling first occurred. The columns were covered
with aluminum foil to prevent photolysis, and sand is a non-
adsorptive filtration medium.

The drinking water used for operating System 1 was
obtained from groundwater, which is only treated by aeration.
In a single combined experiment, 100 L of feed water were
spiked with the target compounds (DMS = 16 nmol L−1 and
ACE = 0.6 μmol L−1 to 1 μmol L−1), and refilled weekly. Due to
the persistence and high solubility of both ACE and DMS in
water, no removal by degradation or significant adsorption to
the feed tank was observed. Samples were collected on days 7,
24 and 97 for DMS and 24, 27 and 93 for ACE.

The synthetic wastewater for System 2 was prepared
freshly three times a week according to OECD guidelines for
synthetic sewage55 at 10-fold dilution to yield an initial total
organic carbon concentration of 10 mg L−1 (ESI,† Table S5).
The easily biodegradable organic matter contained in this
mixture led to biofilm growth and occasional clogging of the
first column, which was resolved by scraping or manually re-
moving the upper sand layer. The TrOCs CBZ, DF and FLX
were spiked simultaneously into the influent tank (a range of
10 L to 15 L of synthetic wastewater) at a concentration of
1 μmol L−1 to 3 μmol L−1 two weeks after continuous opera-
tion had started, to allow time for a microbial community to
grow. The measured concentration in the influent tank fluc-
tuated slightly due to the relatively large volume prepared for
each refill, and sorption or slow microbial decomposition

Fig. 1 Schematic of the continuous small-scale ozonation/biofiltration
setup. Sampling points are shown as C0, OZ, C1, C2 and C3.

Table 1 Operational parameters

Parameter System 1 (Karlsruhe) System 2 (Bath)

Ozone generation Ozone-microcell with 4 cell hearts (Innovatec)
Voltage of microcell/V 24
Current of microcell/mA 10 to 200
Ozone output/(mg min−1) 0.01 to 1
Pump Solenoid diaphragm pump (e.g. FMM 20, KNF)

or gear pump (e.g. REGLO-Z digital, Ismatec)
Flow rate used for long-term
operation/(mL min−1)

6 3

Diameter, length of the ozonation
column/cm

1.8, 17.5 2, 20

Volume of ozonation column/mL 45 60
Diameter, length of each filtration
column/cm

6.5, 20 4, 30

Volume of each filtration column/mL 660 375
Filtration medium/mm Everzit® N (C1) and sand from a water treatment

plant (C2/C3)
Quartz sand, 0.7 to 1.2/1.0 to 2.0
(Long Rake Spar)

Water type Drinking water Synthetic wastewater
Water characteristics pH 7.2, conductivity 610 μS cm−1, TOC ∼ 0.9 mg L−1,

calcium carbonate hardness 3.2 mmol L−1
pH 7.4, conductivity 800 μS cm−1,
TOC ∼ 7 mg L−1, TN ∼ 7.5 mg L−1

Target contaminants Dimethylsulfamide (DMS), acesulfame (ACE) Carbamazepine (CBZ), diclofenac (DF),
fluoxetine (FLX)
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occurring in the tank. Samples were collected on days 22, 28,
42 and 54, where day 1 is the first day when trace contami-
nants were spiked. All samples were collected and analyzed
in duplicate.

To enable detection of transformation products without
pre-concentration, spiked levels of ACE, CBZ, DF and FLX
were higher than those typically found in wastewater efflu-
ent.7 The microbial characterization of the sand columns was
not the scope of this study, while known transformation
pathways were consulted to interpret results.

Analysis

A description of analytical methods for all target compounds
and their transformation products is provided in ESI† Section
S2.2. Briefly, ultra high performance liquid chromatography-
mass spectrometry (UHPLC-MS) analysis for CBZ, DF and
FLX was performed with a Thermo Scientific Dionex UltiMate
3000 system coupled to a Bruker Daltonics maXis HD electro-
spray ionization quadrupole time-of-flight (ESI-QTOF) mass
spectrometer. Transformation products of CBZ and DF were
identified based on literature data, mass accuracy, consistent
retention time and MS/MS analysis in MRM (multiple reac-
tion monitoring) mode. Fragmentation patterns are provided
in ESI,† Section S3.3. Direct injection was used for the analy-
sis of trifluoroacetic acid (TFA), ACE and its ozonation prod-
uct OP168. DMS and N-nitrosodimethylamine (NDMA) sam-
ples were pre-concentrated with solid phase extraction (SPE)
prior the analysis.56 Analysis was performed on an API 5500
Q-Trap triple quadrupole mass spectrometer (Applied Bio-
systems/MDS Sciex Instruments, Concord, ON, Canada). TFA
analysis was performed using ion exchange liquid
chromatography-electrospray tandem mass spectrometry (LC-
ESI-MS/MS) according to a recently developed method.57 GC
analysis for NDMA was carried out with a series 6890 gas
chromatograph connected to a MSD 5973 inert mass spectro-
meter (both Agilent, Waldbronn, Germany).

UV/vis absorption for the determination of dissolved oz-
one in water with the indigo method,58 and for tracer tests
with fluorescein to determine hydraulic residence times
(HRTs), were conducted with stationary devices (e.g. Cary
100, Agilent; FP 8200, Jasco; EVO300, Thermo Scientific) or a
self-built portable LED photometer. In System 1, the
dissolved ozone concentration was measured in pure water
(no reactions present) by sampling the water inside the ozon-
ation column. In System 2, the ozone dose was measured by
feeding an indigo solution through the ozonation column,
which captured directly the ozone transferred. More details
are provided in the ESI,† Section S2.3.

Results and discussion
Determination of operational range

Initial tests determined ozone contact time and HRTs. Fluo-
rescein breakthrough curves for both systems are shown in
Fig. 2A and B. Further details are provided in ESI† Section
S3.1. The HRT was assumed to be equal to the time of maxi-

mum (complete) tracer breakthrough. At a flow rate of 6 mL
min−1, the ozonation contact time in System 1 was 30 min
and the total HRT was approximately 5 h. For System 2 the
ozonation contact time at a flow rate of 3 mL min−1 was 10
min and the HRT was approximately 4 h. A wide range of op-
erational parameters can be achieved by varying the flow rate.
For instance, in System 2 a change of flow rate from 2 mL
min−1 to 12 mL min−1, results in the single column HRT
changing from 150 min to 15 min (Fig. S7†), with the total
HRT decreasing from approximately 8 h to 1 h.

The relationship of the applied electrical current of the
electrochemical cell and the ozone dose is presented in
Fig. 2C. The change in ozone concentration for a single cell
over time is shown in Fig. 2D. The decreasing efficiency of
ozone production is due to aging of the ozone micro-cells.
The difference between the two systems can be attributed to
design differences, such as the length of the tubing
connecting the microcell vessel and the ozonation column,
the height and volume of the ozonation column, and the hy-
drostatic pressure which must be overcome by the gas. To
further characterize the mass transfer of ozone in the system,
analysis of the ozone concentration in the inlet gas and the
off-gas would need to be conducted.

Long-term experiments were conducted at conditions sim-
ilar to those of other ozonation–biofiltration systems (ozone
dose of 1 mg L−1 to 10 mg L−1, ozonation HRT of 30 min or
less, filtration HRT of 10 min to 30 min)21,52 without further
optimization of the operational parameters. A longer filtra-
tion HRT was chosen to elucidate the fate of compounds that
are not easily biodegradable.

Removal and transformation of trace contaminants in a
drinking water treatment scenario

Dimethylsulfamide. The oxidative transformation of DMS
to NDMA during ozonation was examined as a first example.
Fig. 3 shows the evolution of DMS and NDMA in the COMBI
system at three sampling events during three months of con-
tinuous operation. The reactivity of DMS with ozone is impor-
tant for waterworks as both DMS sorption and biological deg-
radation during riverbank filtration are limited, while
filtration over activated carbon, sand filtration, disinfection
by chlorine and nanofiltration cannot completely remove
DMS if present in raw waters.59 Oxidative treatment followed
by a biological treatment step seems to be one of the very few
promising treatment combinations for waterworks to remove
DMS.59 DMS was almost completely oxidized (to below 0.2
nmol L−1, corresponding to at least 99% removal) under the
applied conditions (ozone dose approx. 3 mg L−1, contact
time 30 min). The reaction of DMS with ozone is slow (rate
constant of 20 M−1 s−1) and leads to the formation of NDMA
in the presence of bromide.60 The maximum NDMA yield is
reached for bromide levels of 15 μg L−1 to 20 μg L−1 which
are typical for drinking waters.60 The bromide level of the
used tap water was about 35 μg L−1. During the four month
experiment, the NDMA formation was reproducible, with an
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average molar yield of NDMA of approximately 50%. In full-
scale waterworks similar DMS transformation rates of 73% to
100% were observed, while DMS to NDMA conversion rates
were between 30% and 50% for spiked drinking water.59

Only traces of NDMA were detected after the water had
passed column 2, while NDMA was absent (below 0.03 nmol
L−1) in the effluent of column 3 (total HRT of approximately
5 h). NDMA has been shown to be biodegradable in sand
filtration59 and managed aquifer recharge.61 The high re-
moval observed in this study demonstrates the presence of a
well-developed microbial community in the sand columns.
Overall, both DMS and NDMA concentrations were below the
detection limit in the final effluent of the system.

Acesulfame (ACE). The transformation of ACE to OP168 by
ozone and its subsequent fate were also examined (Fig. 4).
ACE reacts with ozone with a rate constant of 88 M−1 s−1,62

according to the Criegee mechanism, leading to ozonation
products such as ACE OP170 and to a minor extent ACE
OP168.63 ACE was almost completely removed (at least 97%
removal) under the applied conditions (ozone dose approx. 3
mg L−1, contact time 30 min). OP168 was chosen for further
investigation. As the ozonation products of ACE can be fur-
ther oxidized, the yield at the effluent of the ozonation col-
umn (approximately 50% on the first two sampling days) may
represent only a fraction of the initially formed OP168. How-
ever, the yield on the last sampling day was almost 100%.

Fig. 2 Fluorescein breakthrough curves for A) System 1 (flow rate of 6 mL min−1 and nitrogen flowing in the ozonation column), and B) System 2
(flow rate of 5 mL min−1, without substitute gas sparging through in the ozonation column). Ozone dose or concentration depending on the
current intensity at constant flow rates of C) 6 mL min−1 in System 1, and D) 3 mL min−1 in System 2.

Fig. 3 Conversion of DMS to NDMA by ozonation in drinking water
matrix and subsequent degradation in biologically active sand columns
in the COMBI set-up. The samples were taken on days 7, 24 and 97.

Fig. 4 Conversion of ACE to OP168 in drinking water matrix by ozonation
and subsequent degradation in biologically active sand columns in the
COMBI set-up. The samples were taken on days 24, 27 and 93.
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No further removal of unreacted residual ACE during col-
umn passage occurred. ACE was recently reported to be bio-
degradable during activated sludge treatment64,65 but has
also been shown to persist in wastewater treatment, includ-
ing riverbank filtration.66,67 No biodegradation occurred over
several months of operation and we suggest that the neces-
sary biological community was absent. Breakthrough of
OP168 through columns 1 and 2 was observed during the
first two sampling events, but OP168 was not detected in the
effluent of column 3 (concentration below 0.03 μmol L−1).
This indicates that OP168 is biodegradable. Overall, removal
of OP168 was highest at the last sampling date, which could
be due to the maturation of the microbial community leading
to an improved ability to degrade the transformation prod-
uct. The structurally related compound ACE OP170 can be re-
moved with activated carbon filtration, likely as a result of
biodegradation.63 The fate of ACE OP168 in sand filtration
has not been investigated before to the knowledge of the
authors.

Removal and transformation of trace contaminants in a
wastewater effluent ozonation scenario

Carbamazepine (CBZ). At ozone concentrations of 1 mg
L−1 to 2 mg L−1 and a contact time of 10 min in the ozonation
column more than 99% of CBZ (C0 = 2.5 μmol L−1 ± 0.2 μmol
L−1) was removed (final concentration below 0.03 μmol L−1).
CBZ reacts with ozone at the double bond of its heterocyclic
centre with a rate constant equal to 3 × 105 M−1 s−1.68 The
main ozonation product is BQM (1-(2-benzaldehyde)-4-hydro-
(1H,3H)-quinazoline-2-one).69 Minor ozonation products are
BaQD (1-(2-benzoic acid)-(1H,3H)-quinazoline-2,4-one), BQD
(1-(2-benzaldehyde)-(1H,3H)-quinazoline-2,4-one)69 and BaQM
(1-(2-benzoic acid)-4-hydro-(1H,3H)-quinazoline-2-one).70

Fig. 5 shows the evolution of the transformation products
BQM and BaQD after ozonation at four sampling events
during two months of continuous operation. Results are

shown semi-quantitatively because analytical standards were
not available. The variation in the formation of BQM and
BaQD during ozonation on the four sampling days is shown
in the ESI,† Fig. S9. General trends were consistent over the
observation period despite fluctuations in the concentration
of BQM and BaQD after the filtration column passage. BQM
concentrations decreased continuously during passage
through the filtration columns, in agreement with a previous
study.70 BQM removal occurred predominantly in the first
column, while consecutive columns had modest additional
effect. The high rate of BQM removal in the first column can
be ascribed to an increased biological activity in the first few
centimetres of the filter sand. The biological activity is
slightly enhanced by additional oxygen following the decom-
position of ozone,32,71 and also by the higher availability of
biodegradable TOC after ozonation. Although the redox con-
ditions were not measured, oxygen concentrations slightly
above atmospheric equilibrium can be expected at the top of
the first column. The increased biological activity in the first
column was also evident by biofilm formation and occasional
clogging during operation.

Overall removal of BQM during column passage was be-
tween 50% and 75%, which is high considering the HRT of 4
hours and shows that BQM is readily biodegradable, in con-
trast to its parent compound CBZ. Improved BQM removal
towards later sampling dates could be due to the adaptation
of the microbial community.72 Removal by adsorption was
considered negligible, since the system was equilibrated for 3
weeks before sampling occurred and sand is a non-
adsorptive filtration medium. An adsorption experiment with
the parent compound CBZ showed no retardation in compar-
ison to the tracer fluorescein or loss due to abiotic processes
(Fig. S8†). In addition, the ozonation products of CBZ have
been shown to be less adsorptive to activated carbon than
the parent compound.73

Toxicity studies suggest that increased chromosomal dam-
age of test organisms induced by ozonated CBZ solutions can

Fig. 5 Evolution of carbamazepine transformation products BQM (A) and BaQD (B) during passage through the sand columns on four different
days. The ratio C/C0 was calculated by dividing each signal (peak area of target compound/peak area of internal standard) by the average signal
after ozonation.

Environmental Science: Water Research & Technology Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
Ja

nu
ar

y 
20

19
. D

ow
nl

oa
de

d 
on

 7
/9

/2
02

5 
7:

08
:1

3 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c8ew00855h


558 | Environ. Sci.: Water Res. Technol., 2019, 5, 552–563 This journal is © The Royal Society of Chemistry 2019

be partially attributed to the formation of BQM.74 The results
presented here indicate that BQM is readily biodegradable
and unlikely to persist in surface water or groundwater.

BaQD concentration increased or remained unchanged
during passage through the filtration columns. Higher BaQD
formation roughly corresponded with higher removal of
BQM, indicating that BaQD was microbially generated from
BQM and other ozonation products of CBZ. BaQD can be
formed directly by ozonation or by consecutive microbial
transformation of ozonation products of CBZ and structurally
similar compounds.70,75 BaQD has been found to be slowly
biodegradable and persistent in sand filtration experiments
with an HRT of 12 days.70 In a pilot scale wastewater treat-
ment plant, partial removal of BaQD was achieved during
GAC filtration but not during passage through a clay
biofilter.76

BaQD has been detected in wastewater effluent, surface
water, groundwater and drinking water21,75–77 and has poten-
tially ecotoxicological relevance.78 The results of this study in-
dicate that microbial transformation during biofiltration is a
more important formation pathway of BaQD than ozonation
itself. Monitoring BaQD in addition to BQM is important to
fully understand the fate of CBZ during ozonation and subse-
quent treatment processes.

Diclofenac (DF). Under the applied conditions (C0ĲDF) =
2.7 μmol L−1 ± 0.1 μmol L−1, β0Ĳozone) = 1 mg L−1 to 2 mg L−1,
contact time = 10 min) DF was removed to more than 99%
during ozonation (final concentration below 0.03 μmol L−1).
DF has a high reaction rate constant with ozone (106 M−1

s−1), due to the presence of two aromatic amino groups that
are deprotonated at neutral pH (pKa = 4).68 The main ozona-
tion products of DF are DF-IQ (diclofenac-2,5-iminoquinone),
OH-DF (5-hydroxydiclofenac) and 2,6-dichloroaniline, while
other minor ozonation products have also been detected.79,80

Both DF-IQ and OH-DF have been found as microbial degra-
dation products of DF in activated sludge.81 This study

focussed on the fate of DF-IQ and OH-DF during column pas-
sage after ozonation. Other known DF ozonation products
such as 2,6-dichloroaniline were either not detected or were
only found in traces.

As shown in Fig. 6, both DF-IQ and OH-DF were persistent
during column passage. A slightly decreasing trend was ob-
served for DF-IQ, while for OH-IF a slightly increasing trend
was found. Biological and abiotic processes might affect the
equilibrium between these two compounds,82 while DF-IQ
has also been shown to adsorb on sediment.83 However, ex-
periments with higher initial concentrations of DF would be
required to yield sufficient amounts of DF-IQ and OH-DF to
investigate subtle concentration changes. In ozonation exper-
iments with DF in deionized water, a maximum yield of 2.7%
for DF-IQ and 4.5% for OH-IF on a molar basis was found,
respectively.79

The observed persistence of ozonation products of DF is
in agreement with experiments in moving bed biofilm reac-
tors (MBBRs), where the removal of DF-IQ reached 37% and
that of OH-DF 27% after incubation for 150 h.84 Therefore, a
longer filtration residence time might be necessary for the
degradation of DF-IQ and OH-DF. The results show that sand
filtration which is commonly employed after ozonation might
not be a sufficient barrier to remove the main ozonation
products of diclofenac.

Fluoxetine (FLX). FLX was chosen for investigation be-
cause it has recently been identified as a precursor of TFA
in wastewater and drinking water treatment processes.57 The
removal of FLX during ozonation at a concentration of
C0ĲFLX) = 1.2 ± 0.1 μmol L−1 and β0Ĳozone) = 1 mg L−1 to 2
mg L−1, a contact time of 10 minutes and a pH of 7.5 was
70% to 95% (Fig. 7). The ozonation rate constant of FLX is
pH dependent, due to the presence of an amine moiety
which is deprotonated at higher pH (pKa = 10) and therefore
more reactive. Several ozonation products of fluoxetine are
known.33 TFA was targeted as a major ozonation product of

Fig. 6 Evolution of diclofenac transformation products OH-DF (A) and DF-IQ (B) during passage through the sand columns on four different days.
The ratio C/C0 was calculated by dividing each signal (peak area of target compound/peak area of internal standard) by the average signal after
ozonation.
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fluoxetine. Other known transformation products of FLX were
either not detected or only found at trace levels. The forma-
tion of TFA during ozonation varied from 8% to 26% on a
molar base. Despite this variation, higher TFA formation cor-
related with higher FLX removal (Fig. 7).

A small amount of TFA (approximately 10 nmol L−1) was
present in the influent, likely due to the presence of TFA in
the tap water that was used to prepare the synthetic wastewa-
ter. A similar amount was formed due to the ozonation of
other matrix components, based on the analysis of samples
that were not spiked with FLX. The formation of TFA is likely
mostly due to reactions mediated by OH-radicals, rather than
direct reaction with ozone, considering the electron-
withdrawing effect of the trifluoromethyl substituent of the
aromatic ring.

Little to no removal of unreacted FLX was observed during
passage through the sand columns. Minor changes in the
concentration of FLX during its passage through sand filters
might be due to ionic interactions with silica sand,85 since
the silica surface is negatively charged at circumneutral pH,86

while FLX is a positively charged amine. The concentration of
TFA was stable during passage through the sand filters. Evi-
dence supporting both the persistence87,88 and the biode-
gradability of TFA89,90 can be found in the literature. In gen-
eral, microbial defluorination is difficult to occur due to the
low reduction potential of the C–F bond.91 Results are in
agreement with a recent study, where no removal of TFA was
observed at three different waterworks that used filtration
over biologically active or adsorptive media.57 Overall, TFA
that is formed during ozonation of fluoxetine will likely per-
sist during subsequent sand filtration.

Conclusions

A continuously operating laboratory system (COMBI) was de-
veloped to investigate the ozonation of TrOCs in water
coupled with subsequent biologically active sand filtration.
The system was used for both a drinking water treatment sce-
nario and an advanced wastewater treatment scenario for five

selected TrOCs and included fate analysis of ozonation prod-
ucts. After three weeks of operation, microbial degradation
processes occurred in the filtration columns, while removal
further increased over time. The microbial community is
expected to be different in the two systems, as a result of the
different filtration media and substrate compositions, al-
though this was not further examined in this study.

Moderate to high removal was observed for the main
ozonation product of carbamazepine, an ozonation product
of acesulfame, as well as for NDMA, produced via ozonation
through its precursor DMS. On the other hand, an ozonation
product of carbamazepine, two ozonation products of
diclofenac, and TFA from ozonation of fluoxetine persisted
microbial degradation. Good agreement with the results of
large-scale and pilot-scale studies was found,21,57,59 implying
that the developed experimental setup can offer reliable
predictions.

The developed system is a useful tool to provide predic-
tions on the fate of ozonation products for different treat-
ment conditions and process configurations. The COMBI sys-
tem has a small footprint, while the total cost of parts for a
complete system is approximately 660 € (ESI,† Table S1).
Based on these attributes COMBI will simplify studies on
ozonation–biofiltration, ultimately leading to a better under-
standing of complex contaminant transformation processes
during advanced water treatment schemes.
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