Photolysis of graphene oxide in the presence of nitrate: implications for graphene oxide integrity in water and wastewater treatment†

Lin Duan,a Tong Zhang,a Weihua Song,b Chuanjia Jiang,a Yan Hou,a Weilu Zhao,a Wei Chen a,*a and Pedro J. J. Alvarezc

Despite the widespread use of graphene oxide (GO) in diverse applications and increasing interest in its inclusion in some water treatment devices, mechanistic understanding of photochemical GO transformations is limited. This is an important knowledge gap relevant to GO performance and durability. We examined the reaction pathways and products of a GO suspension under UV irradiation in the presence of nitrate, a common anion in water and wastewater treatment processes. As the nitrate concentration increased, the dominant pathway of GO transformation changed from direct photolysis to indirect photolysis enhanced by the production of hydroxyl radicals (·OH) during UV irradiation of nitrate. At environmentally relevant concentrations (e.g., 1 mM), nitrate induced significant fragmentation of the GO nanostructure. The significant effects of ·OH on GO morphology and surface properties were verified by negative-control tests, including deoxygenation of the suspension, reactive oxygen species (ROS) inhibition and radical trapping, and by γ-radiolysis, known to generate a single ROS: ·OH. Supplemental photolysis experiments conducted using graphite demonstrated that the main reaction pathways of the indirect photolysis of GO not only include the oxidation reactions between ·OH and the oxidized domains of GO, but also the electrophilic addition reaction between ·OH and the aromatic domains. These findings have significant implications for GO integrity and durability in systems involving incidental or purposeful exposure to UV irradiation.

1 Introduction

Graphene oxide (GO) is one of the promising carbonaceous nanomaterials of significant interest for a number of applications, such as polymer composite fabrication, electronic devices, energy storage, and biomedicine.1–3 Owing to its high surface area and abundant surface O-functional groups, GO has also been considered to improve water and wastewater treatment devices such as adsorbents, catalysts, and filtration membranes.4–9 Moreover, a variety of metal/metal oxide nanoparticles and polymers can be anchored to GO to achieve higher efficiency for contaminant removal.10 During applications in water or wastewater treatment, GO will likely be exposed to various chemical and biological agents, which may result in the transformation of GO11–13 and compromise the performance, integrity, and durability of these materials. Transformation of GO may also result in the formation of toxic contaminants, such as oxygenated polycyclic aromatic hydrocarbon species.14,15
Ultraviolet (UV) irradiation, a commonly adopted approach for disinfection and contaminant degradation, has been shown to induce photochemical transformation of GO. Photolysis of GO under UV irradiation may occur through both direct and indirect pathways. GO can undergo direct photolysis by acting similarly to photo-reactive semiconductors to generate electron–hole pairs, leading to the oxidation of O-functional groups to a higher oxidation state (quinones and carboxylic acids) by the holes or the reduction of O-functional groups by trapped-electrons, finally resulting in the loss of O-containing functional groups and the appearance of cavities and defects on GO nanosheets. A limited number of studies have also been conducted to understand indirect photolysis of GO. It was reported that GO can undergo indirect photolysis in the presence of H₂O₂ or Fenton reagents (Fe³⁺/Fe²⁺/H₂O₂). However, while external reactive oxygen species (ROS) was assumed to play an important role in indirect photolysis of GO, little is known about the photolysis products of GO by external ROS source reagents at environmentally relevant concentrations, and the relative contribution of direct vs. indirect photolysis in such systems. Moreover, the specific reactivity of different GO domains toward ROS is unclear. For instance, it has been proposed that indirect photolysis of GO by ROS is mainly due to the oxidation reactions between ROS and the oxidized domains, and the reaction rates depend strongly on the oxidation degree of GO. Nonetheless, other researchers proposed that the primary active sites to scavenge radicals, based on the observed antioxidant effects of GO.

Natural water and wastewater often contain complex constituents (e.g., natural organic matter and inorganic anions) that can induce the generation of ROS. One of the important precursors for these ROS is nitrate, a common inorganic anion in water as a consequence of agricultural application of nitrogenous fertilizers and manures as well as the discharge of industrial nitro-genous wastes. The maximum contaminant level (MCL) for nitrate is 10 mg L⁻¹. Nitrate-nitrogen in drinking water supply, but nitrate concentration can reach much higher levels, with concentrations up to hundreds of mg L⁻¹ in groundwater of agriculture areas. Many ROS, such as nitrogen oxide radicals (NO and NO₂), superoxide radical anion (O₂⁻) and hydroxyl radical (OH), can be generated when nitrate is exposed to UV. Thus, we postulate that when GO is exposed to UV irradiation in the presence of nitrate, the radicals generated may result in indirect photolysis of GO. To date, the potential effects of nitrate-induced indirect GO photolysis, at environmentally relevant nitrate concentrations, on GO physicochemical properties have not been investigated.

This study seeks to advance mechanistic understanding of GO photolysis and reaction pathways in the presence of nitrate. The effects of nitrate were examined by comparing changes in morphology, structure and surface O-functional groups of GO induced by UV treatment in the presence and absence of nitrate, using combined spectroscopic techniques. Different nitrate concentrations were tested in photolysis experiments to identify the relative contribution of indirect photolysis of GO in the presence of nitrate. Anaerobic experiments, ROS inhibition experiments and radical trapping were conducted as negative controls and γ-radiolysis experiments as a positive control to discern the predominant reactive species responsible for the observed nitrate effects. Moreover, functionality-free, pure graphite was used as a model material to identify the reactivity of the aromatic domains of GO during the indirect photolysis of GO.

2 Experimental

2.1 Materials

GO (>99%) was purchased from Nano Materials Tech Co. (Tianjin, China). According to the supplier, the product was synthesized from graphite using a modified Hummers method. Pure graphite (99.99%) was purchased from Sigma Aldrich (St. Louis, MO, USA). Sodium nitrate (NaNO₃), sodium sulfate (Na₂SO₄) and sodium chloride (NaCl) of chemical grade were obtained from Guangfu Tech Co. (Tianjin, China). Isopropanylamine and parachloro-benzoic acid (pCBA) was purchased from Mackin biochemical Co. (Shanghai, China). Humic acid (HA) was purchased from Guangfu Tech Co. (Tianjin, China).

2.2 Photolysis experiments

An aqueous stock suspension of GO was prepared using the following procedures according to our previous study. First, approximately 60 mg of GO powder was added to 300 mL of deionized (DI) water and mixed using a magnetic stir bar for 0.5 h, and then the mixture was sonicated (600 W, 40 MHz, SB25-12DTDN, Sicentzbio Tech Co. Ningbo, China) for 4 h in a water bath at 30 °C. Finally, the well-mixed GO suspension was kept in dark at 4 °C until use. The working GO suspension was prepared for each irradiation experiment by diluting the GO stock suspension with DI water to a concentration of 10 mg L⁻¹.

Photolysis experiments were carried out in 60 mL customized quartz tubes using a XPA-7 photoreactor (Xujiang, Nanjing, China) equipped with a 500 W medium pressure mercury (Hg) lamp in the center of the photoreactor. To initiate a photolysis experiment, 50 mL of 10 mg L⁻¹ GO suspension was added in the quartz tube with or without sodium salts (NaNO₃, Na₂SO₄ and NaCl) and then sealed with a ground glass stopper and completely mixed using a magnetic stir bar in the dark for 1 h. The reactor was submerged in a thermostatic water bath (25 °C), and exposed to the 500 W medium pressure Hg lamp. The spectrum of UV light emitted from the Hg lamp was measured with a radiometer (RPS900-R, International Light, USA) and presented in the ESI (Fig. S1).

At determined time periods during irradiation, GO suspension in the quartz tube was removed from the reactor and sacrificed for analysis. To test the effects of nitrate, stock solution of different sodium salts (NaNO₃, Na₂SO₄ and NaCl) was added to the working GO suspension to reach a final concentration of 10 mg L⁻¹. Photolysis experiments were carried out in 60 mL customized quartz tubes using a XPA-7 photoreactor (Xujiang, Nanjing, China) equipped with a 500 W medium pressure mercury (Hg) lamp in the center of the photoreactor. To initiate a photolysis experiment, 50 mL of 10 mg L⁻¹ GO suspension was added in the quartz tube with or without sodium salts (NaNO₃, Na₂SO₄ and NaCl) and then sealed with a ground glass stopper and completely mixed using a magnetic stir bar in the dark for 1 h. The reactor was submerged in a thermostatic water bath (25 °C), and exposed to the 500 W medium pressure Hg lamp. The spectrum of UV light emitted from the Hg lamp was measured with a radiometer (RPS900-R, International Light, USA) and presented in the ESI (Fig. S1).

At determined time periods during irradiation, GO suspension in the quartz tube was removed from the reactor and sacrificed for analysis. To test the effects of nitrate, stock solution of different sodium salts (NaNO₃, Na₂SO₄ and NaCl) was added to the working GO suspension to reach a final concentration of 10 mg L⁻¹. Photolysis experiments were carried out in 60 mL customized quartz tubes using a XPA-7 photoreactor (Xujiang, Nanjing, China) equipped with a 500 W medium pressure mercury (Hg) lamp in the center of the photoreactor. To initiate a photolysis experiment, 50 mL of 10 mg L⁻¹ GO suspension was added in the quartz tube with or without sodium salts (NaNO₃, Na₂SO₄ and NaCl) and then sealed with a ground glass stopper and completely mixed using a magnetic stir bar in the dark for 1 h. The reactor was submerged in a thermostatic water bath (25 °C), and exposed to the 500 W medium pressure Hg lamp. The spectrum of UV light emitted from the Hg lamp was measured with a radiometer (RPS900-R, International Light, USA) and presented in the ESI (Fig. S1).

At determined time periods during irradiation, GO suspension in the quartz tube was removed from the reactor and sacrificed for analysis. To test the effects of nitrate, stock solution of different sodium salts (NaNO₃, Na₂SO₄ and NaCl) was added to the working GO suspension to reach a final concentration of 10 mg L⁻¹. Photolysis experiments were carried out in 60 mL customized quartz tubes using a XPA-7 photoreactor (Xujiang, Nanjing, China) equipped with a 500 W medium pressure mercury (Hg) lamp in the center of the photoreactor. To initiate a photolysis experiment, 50 mL of 10 mg L⁻¹ GO suspension was added in the quartz tube with or without sodium salts (NaNO₃, Na₂SO₄ and NaCl) and then sealed with a ground glass stopper and completely mixed using a magnetic stir bar in the dark for 1 h. The reactor was submerged in a thermostatic water bath (25 °C), and exposed to the 500 W medium pressure Hg lamp. The spectrum of UV light emitted from the Hg lamp was measured with a radiometer (RPS900-R, International Light, USA) and presented in the ESI (Fig. S1).

At determined time periods during irradiation, GO suspension in the quartz tube was removed from the reactor and sacrificed for analysis. To test the effects of nitrate, stock solution of different sodium salts (NaNO₃, Na₂SO₄ and NaCl) was added to the working GO suspension to reach a final concentration of 10 mg L⁻¹. Photolysis experiments were carried out in 60 mL customized quartz tubes using a XPA-7 photoreactor (Xujiang, Nanjing, China) equipped with a 500 W medium pressure mercury (Hg) lamp in the center of the photoreactor. To initiate a photolysis experiment, 50 mL of 10 mg L⁻¹ GO suspension was added in the quartz tube with or without sodium salts (NaNO₃, Na₂SO₄ and NaCl) and then sealed with a ground glass stopper and completely mixed using a magnetic stir bar in the dark for 1 h. The reactor was submerged in a thermostatic water bath (25 °C), and exposed to the 500 W medium pressure Hg lamp. The spectrum of UV light emitted from the Hg lamp was measured with a radiometer (RPS900-R, International Light, USA) and presented in the ESI (Fig. S1).

At determined time periods during irradiation, GO suspension in the quartz tube was removed from the reactor and sacrificed for analysis. To test the effects of nitrate, stock solution of different sodium salts (NaNO₃, Na₂SO₄ and NaCl) was added to the working GO suspension to reach a final concentration of 10 mg L⁻¹. Photolysis experiments were carried out in 60 mL customized quartz tubes using a XPA-7 photoreactor (Xujiang, Nanjing, China) equipped with a 500 W medium pressure mercury (Hg) lamp in the center of the photoreactor. To initiate a photolysis experiment, 50 mL of 10 mg L⁻¹ GO suspension was added in the quartz tube with or without sodium salts (NaNO₃, Na₂SO₄ and NaCl) and then sealed with a ground glass stopper and completely mixed using a magnetic stir bar in the dark for 1 h. The reactor was submerged in a thermostatic water bath (25 °C), and exposed to the 500 W medium pressure Hg lamp. The spectrum of UV light emitted from the Hg lamp was measured with a radiometer (RPS900-R, International Light, USA) and presented in the ESI (Fig. S1).
anion concentration of 1 mM. NaNO$_3$ was also added at concentrations of 0.05, 0.1 and 5 mM to identify the effects of nitrate concentration on GO photolysis. To examine the effects of variable water solution chemistry on GO transformation in the presence of nitrate, additional photolysis experiments were carried out by adding different concentrations (1, 5, 10, 50 or 100 mg L$^{-1}$) of humic acid (as representative natural organic matter), and by using tap water or pond water.

For experiments under anaerobic conditions, GO suspension (50 mL) was purged with high-purity N$_2$ or Ar gas for at least 1 h and sealed to achieve a dissolved O$_2$-deficient environment prior to UV irradiation. To identify the ROS during UV irradiation in the presence of nitrate, 1% (v/v) isopropylamine and 0.5 ppm pCBA were used as a scavenger and a probe for ‘OH, respectively. All experiments conducted under UV-irradiation were performed in duplicate. Additionally, 10 mg L$^{-1}$ GO aqueous suspension saturated with nitrous oxide (N$_2$O) was subjected to different doses of gamma (γ) radiation (400, 800, 1600 and 3000 Gy) to further identify the role of ‘OH in GO photolysis, using 137Cs γ-rays (γ-Cell 40, Atomic Energy of Canada, Ontario, Canada) at a dose rate of 1.0 Gy min$^{-1}$.

2.3 Material characterization

The morphologies and structures of GO samples were characterized by transmission electron microscopy (TEM) (FEI Tecnai G2100 F-20, Hatfield, PA) and atomic force microscopy (AFM) (Veeco Multimode Nanoscope VIII, Santa Barbara, CA). The structural changes of GO after UV irradiation were monitored by UV-vis absorption (UV-2401 UV-vis spectrophotometer, Shimadzu, Japan), X-ray diffraction (XRD) (Rigaku D/max-2500, Japan) and Raman spectroscopy (Renishaw inVia Raman microscope, RM2000, UK). Surface chemistry properties of GO were characterized by X-ray photoelectron spectroscopy (XPS) (PHI 5000 VersaProbe, Japan). The photolysis products of GO were analyzed using electrospray ionization-mass spectrometry (ESI-MS, Xevo TQ-S, Waters, USA). Total organic carbon (TOC) concentrations were determined with a high sensitivity TOC analyzer (Shimadzu Scientific Instruments, Columbia, MD). Surface O-functional groups of the photo-transformed graphite were characterized by Fourier transform infrared (FTIR) transmission spectroscopy (110 Bruker TENSOR 27 apparatus, Germany).

3 Results and discussion

3.1 Photo-transformation of GO affected by nitrate

Changes of GO appearance and morphology. The physical appearance and morphology of GO varied remarkably depending on whether nitrate was present during UV irradiation (Fig. 1). For example, when a GO suspension (10 mg L$^{-1}$) was irradiated in the presence of 1 mM nitrate (the transformation product is referred to as GO-UV-nitrate), the color of the suspension became transparent in 2 h (Fig. 1c). However, in the system without nitrate, i.e., irradiation of the GO suspension in DI water (the transformation product is referred to as GO-UV), the color of the suspension turned blackish in 2 h, and settlement of GO aggregates was evident (Fig. 1b). No distinguishable differences from GO-UV were observed when the GO suspension was UV-irradiated in the presence of sulfate or chloride (the reaction products are referred to as GO-UV-sulfate and GO-UV-chloride, respectively) (ESI† Fig. S2b and c), indicating a nitrate-specific effect on GO photolysis pathways. Moreover, no noticeable changes of the GO suspension were observed for the dark control sample (i.e., GO suspension in nitrate receiving no UV irradiation; referred to as GO-dark) during the time course of the photolysis experiments (Fig. 1a). Photolysis experiments of GO with different nitrate concentrations showed that the nearly transparent color of GO suspension was only observed at nitrate concentrations of 1 mM and above, whereas for the two GO samples involving lower nitrate concentrations of 0.05 and 0.1 mM, no distinguishable differences from GO-UV were observed (ESI† Fig. S3). Apparently, the effects of nitrate were concentration-dependent. The significant effects of nitrate on GO

![Fig. 1 Changes in GO suspension (10 mg L$^{-1}$) appearance and GO morphology after 9 h of UV irradiation, showing that the presence of nitrate (1 mM) significantly affected GO photo-transformation, as indicated by the color change of GO suspensions (a-c: photographs), morphology (d-f: TEM images) and size (g-i: AFM images) of GO samples. GO-dark, GO-UV, and GO-UV-nitrate represent GO suspension receiving no UV irradiation, GO suspension UV-irradiated in DI water, and GO suspension UV-irradiated in the presence of nitrate, respectively.](image-url)
transformation were also observed in the presence of humic acid (up to 100 mg L\(^{-1}\)), as well as in tap water and surface water (ESI† Fig. S4).

TEM images showed significant damages of GO nanosheets for GO-UV-nitrate, wherein the smooth basal plane of GO nanosheets was disintegrated into small fragments (Fig. 1f). In contrast, GO-UV, GO-UV-sulfide and GO-UV-chloride showed larger pieces with irregularly shaped GO nanoflakes (Fig. 1e and ESI† Fig. S2e and f). The AFM images corroborated the significant effects of nitrate on GO photolysis (Fig. 1g–i, and ESI† Fig. S2g–i and S5). For GO-dark, the lateral sizes of GO nanosheets showed a broad distribution and the thickness of the nanosheets was mostly below 1 nm (Fig. 1g and ESI† Fig. S5); for GO-UV, GO nanoflakes with dominant square root of areas of 50−100 nm and thickness of 5−10 nm (Fig. 1h and ESI† Fig. S5) were observed, likely attributable to the aggregation of the photoreaction products. In comparison, GO-UV-nitrate consisted of numerous small-sized fragments with dominant square root of areas below 50 nm and thickness of 5−15 nm (Fig. 1i and ESI† Fig. S5), indicating the significant disintegration of GO flakes and increased tendency of aggregation.

Changes of GO structures. UV irradiation of GO suspension in the presence of nitrate also had significant influences on the structures of GO nanosheets, as evidenced by the changes of the UV-vis absorbance of GO suspension (Fig. 2). Specifically, the maximum absorption peak position (\(\lambda_{\text{max}}\)) exhibited red shifts for GO-UV, GO-UV-sulfide and GO-UV-chloride (Fig. 2a and ESI† Fig. S6), indicating the partial restoration of the \(\pi\)-conjugated structure.\(^{24,40}\) In contrast, \(\lambda_{\text{max}}\) exhibited significant blue shifts for GO-UV-nitrate (Fig. 2b), indicating the damage of local \(\pi\)-conjugated structures.\(^{24}\)

![Fig. 2](image-url) **Fig. 2** UV-vis spectra of 10 mg L\(^{-1}\) GO suspensions before and after UV irradiation in the absence (a) or presence (b) of 1 mM nitrate, showing the significant effects of nitrate on GO photolysis. Structural changes of GO nanosheets are indicated by the shift of the maximum absorption peak position (\(\lambda_{\text{max}}\)). (a) In the absence of nitrate, red shift of \(\lambda_{\text{max}}\) was observed, indicating the restoration of \(\pi\)-conjugated structures; (b) in the presence of nitrate, blue shift of \(\lambda_{\text{max}}\) was observed, indicating the damage of the local \(\pi\)-conjugated structures of GO sheets.
spectra of both GO-UV and GO-UV-nitrate (ESI† Fig. S9), indicating fragmentation of GO nanosheets; this is consistent with the findings of Hou et al.14 However, for GO-UV-nitrate, the photolysis products in the higher mass-to-charge ratio (m/z) range (i.e., 700–1000) almost disappeared, whereas these products remained for GO-UV. This further corroborated the more significant fragmentation of GO nanostucture for GO-UV-nitrate than that for GO-UV. This observation may have important implications as small toxic organic molecules (e.g., oxygenated polycyclic aromatic hydrocarbon species) might be formed from this process.14,15 Consistently, a significant decrease of TOC concentration with irradiation time was observed for the experiment involving nitrate (ESI† Fig. S10), indicating that extensive degradation of GO occurred.

Changes of GO surface O-functionality. XPS analysis showed that after UV irradiation, the carbon-to-oxygen atom ratio (C/O) of both GO-UV and GO-UV-nitrate increased substantially compared to that of GO-dark, indicating that GO was reduced upon UV irradiation. Moreover, the carbon species distributions changed significantly, in that the intensity of C–C/C≡C increased and intensity of C–O decreased for both GO-UV and GO-UV-nitrate (Table 1 and ESI† Fig. S11), consistent with previous studies on UV induced GO transformation.19,20 Notably, GO-UV-nitrate contained markedly greater amount of C–O (20.59%) than GO-UV (14.18%), but significantly smaller amount of O–C==O (4.96%) than GO-UV (10.68%), indicating that the presence of nitrate resulted in surface oxide formation of GO.

3.2 Identification of ROS responsible for nitrate-induced indirect photolysis of GO

Photolysis of nitrate is known to produce different ROS, including ·NO or ·NO2, O2− and ·OH,29,32,35,36 which may contribute to the indirect photolysis of GO. Nitrogen oxide radicals (·NO and ·NO2) are weaker oxidants compared to ·OH, and can be rapidly recombined to form nitrate.35,36 Accordingly, these two ROS likely were not important species

Table 1 Surface chemical properties of graphene oxide (GO) samples obtained from X-ray photoelectron spectroscopy

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>C species (wt%)</th>
<th>C/O ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C–C/C≡C</td>
<td>C–O</td>
</tr>
<tr>
<td>GO-darka</td>
<td>46.67</td>
<td>40.59</td>
</tr>
<tr>
<td>GO-UVb</td>
<td>72.89</td>
<td>14.18</td>
</tr>
<tr>
<td>GO-UV-nitratec</td>
<td>70.85</td>
<td>20.59</td>
</tr>
</tbody>
</table>

a “GO-dark” represents the GO sample without UV irradiation (kept in dark condition). b “GO-UV” represents the GO product after 9 h of UV irradiation in DI water. c “GO-UV-nitrate” represents the GO product after 9 h of UV irradiation in the presence of nitrate (1 mM).
responsible for the significant indirect photolysis of GO. Since deoxygenation of the reaction matrix did not inhibit the significant disintegration of GO sheets (Fig. 4a and ESI† Fig. S12), O$_2$$^-$ likely was not an important ROS responsible to the observed effects of nitrate on GO transformation. Interestingly, the addition of 1% isopropylamine, a scavenger of $^\cdot$OH,41 greatly inhibited the disintegration of GO nanosheets (Fig. 4b), as the color of the suspension turned blackish instead of becoming clear, similar to the appearance of the suspension of GO-UV (Fig. 1b). This result indicated that the nitrate-induced indirect photolysis of GO was mainly caused by the photo-generated $^\cdot$OH.

To further verify that $^\cdot$OH was the predominant ROS responsible for the nitrate-induced indirect photolysis of GO, we conducted supplemental experiments using N$_2$O-saturated water under steady-state γ-radiation, a condition known to generate only $^\cdot$OH.26,42 The color of the GO suspension became gradually transparent when receiving increasing doses of γ-radiation (400, 800, 1600 and 3000 Gy, Fig. 4c) (i.e., the concentration of $^\cdot$OH increased with the increasing dose of γ-radiation). Consistently, the characteristic peak of GO centered at 230 nm of the UV-vis spectrum gradually disappeared during γ-radiolysis (ESI† Fig. S13), indicating molecular alteration due to the reaction of GO with $^\cdot$OH.43 These trends are consistent with that observed for GO-UV-nitrate (Fig. 1c), confirming that nitrate-induced indirect photolysis of GO occurred primarily through a $^\cdot$OH-induced pathway.

Radical trapping experiment using pCBA as the $^\cdot$OH probe showed that the steady-state concentrations of $^\cdot$OH ([$^\cdot$OH]$_{ss}$) in the GO suspension during UV-irradiation with nitrate increased with increasing nitrate concentration (from 1.6 \times 10$^{-14}$ M for 0.05 mM nitrate to 1.35 \times 10$^{-13}$ M for 5 mM nitrate) (Fig. 5), indicating that the generation of $^\cdot$OH was dependent on nitrate concentration and was consistent with the concentration-dependent effects of nitrate on GO transformation (Fig. 3). Note that the amount of $^\cdot$OH generated in the system containing only GO (i.e., in the absence of nitrate) can be neglected when compared with the systems containing both GO and nitrate (Fig. 5), which was likely related to the inhibition of $^\cdot$OH through UV absorption and scavenging of $^\cdot$OH by GO. This is consistent with previous research by Zhao and Jafvert41 showing that upon solar light irradiation of single layered GO dispersed in water, only a

Fig. 4 Transformation of GO in aqueous suspension (10 mg L$^{-1}$) under different conditions, showing that $^\cdot$OH was responsible for nitrate-induced indirect photolysis of GO. (a) Anaerobic experiments: 10 mg L$^{-1}$ GO in 1 mM nitrate solution purged with 99.99% N$_2$ prior to UV irradiation; significant fragmentation of GO nanosheets without dissolved O$_2$ was observed; (b) ROS inhibition experiments: 10 mg L$^{-1}$ GO in 1 mM nitrate with the presence of 1% isopropylamine (as a scavenger of $^\cdot$OH), and no fragmentation of GO sheets was observed; (c) γ-radiolysis experiments: 10 mg L$^{-1}$ GO irradiated with steady-state γ-radiation under N$_2$O saturated conditions; the color of GO suspension gradually turned to nearly transparent after receiving increasing doses of γ-radiation, which verified the contribution of $^\cdot$OH.

Fig. 5 Production of $^\cdot$OH under UV irradiation of 10 mg L$^{-1}$ GO suspension, as affected by the concentration of nitrate (0.05, 0.1, 1 and 5 mM), showing that the concentration of $^\cdot$OH was dependent upon the nitrate concentration (the [$^\cdot$OH]$_{ss}$ generated in the system containing only GO was minimal and calibrated to zero).
negligible amount of ⋅OH was detected, mainly because the scavenging of ⋅OH by GO was likely rapid and significant.

3.3 Proposed reaction pathways for nitrate-induced indirect photolysis of GO

GO contains both oxidized domains and aromatic domains.44 It has been proposed that the indirect photolysis of GO occurs mainly through the oxidation reactions between ⋅OH and the O-functional groups of GO, and the reaction rate depends strongly on the oxidation extent of GO.15,23,36 However, it has also been reported that the aromatic domains of GO were the primary site to scavenge ROS,27 suggesting that the oxidation reaction likely occurred at the aromatic domains of GO.27 Consistently, we hypothesize that the aromatic domains are also susceptible to the oxidation by ⋅OH.

To determine whether the aromatic domains of GO can directly react with ⋅OH during the indirect photolysis of GO, an ROS inhibition experiment using isopropylamine as ⋅OH scavenger was conducted using the functionality-free, pure graphite (99.99% C) as a model material. As expected, FTIR analysis showed that in the presence of nitrate, the absorption bands around 1160 cm⁻¹ and 1040 cm⁻¹ (which are ascribed to C–OH and C–O) appeared on graphite upon UV irradiation,45 indicating that the O-functional-free aromatic structures of graphite were reactive toward ⋅OH; however, when isopropylamine was added, no observable amounts of O-functional groups were formed on graphite surfaces (Fig. 6). These results support the hypothesis that ⋅OH oxidized the aromatic domains of GO.

On the basis of these observations and the literature,46 we postulate that ⋅OH reacted with the aromatic rings of GO surface via electrophilic addition reactions, forming hydroxylated GO, which underwent further oxidation. The direct attack of ⋅OH on the π-conjugated structures of GO can cause ring cleavage of the aromatic moieties, in a similar way to the ring cleavage process that occurred during ozonation of dissolved organic matter.47 The oxidation of the aromatic rings of GO via electrophilic addition reaction is consistent with the difference in carbon species distribution manifested by comparing the XPS results between GO-UV and GO-UV-nitrate (Table 1 and ESI† Fig. S11). For instance, the C–O content of GO-UV-nitrate (20.59%) was significantly higher than that of GO-UV (14.18%), which was probably due to the newly formed hydroxyl groups on GO. Interestingly, the O–C=O

![Fig. 6 FTIR spectra of graphite (40 mg L⁻¹) before and after UV irradiation in the presence of nitrate, showing that photo-generated ⋅OH forms O-functional groups on graphite surface. (a) Graphite (without irradiation); (b) graphite-UV-nitrate (irradiation of a graphite suspension in the presence of 4 mM nitrate); (c) graphite-UV-nitrate-isopropylamine (irradiation of a graphite suspension in the presence of 4 mM nitrate and 1% (v/v) isopropylamine). The absorption bands around 1160 cm⁻¹ and 1040 cm⁻¹ are ascribed to the vibrations of C–OH and C–O, which were observed only for graphite-UV-nitrate, indicating that oxidation reaction(s) occurred between ⋅OH and the aromatic structure of graphite.](image)

![Fig. 7 Proposed direct and indirect pathways for the photolysis of GO under UV irradiation. Direct photolysis occurs mainly through the reactions between photo-induced electron–hole pairs and the oxidized domains of GO (shown with red circle), in that, reduction by photo-induced electrons results in the restoration of the aromatic domains of GO, and the oxidation of O-functional groups by holes converts O-functional groups to higher oxidation state (quinones and carboxylic acids). Indirect photolysis of GO occurs primarily through the oxidation of both the oxidized domains and aromatic domains (shown with blue circle) of GO by nitrate induced ⋅OH.](image)
content of GO-UV-nitrate (4.96%) was significantly lower than that of GO-UV (10.68%), which was likely due to the decarboxylation of the carboxylic acids of GO. Fig. 7 illustrates these predominant reaction pathways of indirect photolysis by nitrate-induced 'OH versus direct photolysis by photo induced electron–hole pairs.

4 Conclusions

Direct and indirect photolysis of GO lead to drastically different transformation products, which may exhibit dissimilar properties. Our study suggests that the significant effects of nitrate on GO photolysis were due to the indirect photolysis mediated by nitrate-induced 'OH. Specifically, when reaching a concentration threshold of nitrate (e.g., 1 mM under the experimental conditions of the present study), the dominant reaction pathway of GO photolysis changed from direct photolysis to indirect photolysis. The concentration of nitrate is critical for determining the relative contributions of the direct vs. indirect photolysis pathways.

The indirect photolysis pathway resulted in damage of the local π-conjugated structures, whereas direct photolysis resulted in restoration of π-conjugated structures. Notably, the indirect photolysis of GO mediated by 'OH was not only driven by the oxidation reactions between 'OH and oxidized domains, but also by the electrophilic addition reactions of 'OH to the aromatic domains, causing substantial disintegration of GO nanostructures. The findings of this study underline the importance of indirect photolysis of GO in the presence of ROS precursors, and may have important implications for GO integrity and durability when used in water and wastewater treatment devices.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Grants 41603099 and 21425729), Tianjin Municipal Science and Technology Commission (Grants 16JCYBJC22400, 17JCYBJC23100 and 17JCYBJC23200), the Ministry of Science and Technology of China (Grant 2014CB932001), the Fundamental Research Funds for the Central Universities and the 111 Program of Ministry of Education of China (T2017001). Partial funding was provided by the NSF ERC on Nanotechnology-Enabled Water Treatment (EEC-1449500).

References

16 W. A. M. Hijnen, E. F. Beerendonk and G. J. Medema, Inactivation credit of UV radiation for viruses, bacteria and

45 S.-H. Hwang, D. Kang, R. S. Ruoff, H. S. Shin and Y.-B. Park, Poly(vinyl alcohol) Reinforced and Toughened with
