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Selenium is of special interest in different research fields due to its narrow range between beneficial and

toxic effects. On a global scale, Se deficiency is more widespread. Biofortification measures have

successfully been applied to specifically increase Se concentrations in food crops. Still not much is

known about the behaviour and long-term fate of externally supplied Se. Over many years, natural but

external selenate is regularly introduced into the soil-plant system via irrigation at our study sites in

Punjab which makes it also an ideal natural analogue to investigate the long term effect of

biofortification. For our study, we combined total and species specific analysis of Se in soil and plant

material. Selenium is clearly enriched in all investigated topsoils (0–15 cm) with concentrations of 1.5–

13.0 mg kg�1 despite similar background Se concentrations (0.5 � 0.1 mg kg�1) below 15 cm depth.

Irrigation is indicated to be the primary source of excess Se. Processes like Se species transformation,

uptake by plants and plant material decomposition further influence both the Se speciation and extent of

Se enrichment in the soils. The Se concentration in different plants and plant parts is alarmingly high

showing concentrations of up to 738 mg kg�1 in wheat. Irrigation induced selenate can be considered as

an easily available short term pool of Se for plants and thus strongly controls their total Se concentration

and speciation. The long-term pool of Se in the topsoil mainly consists of selenite and organic Se

species. These species are readily retained but still sufficiently mobile to be taken up by plants. The

formation of elemental Se can be considered as a non-available Se pool and is thus, the major cause of

Se immobilization and long-term enrichment of Se in the soils. Our study clearly shows that

biofortification with selenate, despite its effectiveness, bears the risk of easily increasing Se levels in

plants to toxic levels and producing food with less favourable inorganic Se species if not done with care.

Excess selenate is either lost due to biomethylation or immobilized within the soil which has to be

considered as highly negative from both an economic and ecological point of few.
Environmental signicance

Selenium is oen articially supplemented to agricultural systems due to its essentiality for humans despite a lack of knowledge of the long-term behaviour of
this also toxic element. Investigations on the fate of irrigation induced selenate clearly proved an alarmingly high enrichment of Se in both soil and plants. In
soils, the enrichment is largely controlled by the formation of immobile elemental Se making soils to a long-term Se pool. In plants, the excess of Se leads to
a dominance of inorganic Se species which are less favourable from a food and health perspective. Thus, Se species transformation is a key process that has to be
understood when supplying articial Se to natural systems without causing long-term system disturbance.
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Introduction

Selenium (Se) is a micronutrient which is oen called a “double-
edged sword”1 due to its ambivalent nature with regard to
human and animal health. On the one hand, Se is an essential
trace element with multiple positive functions like reducing the
risk of cancer and cardiovascular diseases or enhancing the
detoxication of heavy metal intake.2–4 On the other hand, both
low and excessive dietary intake could cause various health risks
or disorders in humans and livestock.5–7 The range of adequate
Se intake is one of the narrowest known.8,9 Recommended
Environ. Sci.: Processes Impacts, 2019, 21, 957–969 | 957
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limits of safe daily dietary Se intake typically vary between 55
and 400 mg d�1 for adult humans8,10 but the onset of actual
pharmacological and toxicological effects further depend on
age, gender and weight of the individual person.2,11,12 For live-
stock, 0.05–0.1 mg Se per kg dry weight (dw) are suggested as
minimum requirement in their feed while toxic effects are
expectable above 2–5 mg Se per kg dw.13,14 The actual impact,
however, varies with animal species.15

The bioavailability and bioaccessibility and thus, also its
health effect, are further controlled by the form of ingested
Se.4,16,17 Plants, which are the main Se source for humans and
animals,5,6,18,19 play a decisive role in this context due to their
ability to transform inorganic species that are taken up from the
soil into organic Se species that are mainly less toxic and more
accessible.19

High Se concentrations in water can be of concern if trans-
ferred to the soil-plant system via irrigation leading to toxic Se
concentrations in food as reported in several cases world-
wide.20–22 Therefore, limits for Se in irrigation water of 10–20 mg
L�1 were advised by several states and organisations in the
past.23–26

Selenium concentrations in soils are generally low with 0.01–
2 mg kg�1 (average: 0.4 mg kg�1) but soils with highly elevated
Se concentrations (>2–5000 mg kg�1), called seleniferous soils,
are widely distributed throughout the world (USA:#28mg kg�1;
Ireland: #1200 mg kg�1, China: #59 mg kg�1).1,26–28 In India,
both Se decient (0.025–0.71mg kg�1) and seleniferous soils (1–
20 mg kg�1) have been described.26 Primarily, the Se concen-
tration in soils is determined by its content in the parent rock as
well as the topography and climate. Over time, however, depo-
sition of seleniferous erosion material, poor drainage of soils,
irrigation with Se containing water and input through mining
operations, volcanic eruptions, precipitation, combustion of
coal or petroleum can considerably overprint the background Se
content in soils.26,28–31 Consequently, the Se distribution is
usually heterogeneous and site specic.32,33

It is generally acknowledged that Se transfer from soils into
plants and thus into the food chain is controlled by the Se
speciation rather than its total concentration.11,33 Selenate is
seen as the most mobile and bioavailable form in soils because
of its weak adsorption to minerals through electrostatic forces
and its inability to form insoluble salts.33,34 The lower mobility
and availability of selenite to plants can be explained by its high
affinity to clay minerals and Al/Fe oxyhydroxides to which it is
xed through strong inner-sphere surface complexes.35,36 Both
inorganic species can be transformed by biotic and abiotic
processes but typically co-exist in soils.37,38 Under anoxic
conditions, microbes are able to further reduce selenite to
insoluble elemental Se or selenides.39–42 Methylated Se species,
which are oen volatile, are another product of microbial
processes43 and can be an important factor for the loss of Se
from the soils directly to the atmosphere.44 In general, the
behaviour of organic Se species in the soil-plant system is less
clear but organic Se species have been reported to be readily
taken up by plants.45–47 Selenium bound to organic matter,
however, is considered as important long-term pool for Se in
soils because of its low direct bioavailability. In short, the Se
958 | Environ. Sci.: Processes Impacts, 2019, 21, 957–969
speciation and thus its bioavailability is susceptible to various
reactions and processes in soil such as redox-transformations
and pH shis, adsorption/desorption, precipitation/
dissolution, Se–ligand complex formation and methylation.48

Plants differ in their ability to accumulate Se in their tissue. A
distinction is made between primary accumulator (1000–
10 000 mg per kg dry weight (dw)), secondary accumulator
(<1000 mg per kg dw) and non-accumulator plants which
mainly contain less than 50 mg per kg dw and oen even less
than 5 mg kg�1.49,50 Most forage and crop plants belong to the
non-accumulator plants with rarely more than 25 mg Se per kg
dw if grown on seleniferous soils51 and 0.01–1 mg Se per kg on
non-seleniferous soils.52,53 Unfortunately, no generally appli-
cable threshold value can be formulated as precaution to
prevent toxicity symptoms in plants and thus economic losses
e.g. due to reduced yield for farmers. This is because the extent
of both benecial and toxic effects of Se on plants is determined
by several factors like Se concentration and speciation, plant
species or agricultural practices.38,51

Due to its signicant role with regard to human and animal
health it is generally acknowledged that ensuring an adequate
Se intake in both decient and seleniferous areas is highly
important. So far, however, the Se status of a region is mainly
determined based on total Se contents in soil. The complexity of
processes and interactions that control the transfer of Se into
plants highly questions this approach. Different concepts have
been developed over the years to intentionally increase or
decrease the Se content in food. Many biofortication measures
aim at increasing the concentration of bioavailable Se in soils.
In this context, still not enough attention is paid to the inu-
ence of Se speciation in soil on plant and food Se speciation and
their relation to health.54 To develop successful Se management
concepts that are cost- and resource-efficient, the under-
standing of all interacting processes that determine the Se
mobility, transfer and speciation in the soil-plant system has to
be signicantly improved. Studies in controlled environments
are helpful to elucidate individual processes but oen over-
simplify important chemical, physical and biological processes
that are present in nature.33 The aim of this paper is to study the
relation between Se concentration and speciation in ground-
water, soil and different plant species in the context of long-
term enrichment and toxicity in a known seleniferous area in
Punjab, India, under natural conditions.
Study area

The study area, a small seleniferous area (�1000 ha) rst
described by Dhillon and Dhillon,55 is located in the state of
Punjab, North-West India. It stretches over the districts of SBS
Nagar (formerly known as Nawanshahr, 33.12�N, 76.13�E) and
Hoshiarpur (31.12�N 76.13�E) and lies at the foothills (Shivalik
range) of the Himalaya. All samples were taken near the villages
of Jainpur and Barwa (Fig. S1†). Around both villages, approxi-
mately 400 ha are described as seleniferous (soil Se content
>0.5 mg kg�1) and 200 ha as highly seleniferous (>2 mg kg�1).56,57

The area has a humid subtropical climate with hot summers
and cold winters (6–45 �C).58 Approximately 80% of the rainfall
This journal is © The Royal Society of Chemistry 2019
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occurs during the monsoon from June to September. Most soils
of the area are used for agriculture with wheat, maize, rice,
sugarcane and forage crops (oat, clover, mustard etc.) as domi-
nant cultivars. Nowadays, wheat-rice rotation (70%) is the
dominant form of land use, which has largely replaced the
former wheat-maize rotation.59 Sugarcane is grown on about 20%
of the cultivated area.59 The growth period of wheat is from
October to March/April. Most elds have to be regularly irrigated
mainly using groundwater – the only source of water for irrigation
due to extended periods of dryness especially during the winter
and the high water demand of rice cultivation.21 The demand of
water for rice-wheat rotation (�2000 L m�2 a�1) is 3.3 times
higher compared to maize-wheat rotation (�600 L m�2 a�1).59,60

Crops grown in the area, especially wheat, regularly show
toxicity symptoms like white and pink chlorosis. Furthermore,
signs of selenosis have been reported from the area both in
human and animals.21,55,61 The daily dietary intake by humans
clearly differs between seleniferous areas with 250–1150 mg per
day per day and non-seleniferous areas with 40–80 mg per day.62

However, over the last years, no incident of selenosis of humans
has been reported which might be due to a changed diet with
a greater share of globally produced food; due to awareness about
farm produce or an adaption to elevated Se concentrations.63
Materials and methods
Soil and plant sampling

Soil and plant samples were taken near the villages of Jainpur
and Barwa (Fig. S1†). The sampling sites were selected based on
the known distribution of seleniferous soils and visible signs of
chlorosis to also include extreme sites into our study. Three soil
depth proles (Field-1, Field-2, Field-3) (Fig. S1†) divided into 0–
2, 2–5, 5–10, 10–15, 15–30, 30–45 and <45 cm were sampled
where wheat was growing during that time (Fig. S2†). The
samples were taken by digging a small pit. For each depth
interval, the respective layer was sampled horizontally starting
with the top 2 cm. Samples > 45 cm were taken with a soil auger.
Where plant samples were taken, a bulk soil sample of the root
zone, which equals the top 15 cm, was taken. Field-1, located 1
km east of Barwa village, was situated next to an irrigation
channel (Fig. S2†), which was dry during sampling time. Field-2
and Field-3 were located 1.5 km north-west of Field 1. The
samples were taken approximately one meter inside the
respective eld. Additionally, wheat plants (Triticum aestivum)
were collected at each site. The wheat plants at Field-1 showed
signs of white chlorosis (Fig. S2†), which was not visible at the
other sites. Additionally, plant samples of Indian mustard
(Brassica juncea), sugarcane (Saccharum officinarum), clover
(Trifolium spec.), garlic (Allium sativum) and wheat (Triticum
aestivum) showing pink chlorosis (Fig. S2†) were taken. All
samples were air dried in the laboratory of the Department of
Soil Science of the Punjab Agricultural University.
Soil and plant bulk analysis

The bulk elemental composition of all soil samples was deter-
mined with energy dispersive X-ray uorescence analysis (ED
This journal is © The Royal Society of Chemistry 2019
XRF, Epsilon 5, PANalytical) using bulk powder samples in
spectro cups, sealed with a Mylar lm of six mm thickness. A
tungsten X-ray tube was used as radiation source, whereas a Ge-
detector was used for detection and quantication. In order to
optimize the uorescence measurements, each sample was
analysed by consecutively using BRAKLA – polarization targets
(Al2O3) and secondary targets (CaF2, Fe, Ge, KBr, Zr, Mo, Ag,
CsI). A matrix specic calibration using standard addition was
made for Se by spiking original soil material with different
concentrations of a dissolved Se (Merck calibration standard) to
lower the Se detection limit to �0.5 mg kg�1. Selenium was
determined using excitation by the Zr-secondary target, running
the W-tube at 80 kV/6 mA for a measuring time of 500 s per
sample. The accuracy was tested by including the reference
material GRX5 (Park City, Utah, USA) into the measuring
protocol showing a slight overestimation of Se of 10%. The
accuracy of all other elements is given in the ESI.†

To check for the quality of the ED XRF analysis, especially of
the samples with Se concentrations below 1 mg kg�1, Se was
also determined by ICP-MS (X-Series2, Thermo Scientic) aer
a microwave acid digestion using HNO3 (65%, subboiled), H2O2

(30%, p.a.) and HF (40%, suprapur). 100 mg of pulverized
sample material was used for each sample and standard. The
accuracy of the ICP-MS analysis (Se # 6.8%) was tested by
including the certied standard HPS CRM-TMDW (High Purity
Standards, USA) into the measurements. The quality of the
digestion was tested by including the GXR4 and GRX5 reference
material (Park City, Utah, USA) into the digestion process. The
Se concentration of GXR5 was slightly underestimated by <12%
probably due to losses of volatile Se. The Se concentration given
in this study is based on ICP-MS measurements aer correction
of the underestimated proportion (see in the ESI† for more
details). To check for the reproducibility of the results, the
samples from Field-1 were all digested and measured in
duplicate (Table S1†). More details on the results of the quality
measures are given in the ESI.†

The content of organic carbon (Corg) was determined aer
decarbonization using a Carbon–Sulfur-Analyser (CS 2000,
Eltra). A cement reference standard (90811-13) was used to
check both accuracy (100 � 1%) and reproducibility (�0.8%, n
¼ 5). The pH-value of selected soil samples was determined
both in H2O and 0.01 M CaCl2 suspension with a WTW pH-
sensor (SenTix 81). More details on the method and results of
the quality measures are given in the ESI.†

Air dried plants were separated into different plant parts
(root, stem, leaves, head, ower), freeze-dried for 24 h and
grinded to powder or cut into small pieces. The Se concentra-
tion of the plant material was determined using ICP-MS anal-
ysis (X-Serie2, Thermo Scientic) aer microwave digestion
(Start 1500, MLS). One mL Milli-Q water, 5 mL HNO3 (65%,
subboiled) and 1 mL H2O2 (30%, p.a.) was used for 200 mg of
each sample. Plant material from seven different sites was
digested. If available, plant material from two different plants
from the same site were digested also which adds up to 28
samples. For quality assurance of the digestion process, three
samples were analysed in duplicate. The difference in Setot was
#4.5% (Table S7†). The accuracy of the ICP-MS analysis (Se #
Environ. Sci.: Processes Impacts, 2019, 21, 957–969 | 959
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8%) was tested by including the certied standard HPS CRM-
TMDW (High Purity Standards, USA) into the measurements.
For more details on the sample digestion and results of quality
measures, please refer to the ESI.†
Sequential extraction and XANES analysis

Information about the Se speciation and way of xation was
gained using the sequential extraction scheme of Zhang and
Moore64 which was modied according to Wright et al.65 In the
protocol, six operationally dened Se fractions are distin-
guished: Fraction 1: easily soluble Se (using 0.25 M KCl), Frac-
tion 2: adsorbed Se (0.1 M K2HPO4), Fraction 3: elemental Se
(0.25 M Na2SO3), Fraction 4: organically associated Se (5%
NaOCl), Fraction 5: Se associated with amorphous oxides and
carbonates (4 M HCl) and Fraction 6: residual Se (HNO3, H2O2,
HF microwave digestion). Details on the limitations of
sequential extractions are discussed inWright et al.65 and Bacon
& Davidson.66 Two gram (air dried) of all root zone soil samples
as well as soil from 0–2 cm, 2–5 cm and 5–10 cm of Field-1 to -3
were subjected to sequential extraction. The concentration of Se
in each fraction was measured by ICP-MS (X-Series2, Thermo
Scientic). The accuracy of the ICP-MS analysis (Se # 6%) was
tested by including the certied standard HPS CRM-TMDW
(High Purity Standards, USA) into the measurement protocol.
The quality of the extraction was checked by including the GXR4
reference material (Park City, Utah, USA) into the extraction
procedure (Se: 97, 106%). Additionally, two samples (Mustard
root zone, Field-1, 0–2 cm) were extracted in duplicate and one
sample in triplicate (Field-2, 2–5 cm). The total Se concentration
differed less than 1% for the samples analysed in duplicate and
less than 10.1% for the one analysed in triplicate (Table S5†).
For more details on the quality assurance of the sequential
extraction, please refer to the ESI.†

The relative binding intensity of Se within the different soils
was characterized using the reduced partition index (IR)67–69

that is based on the results of the sequential extraction. A low
value of IR is indicative of a high proportion of soluble Se
whereas high values (close to 1) stand for a dominance of Se that
is bound in the residual fraction.

The Se speciation in bulk soil, single particles and in bulk
material of different plant parts was measured on pressed
pellets of ground material and unsupported thin sections
(single particles) using X-ray absorption spectroscopy (Fig. S4†).
The experiments were carried out at the SUL-X beamline of the
synchrotron radiation source of the Karlsruhe Institute of
Technology (KIT). Selenium K-edge spectra were recorded using
a monochromator with Si(111) crystals. The beam spot size was
1 � 1 mm2 for bulk and 0.1 � 0.1 mm2 for single particle
analysis. The beam spot size was 1 � 1 mm2 for bulk and 0.1 �
0.1mm2 for single particle analysis. The photon ux density was
1.5 � 1011 photons per s. XAS measurements were performed in
uorescence mode (Se Ka X-ray uorescence) using solid state
detectors (one element Vortex silicon dri detector (SDD)). The
XAS scan energy ranged from �200 eV below the rst inection
point of elemental Se (12 658 eV) to �12 900 eV. Short scan
times of �10 min were chosen in order to avoid beam-induced
960 | Environ. Sci.: Processes Impacts, 2019, 21, 957–969
redox reactions or volatilization of organic Se species. Each
spectrum is the merge of two to six measurements at slightly
different spots (Fig. S5†). A spectrum of elemental Se (8 wt%)
was collected simultaneously with each scan for energy cali-
bration. The identication of the individual Se species and its
respective contribution to the measured spectra was calculated
by linear combination tting (LCF) in the range of �20 to
+120 eV using several Se references and the IFEFFIT soware
package.70 Elemental Se (Se0), selenate (SeVI, Na2SeO4x10H2O)
and selenite (SeIV, Na2SeO3) were used in a diluted form as
inorganic references. The spectra of organic Se species included
secysteine (SeCys), semethionine (SeMet), dimethyl-selenide
(DMeSe), Se-methyl-selenoL-cysteine (SeMeCys). Apart from
SeMet, all organic spectra were kindly provided by G. Sarret.

Statistical data analysis

Pearson correlation coefficients (rP) were calculated to deter-
mine and conrm relationships between different elements or
parameters using the soware package Originlab2015. Given
errors always refer to the rst standard deviation.

Results
Soil geochemistry

The Setot concentration is in the range of <1 mg kg�1 in the
lower layers of all soil proles up to 13.0 mg kg�1 in the top soil
of Field-1. Generally, the highest Se concentrations are detect-
able in the upper 15 cm of all soil proles with maximum values
in a depth between 2 and 5 cm (Fig. 1 and Table S1†). The Setot
concentrations in the root zone soil of mustard, sugarcane,
garlic, clover and the pink wheat are 6.1, 4.7, 2.0, 3.3 and 3.5 mg
kg�1 (Table 1). The depth distribution of CaO, Sr and Corg are
similar to Setot with highest concentrations in the upper 15 cm
in all soil proles (Fig. 1, Table S2†). The Corg content is
#0.43 wt% in the lower layers and up to 1.01 wt% in the top soil
of Field-1 (Table S4†). Strontium concentrations are in the range
of 101–116 mg kg�1 in the layers >15 cm and from 110–158 mg
kg�1 in the top 15 cm. Calcium is enriched in the top layers with
up to 4.6 wt% CaO and only 1.2–3 wt% CaO in a depth > 30 cm
(Table S2†). All soils are slightly alkaline with pH values of 7.5–
8.1 (CaCl2) and 8.5–9.1 (H2O) (Table 1), respectively.

Selenium speciation in soil

Considering all soil samples, the fractions that are associated
with elemental Se and oxidically/carbonate bound Se are
dominant with a proportion of 23–58% and 14–33%, respec-
tively. Selenium associated with organic material also has
a considerable relevance in most of the samples with 9–18%.
Easily available, adsorbed and residual Se have a proportion of
5–22%, 4–9% and 4–11%, respectively (Table 2).

The share of Se in the individual fractions is more or less
similar in the samples of 0–2, 2–5, 5–10 cm depth at Field-1 to
Field-3 (Table S6†). Consequently, the mean of the three depth
will be considered for each fraction throughout this paper. The
given error stands for the standard deviation of the three depth.
Field-1 soil has the highest proportion of Se in the elemental
This journal is © The Royal Society of Chemistry 2019
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Fig. 1 Depth distribution of Se, CaO, Corg and Sr concentration in the soil profile at the Fields-1 to -3. The errors given stand for the maximum
standard deviation of duplicate measurements.
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fraction (58� 1.9%) and at the same time the lowest proportion
of Se in the oxidically/carbonate bound fraction (14 � 1.1%) of
all samples. Selenium in the mobile fractions adds up to 16.1 �
2.1% from which 10.0 � 0.6% are in the easily soluble fraction
and 6 � 0.5% are indicated to be adsorbed at Field-1. The
presence of elemental Se as well as selenite was also clearly
indicated by XAS analysis at Field-1 with a share of 80 and 20%,
respectively in the single particle analysis (Fig. 2). In the bulk
sample, also organic Se was identied with 20% in addition to
elemental Se (30%) and selenite (50%). At Field-2, elemental Se
(39 � 3.1%) is again the main Se fraction but also Se in the
organically associated (15 � 0.2%) and oxidically/carbonate
bound fraction (19 � 0.3%) are present in a relatively high
proportion. The percentage of Se in the easily available and
adsorbed fraction is nearly similar to Field-1 with 10 � 1.4%
and 6 � 0.4%, respectively. The opposite trend is detectable at
Field-3 where the oxidically/carbonate bound fraction is domi-
nant with 43 � 4.3% and only 23 � 0.7% in the elemental
fraction. Again, the sum of the mobile fractions is comparable
to the two other sites with 16 � 0.5%.

The root zone soil of the wheat showing pink chlorosis has
by far the highest proportion (22%) of Se in the easily available
fraction. The percentage of Se in the elemental and oxidically/
carbonate bound fraction is nearly even with 29 and 25%,
respectively. The root zone soils of Indian mustard, sugarcane
and garlic are relatively similar with the same proportion of Se
in the elemental (30–34%) and oxidically/carbonate bound
Table 1 Mean Setot concentration in the topsoil (0–15 cm; mg kg�1) of t
plants. Additionally, the IR-value of the topsoil and the pH-value as mean
and more information on the data quality are given in the ESI

Field-1 Field-2 Field-3 Pinkis

Topsoil Setot [mg kg�1] 9.0 5.2 2.6 3.5
IR 0.33 0.41 0.49 0.37
pH-value (in H2O) 8.6 8.7 8.6 9.1
pH-value (in CaCl2) 7.8 7.8 7.8 8.1

This journal is © The Royal Society of Chemistry 2019
fraction (28–36%). In these soils, the percentage of Se in the
easily available fraction is very low with 7 and 5%, respectively.
However, the actual concentration in the garlic soil in each
fraction is much lower due the lower Setot (Table 1). In the clover
root zone soil, 14% of the Se is in the easy available fraction.
Again, the dominant Se fraction is elemental Se (32%) followed
by oxidically/carbonate bound Se (22%) and organically asso-
ciated Se (18%).
Selenium concentration in plants

The Se concentration is generally very high in all plant parts with
a maximum of 931 mg kg�1 in the Indian mustard leaves.
However, the concentrations vary considerably between the plant
parts of the same species and especially between the different
plant species (Tables 3 and S8†). Still there is an increasing trend
in Se concentration towards the top of most of the plants.

In total, the highest Se concentrations can be found in Indian
mustard, a semi-accumulator plant,19 ranging from 186 mg kg�1

in the root up to 931 mg kg�1 in the leaves. In our study, garlic
has much lower Se concentrations compared to Indian mustard
despite being a known accumulator of Se.49 Here, highest
concentrations were found in the roots with 41 mg kg�1 and
lowest in the bulb with 14 mg kg�1. From the non-accumulator
plants, highest Se concentrations were found in the wheat
showing pink chlorosis with up to 738 mg kg�1 in the leaves and
182 mg kg�1 in the roots. The Se concentration in the wheat at
Field-1, which shows white chlorosis, is also extremely high with
he three wheat fields and Setot of the root zone soils of the mentioned
of the whole soil profile is given. Individual values, standard deviations

h wheat Sugarcane Garlic Clover Indian mustard

4.7 2.0 3.3 6.1
0.44 0.48 0.42 0.43
8.5 8.7 — 8.5
7.5 7.8 — 7.6
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Table 2 Selenium concentration (mg kg�1) and relative percentage in each fraction of the applied sequential extraction scheme. The dominant
species is underlined. Results of Field-1 to -3 are given as mean of three samples (0–2, 2–5, 5–10 cm). The maximum standard deviation is 5.3%.
The individual values are given in the ESI

Selenium fraction

Field-1a Field-2 Field-3
Pink wheat
soil

Mustard
soila Garlic

Sugarcane
soil Clover soil

% mg kg�1 % mg kg�1 % mg kg�1 % mg kg�1 % mg kg�1 % mg kg�1 % mg kg�1 % mg kg�1

Easily available 10 1.2 10 0.7 8 0.2 22 0.8 7 0.5 5 0.1 5 0.3 14 0.6
Adsorbed 6 0.7 6 0.4 8 0.3 6 0.2 9 0.6 5 0.1 6 0.4 4 0.2
Elemental 58 7.1 � 0.5 39 2.6 23 0.7 29 1.1 33 2.3 30 0.7 34 1.9 32 1.4
Organically associated 9 1.1 15 1.0 12 0.4 14 0.6 16 1.1 18 0.4 18 1.0 18 0.8
Oxidically/carbonate bound 14 1.7 19 1.3 43 1.3 25 1.0 28 1.9 36 0.8 33 1.8 22 0.9
Residual 4 0.5 11 0.7 7 0.2 5 0.2 7 0.4 6 0.2 4 0.2 10 0.4

a Data published in Eiche et al.84

Fig. 2 XANES spectra of Se references in comparison to the spectra of
a bulk soil sample and a single particle measurement of Field-1.
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196 mg kg�1 in the roots and up to 387 mg kg�1 in the leaves. At
the other two sites, where no chlorosis was detectable, Se
concentrations in wheat are considerably lower but still high
with 29 (stem) to 47 mg kg�1 (roots) at Field-2 and 1.3 (stem) to
6.8 mg kg�1 (leaves) at Field-3. The Se concentration in clover
shows no large variations with the highest enrichment in the
ower (64 mg kg�1) and lowest in the roots (49 mg kg�1).
Selenium speciation in plants

In general, all investigated plant parts show distinct peaks or
shoulders at approx. 12 662 or 12.664 eV which is a typical
962 | Environ. Sci.: Processes Impacts, 2019, 21, 957–969
energy for organic Se species or selenite in the latter case. The
peak at approx. 12 668 eV is clearly indicative of selenate (Fig. 3).
The quantication of organic Se and inorganic Se species and
the separation of selenate and selenite was done using LCF
(Fig. S7†). Due to the difficulty to clearly distinguish between
individual organic Se species, only the total of tted organic
species is considered within this study.

The XAS-spectra of sugarcane roots (Fig. 3) are dominated by
one clearly visible peak at 12 663.8 eV, which can be tted using
organic Se species (80%) and selenite (20%). In the spectra of
the upper leaves, two peaks at 12 663.8 (organic Se, selenite) and
12 668.1 eV (selenate) can clearly be identied LCF resulted in
63% organic and 37% inorganic Se (with selenite as dominating
species) (Table 4).

Wheat showing pink chlorosis also is clearly dominated by
inorganic Se (54–75%) mainly in form of selenate as suggested
by LCF (Table 4) and the presence of a strong peak at
12 668.1 eV in the XAS spectra of roots and leaves (Fig. 3). The
shoulder at 12 662 eV is tted as organic Se (25–44%). The Se
speciation in wheat from Field-1 and Indian mustard is listed in
Table 4 for comparison. For more details on the speciation of
these plants, please refer to Eiche et al.84

In the clover stem, inorganic Se is indicated to be dominant
(81%) with a distinct peak at 12 668.1 eV. LCF suggests selenate
to be present in the stem with 64%. In the leaves, organic Se is
slightly dominating according to the LCF with 58% and indi-
cated by a shoulder at 12 662 eV (Fig. 3). Selenite seems to be of
minor importance with 15–17% (Table 4).
Discussion
Processes inuencing Se distribution and speciation in soil

All top and root zone soils can be classied as seleniferous at
our study sites based on the threshold value of 0.5 mg Se per kg
(ref. 71) with Se concentrations ranging from 2.0 to 13.0 mg
kg�1 (Fig. 1 and Table S2†). The Setot concentrations in deeper
soil horizons (>15 cm) are clearly lower (0.6 � 0.1 mg kg�1,
Table S2†). Interestingly, both the residual Se concentration in
the enriched upper layers (Table 2) and the Setot in the deeper
This journal is © The Royal Society of Chemistry 2019
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Table 4 Proportion of different Se species [in %] in plant parts of
wheat, sugarcane, clover and Indian mustard that was calculated using
linear combination fitting of measured XAS-spectra of samples and
standard material

Table 3 Mean Se concentration (mg per kg per dry weight) in different plant parts at each site. Individual values, standard deviations and more
information on the data quality are given in the ESI

Plant parts [mg kg�1]

Wheat

Sugarcane Garlic Clover Indian mustardaField-1a Field-2 Field-3 Pink

Roots 196 47 6.0 192 56 41 49 186
Stem 191 29 1.3 146 57 — 61 130
Leaves 387 36 6.8 738 86 28 55 931
Flower — — — — — — 64 541
Head — 36 3.2 — — — — —
Bulb — — — — — 14 — —
Leave/root ratio 2.0 0.8 1.1 3.8 1.5 0.7 1.1 5.0

a Data published in Eiche et al.84
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layers are in a similar range (Table S2†) indicating that this is
the natural Se content in the parent soil material of the area.

Our results strongly suggest that irrigation is the decisive
process that controls the excess Se input into the soils which is
in agreement with earlier studies.21,22,63 Accordingly, the three
times higher average Setot content in the topsoil of Field-1
compared to Field-3 (Table 1) can partially be explained by the
higher water demand for the rice-wheat rotation at Field-1.
Calcium and especially Sr, which have high concentrations in
the irrigation water (Table S9†),57 are also enriched in topsoils
and with a similar depth distribution to Se (Fig. 1). This further
supports a considerable inuence of irrigation on the excess
soil geochemistry. Apart from irrigation, the Setot content of
Field-1 is probably inuenced by its location in a small dip next
to an irrigation channel. Here, Se rich water both from the eld
and leaking in from the irrigation channel itself can accumu-
late, which locally enhances the natural soil Se content.
Leaching of Se deeper than the plough layer is not indicated to
be of importance at our study sites.
Fig. 3 XANES spectra of the measured plant parts. Included are typical
white line positions of selenate (12.668 keV), selenite (12.664 keV) and
a possible organic Se species (12.662 keV) for comparison.

This journal is © The Royal Society of Chemistry 2019
Not only the Setot content but also the indicated Se speciation
in the soils varies both in time and in space. We can observe
a signicant shi in Se speciation from irrigation water, where
selenate is reported to be the sole species,22 towards less mobile
species in all soils that were investigated (Table 2). The relatively
low proportion of easily available Se (5–15%), which can mainly
be assigned to selenate in the soils,65 indicates that immediate
and preferential plant uptake of irrigation induced selenate and
its transformation into less mobile species within the soil
considerably changes the primary Se speciation over time.
Similar has been observed by Schilling et al.22 in Punjab or other
studies that were carried out in the context of bio-
fortication.69,72 With regard to Se species transformation,
biotic and abiotic reduction of selenate are of importance.22,37 In
Selenite Selenate Seinorg Seorg

Wheat (S1a)
Roots 12 13 25 75
Stem 11 18 29 71
Leaves 10 47 57 43

Wheat (pink)
Roots 22 34 56 44
Leaves 24 51 75 25

Sugarcane
Main roots 20 — 20 70
Upper leaves 30 7 37 63

Clover
Stem 17 64 81 19
Leaves 15 27 42 58

Mustarda

Roots 16 28 44 56
Stem 10 52 62 38
Leaves 6 70 76 34

a Published in Eiche et al.84 (added for better comparison).
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a rst step, selenate is reduced to less mobile selenite,35,36

a fraction that accounts for only 4–8% (Fraction 2) in our soils.
Still, the presence of selenite has also been proven by single
particle XAS-analysis (Fig. 2). The low proportion of selenite
could partly be explained by a diminished sorption capacity of
alkaline soils for oxyanions (Table 1). More importantly, sele-
nite can be further reduced to elemental Se, which is indicated
to be a major species at most of our sites with 23–58% (Fraction
3, Table 2). Bajaj et al.42 showed that certain microbes (Duga-
nella sp., Agrobacterium sp.) isolated from the same soils in
Punjab are capable of reducing selenite to nano-particulate
elemental Se. In addition, inorganic Se0 formation from dis-
solved selenite and selenate can be observed during the trans-
formation of Fe-oxides,73 which is a common process in soils.
Consequently, reduction to elemental Se can be considered as
major immobilization and thus enrichment process of Se at our
sites. Selenium can also be incorporated into Fe oxyhydroxides
during oxidizing/reducing cycles as indicated by the relatively
high proportion of Fraction 5 (14–43%; Table 2). Additionally,
we assume that selenate that has been co-precipitated with
calcite aer irrigation is of importance in this fraction;
a process which has already been proposed by Eiche.74 The fact
that Se concentrations in the top 2 cm are depleted in
comparison to the underlying 5–10 cm indicates that bio-
methylation and volatilization of Se might be another microbial
transformation processes that actually removes Se from the
soils. Selenium associated with organic matter is also of
importance as indicated by a share of 9–18% (Fraction 4). This
association is further supported by the strong correlation of
Setot and Corg in all three depth proles (rP > 0.98, n ¼ 7, Fig. 1).
Organic matter can have a considerable inuence on the
mobility of Se either via direct complexation of Se,75 the
formation of organo–mineral associations that protect adsor-
bed Se or by fuelling the creation of localized anoxic zones.76

From our study, we cannot distinguish between organic Se
species that result from the decomposition of Se enriched plant
material (Table 4) or Se that is interacting with organic
molecules.

The share of individual Se species is strongly inuenced by
the agricultural practice. We assume that the high proportion of
easily available Se (22%) in the root zone soil of the wheat
showing pink chlorosis can be explained by a diminished
removal of bioavailable Se from the respective soil due to
a reduced number of crop plants growing on the small ridge
where the plant was taken. Consequently, the balance between
selenate input (dissolved Se concentration & amount of irriga-
tion water) and consumption (number of Se consumers per area
unit) in addition to the rate of transformation determines the
actual selenate content in the soil at a certain location.

The transformation processes are strongly inuenced by the
dominant irrigation regime. At least partly reducing conditions,
which can develop during stagnant periods of rice cultivation,
explain the much higher proportion of elemental Se (58%) at
Field-1 compared to Field-3 (23%) (Table 2). The importance of
elemental Se at Field-1 has already been proposed by Eiche74

and is further conrmed by the bulk and single particle XAS
measurements that clearly indicate elemental Se as major Se
964 | Environ. Sci.: Processes Impacts, 2019, 21, 957–969
species (Fig. 2). Fields under maize-wheat rotation, however, are
dominated by Se that is oxidically/carbonate bound (43%). The
relatively high proportion of elemental Se in all soils indepen-
dent of its land use could be due to the fact that localized
reducing microzones develop in soil aggregates independent of
the bulk redox state when sufficient organic matter is avail-
able.77 An overestimation of elemental Se at the expense of
organically associated Se65 is also conceivable. This could partly
explain our much lower share of organically bound Se
compared to Schilling et al.22 who found up to 80% of this
fraction in topsoils of other sites in Punjab. However, also
sampling at different plant growth states could explain the
differences in Se speciation between our study and Schilling
et al.22
Selenium content in plants and its relation to soil

The total Se content in different plant parts is alarmingly high
with up to 931 mg kg�1 in known accumulators and up to
738 mg kg�1 in non-accumulators (Table 3). Especially the latter
is remarkable as non-accumulators are reported to rarely exceed
Se contents of 50 mg kg�1.49,50 Even in seleniferous areas, Se
concentrations in these plants are typically below 25 mg Se per
kg.51 In our study however, Se in clover, wheat (except Field-3)
and sugarcane are 1.2 to 30 times higher compared to this
value (Table 3). Still, the concentrations are mainly in a range
that has been reported by other studies from the area.22,55,57,71,78

There is a clear positive relation between Setot in soils (rP ¼ 0.89,
n¼ 6) or the IR (rP ¼ 0.90, n¼ 6), as known indicative parameter
for bioavailable Se in soils,68 and the Semean in the plants, when
Indianmustard and wheat showing pink chlorosis are not taken
into account. Thus, both the bioavailable and Setot content in
soils could be rst indicators to predict possible Se enrichment
in plants at our sites. The actual extent of plant Se enrichment,
however, is clearly depending on the plant species itself due to
genetic differences.49 In our study, this becomes apparent when
comparing wheat from Field-2 and sugarcane, which differ
in their Semean in plant material by nearly 100% (34, 63 mg per
kg dw) despite similar Setot in the soils (5.2, 4.7 mg kg�1) (Tables
1 and 3).

The plants can be separated into two groups based on the Se
distribution within the plant. While wheat showing white and
pink chlorosis as well as Indian mustard are clearly Se enriched
in the upper plant parts by a factor 2 to 5 compared to the roots,
the Se content in the other plants is more evenly distributed
(Table 3). The considerable Se concentrations in all plant roots
point towards a substantial uptake of organic Se or selenite.79

Especially the latter is known to be retained in roots via quick
transformation into organic species.80–82 Our assumption is
supported by the fact that organic Se is indicated to be the
dominant form of Se in all roots except the wheat showing pink
chlorosis (Table 4). The strong enrichment of Se in leaves of
white and pink coloured wheat and Indian mustard (leave/root
ratio > 1.4) suggests a substantial uptake and inner-plant
transport of Se in form of selenate79,82–84 despite the relatively
low indicated importance by sequential extraction (Fraction 1,
Table 2). The lowest IR of all soils at the two sites, however,
This journal is © The Royal Society of Chemistry 2019
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(Table 1) supports a relatively high Se bioavailability.68 It is
important to remember in this context that all speciation
related methods can only capture the current situation but
cannot provide information about Se species that have already
been taken up. We assume that intensive irrigation like at Field-
1 leads to a regular and considerable input of fresh and thus
highly bioavailable selenate that is mainly not retained in the
soil but quickly taken up and transferred to upper plant parts.
This assumption is further conrmed by the high proportion of
Se as selenate that can be found in the leaves of these three
plants (both wheat plants, Indian mustard) with Se dominance
in upper plant parts (Table 4). Due to a different form of land
use, all other sites are less (Field-2, 3, sugarcane) or not even
intentionally irrigated (clover, garlic) so that the original pool of
mobile selenate and its regular replenishment is much smaller.
Consequently, uptake of Se in form of selenite or organic
species is probably higher or equal to selenate at these
locations.
Selenium speciation and toxicity in plants

So far, it is not possible to dene a reliable threshold value
above which plants develop signs of toxicity such as chlorosis,
withering or stunted plant growth.38 This might in parts be
explainable by the fact that only wheat plants show clear Se
concentration related signs of chlorosis while many other
plants form less clear symptoms like leaf tin burning or brown
spots on the leaves.57

In our study, wheat plants without visible signs of chlorosis
have Se concentrations below 50 mg kg�1, which is at least four
times less than in wheat that shows clear signs of toxicity. This
is in accordance with other authors who reported toxicity
symptoms for wheat with more than 100 mg Se per kg (ref. 57)
and more than 325 mg Se per kg.85 Interestingly, wheat showing
signs of white and pink chlorosis have similar Se concentrations
in their roots and stems (Table 3). In the pinkish wheat,
however, both the Se concentration (twice as high) and the
proportion of inorganic Se (30% more) is clearly higher than in
the whitish leaves (Tables 3 and 4). This indicates that the type
of chlorosis is largely controlled by the extent of inorganic Se
uptake probably as selenate which is themore bioavailable form
and indicated to be present in these soils with a relatively high
proportion (Tables 1 and 2). These ndings also go in line with
earlier studies, which indicate a reduced transformation to
organic Se species with increasing selenate uptake.84,86 Instead,
excess selenate that is transported to the leaves can be seques-
tered in vacuoles of cells.87 However, plants seem to face prob-
lems with the high selenate content despite its possible storage
in vacuoles as indicated by the pink chlorosis.

Clover shows no visible signs of toxicity despite the high
proportion of inorganic Se especially in the stem (81%) but also
in the leaves (42%) (Table 4). Inorganic Se, which is taken up,
seems to largely be transported through the stem to the leaves
where about 50% are indicated to be transformed to organic Se
species. Due to the much lower total Se content compared to the
pinkish wheat (Table 3) the plant seems to be able to transform
a much higher proportion of inorganic to organic Se species
This journal is © The Royal Society of Chemistry 2019
(Table 4). This could also be one reason for the lack of visible
toxicity signs but clover is also reported to have a low tendency
to develop Se related chlorosis.57 The comparable Se concen-
trations in all plant parts despite the dominance of mobile
selenate in the stem could indicate that volatilization of Se is of
importance in the leaves. This would also partly explain the
high proportion of organic Se in the leaves.

Despite similar mean Se concentrations to clover, a much
smaller proportion of inorganic Se, and nearly no selenate, can
be identied in the sugarcane (Table 4). This ts to the results of
the sequential extraction where sugarcane has the lowest
proportion of easily available Se (Table 2) and the highest IR
(Table 1). Therefore, either no considerable amount of selenate
has been taken up or it already has been largely transferred into
organic Se species. The high proportion of organic Se might
partly be related to biomethylation of Se as Schilling et al.22

found indications that this is a considerable metabolic process
in sugarcane from the area. Dhillon & Dhillon88 showed that the
volatilization rate of sugarcane (6.84 to 31.5 mg per day per ha)
is 5–6 times higher compared to other investigated crops like
wheat, rice or mustard.
Implications for biofortication measures

Agronomic biofortication measures are a possible choice to
raise dietary Se levels in Se decient areas. Adding selenate to
soil combined with fertilizer is one option that has been carried
out in the past (e.g. ref. 89 and 90). Even though this method has
proven to be highly successful in raising dietary Se concentra-
tions, only 5–20% of the added Se has nally been detected in
the plants (e.g. ref. 72, 91 and 92). Due to the relatively low
annual Se addition (10–20 g ha�1) the time frame since the rst
application of selenate in biofortication measures (20–30
years) has been too short to allow reliable conclusions about the
environmental fate of the remaining 80–95% of the added
Se.72,92,93 In our study, the interval between rst selenate input
and detectable changes is considerably shortened due to the
large quantity of irrigation induced Se (2.6 to 5.2 kg ha�1) and
can thus be taken as helpful case study to resolve questions
about the biofortication inuenced Se cycling.

Our study conrms that the input of selenate into the soil-
plant system in Se decient areas is probably the most effective
and immediate way to assure a sufficiently high dietary Se
level54,89 especially if food derives from above ground plant
parts; but probably also the one with highest risks if improp-
erly applied. As many plants are prone to easily take up large
amounts of selenate,79 already a small shi in the balance of Se
uptake vs. removal towards selenate uptake (e.g. low number of
Se consumers on a eld) or a slight change in mobility inu-
encing parameters (e.g. pH-value, redox-conditions, microbial
communities, competing ions) can cause potentially toxic Se
levels in plants and the food products made from it. Especially
wheat, which plays an important role in the production of Se-
rich food,90 is able to signicantly increase dietary Se
concentrations if selenate is supplied. Of further concern is
the high probability that enhanced selenate availability will
lead to (1) a change in Se speciation from less toxic organic to
Environ. Sci.: Processes Impacts, 2019, 21, 957–969 | 965
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more toxic inorganic Se species in food and forage,2,16 (2) poor
harvests due to diminished plant health and (3) unhealthy
livestock.62 Consequently, selenate based biofortication has
to be carried out with care to avoid selenosis, economic losses
and a waste of Se resources if large amounts of added Se are
volatilized.

In accordance with other studies (e.g. ref. 72 and 89), we can
demonstrate that a major part of selenate that is introduced
into the soil via biofortication will be transferred into other,
less mobile Se species thus creating a long-term (selenite,
organic Se species, Se in carbonates) and non-available
(elemental Se) Se pool. Darcheville et al.41 showed that micro-
bial assisted processes are of special importance in this context.
The individual share of the different Se species will depend on
the form of land use, the small scale eld morphology and the
soil mineralogy and biogeochemistry. Selenate that is not
immediately taken up by the plants will be retained in the soil
through species transformation eventually causing a severe Se
enrichment. Additionally, inorganic Se that is transformed to
organic species within the plants will also return to the soil if
not removed by harvest. The strong enrichment of organic Se in
all roots at our study sites, however, clearly indicates that
considerable transfer probably of selenite and/or organic Se
into plants can take place despite the reduction in mobility.

Conclusions

Our study shows that soils play an important role in controlling
the Se cycling in the critical zone as they can both act as sink
and source of Se. A similar background Se concentration in all
soils clearly indicates that the high soil Se concentrations in the
uppermost part of the soils were not naturally present but result
from secondary processes. In this context, irrigation water,
where selenate is the sole species, is the primary source of
excess Se and thus strongly inuences the total Se concentration
not only in the soil but also in the plants to which Se is largely
transferred. Secondary processes that control the Se enrichment
and speciation in the soils are: selective removal of Se species by
plant uptake, accumulation and redistribution through micro-
bial Se transformation and degradation of Se enriched organic
matter. Agriculture, especially the form of land use, strongly
inuences all processes and is thus, a major factor in the local
Se cycling.

Selenium contents in plants within the study area are
alarmingly high and could pose a severe threat if used as forage
for livestock. A reliable prediction of plant Se concentrations is
still not possible. Our results demonstrate that even knowledge
about Se speciation in soils is not sufficient to explain or even
predict the Se transfer into plants. Extractions, like all other
speciation-characterizing techniques, can only provide a snap-
shot of the situation in the soil at the time of sampling but
cannot provide information about the change in speciation in
the course of the year. Especially external input of highly mobile
selenate, for example through irrigation or biofortication
measures, is not necessarily captured in the soil speciation if
quickly taken up but will have severe impact on plant Se content
and plant health.
966 | Environ. Sci.: Processes Impacts, 2019, 21, 957–969
Our results demonstrate that bioforticationmeasures using
selenate should be carried out with care. Quick success in Se
enhancement in food products has to be balanced with danger
of chlorosis, less favourable Se speciation in food and general
and long-term increase of Se in the plant-soil system. Loss of Se
to the atmosphere due to volatilization makes the whole
measure less economic and thus is a waste of resources if not
carried out with care.
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E. Pilon-Smits and G. S. Bañuelos, Selenium Cycling Across
Soil-Plant-Atmosphere Interfaces: A Critical Review,
Nutrients, 2015, 7, 4199–4239.

34 A. Haug, R. D. Graham, O. A. Christophersen and
G. H. Lyons, How to use the world's scarce selenium
resources efficiently to increase the selenium concentration
in food, Microb. Ecol. Health Dis., 2007, 19, 209–228.

35 A. Fernández-Mart́ınez and L. Charlet, Selenium
environmental cycling and bioavailability: a structural
chemist point of view, Rev. Environ. Sci. Biotechnol., 2009,
8, 81–110.

36 J. A. Ippolito, K. G. Scheckel and K. A. Barbarick, Selenium
adsorption to aluminium-based water treatment residuals,
J. Colloid Interface Sci., 2009, 338, 48–55.

37 J. F. Stolz and R. S. Oremland, Bacterial respiration of
arsenic and selenium, FEMS Microbiol. Rev., 1999, 23, 615–
627.

38 Natasha, M. Shahid, N. K. Niazi, S. Khalid, B. Murtaza, I. Bibi
and M. I. Rahid, A critical review of selenium
biogeochemical behavior in soil-plant system with an
inference to human health, Environ. Pollut., 2018, 234,
915–934.

39 R. S. Oremland, J. T. Hollibaugh, A. S. Maest, T. S. Presser,
L. G. Miller and C. W. Culbertson, Selenate reduction to
elemental selenium by anaerobic-bacteria in sediments
and culture-biogeochemical signicance of a novel, sulfate-
independent respiration, Appl. Environ. Microbiol., 1989,
55, 2333–2343.

40 C. S. Haudin, P. Renault, E. Leclerc-Cessac and S. Staunton,
Effect of selenite additions on microbial activity and
dynamics in three soils incubated under aerobic
conditions, Soil Biol. Biochem., 2007, 39, 2670–2674.

41 O. Darcheville, L. Février, F. Z. Haichar, O. Berge, A. Martin-
Garin and P. Renault, Aqueous, solid and gaseous
partitioning of selenium in an oxic sandy soil under
different microbiological states, J. Environ. Radioact., 2008,
99, 981–992.
Environ. Sci.: Processes Impacts, 2019, 21, 957–969 | 967

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9em00009g


Environmental Science: Processes & Impacts Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
A

pr
il 

20
19

. D
ow

nl
oa

de
d 

on
 9

/1
9/

20
24

 6
:0

0:
31

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
42 M. Bajaj, S. Schmidt and J. Winter, Formation of Se (0)
Nanoparticles by Duganella sp. and Agrobacterium sp.
Isolated from Se-laden soil of North-East Punjab, India,
Microb. Cell Fact., 2012, 11, 64.

43 W. T. Frankenberger and U. Karlson, Soil-management
factors affecting volatilization of selenium from dewatered
sediments, Geomicrobiol. J., 1994, 12, 265–278.

44 W. T. Frankenberger and M. Arshad, Bioremediation of
selenium-contaminated sediments and water, BioFactors,
2001, 14, 241–254.

45 M. M. Abrams, C. Shennan, R. J. Zasoski and R. G. Burau,
Selenomethionine uptake by w heat seedlings, Agron. J.,
1990, 82, 1127–1130.

46 J. Kikkert and E. Berkelaar, Plant uptake and translocation of
inorganic and organic forms of selenium, Arch. Environ.
Contam. Toxicol., 2013, 65, 458–465.

47 Y. Ogra, Y. Ogihara and Y. Anan, Comparison of the
metabolism of inorganic and organic selenium species
between two selenium accumulator plants, garlic and
Indian mustard, Metallomics, 2017, 9, 61–68.

48 G. Alhan, M. Eurola, P. Ekholm, E.-R. Venäläinen, T. Root,
K. Korkalainen, H. Hartikainen, P. Salminen, V. Hietaniemi,
P. Aspila and A. Aro, Effects of nationwide addition of
selenium to fertilizers on foods, and animal and human
health in Finland: from deciency to optimal selenium
status of the population, J. Trace Elem. Med. Biol., 2015, 31,
142–147.

49 I. Rosenfeld and O. A. Beath, Selenium: Geobotany,
Biochemistry, Toxicity and Nutrition, Academic Press, New
York, 1964.

50 H. F. Mayland, L. F. James, K. E. Panter and
J. L. Sonderegger, Selenium in seleniferous environments,
Soil Sci. Soc. Am. J., 1989, 23, 15–50.

51 N. Terry, A. M. Zayed, M. P. De Souza and A. S. Tarun,
Selenium in higher plants, Annu. Rev. Plant Physiol. Plant
Mol. Biol., 2000, 51, 401–432.

52 T. A. Brown and A. Shri, Selenium: toxicity and tolerance in
higher plants, Biol. Rev., 1982, 57, 59–84.

53 H. Marschner, Mineral Nutrition of Higher Plants, Academic
Press, London, 1995, pp. 430–433.

54 F. M. Fordyce, Selenium Deciency and Toxicity in the
Environment, Essentials of Medical Geology, Springer, 2013,
pp. 375–416.

55 K. S. Dhillon and S. K. Dhillon, Selenium toxicity in soils,
plants and animals in some parts of Punjab, India, Int. J.
Environ. Stud., 1991, 37, 15–24.

56 K. S. Dhillon, S. S. Bawa and S. K. Dhillon, Selenium toxicity
in some plants and soils of Punjab, J. Indian Soc. Soil Sci.,
1992, 40, 132–136.

57 K. S. Dhillon and S. K. Dhillon, Characterization and
Management of Seleniferous Soils of Punjab, Research
Bulletin No. 1/2009, Punjab University, Department of
Soils. Ludhiana, India, 2009.

58 S. D. Atri and A. Tyagi, Climate Prole of India. Contribution to
the Indian Network of Climate Change Assessment (NATIONAL
COMMUNICATION-II), Ministry of Environment and Forests
Government of India Ministry of Earth Sciences, India
968 | Environ. Sci.: Processes Impacts, 2019, 21, 957–969
Meteorological Department Met Monograph No.
Environment Meteorology-01/2010, New Delhi, 2010.

59 K. S. Dhillon and S. K. Dhillon, Quality of underground water
and its contribution towards selenium enrichment of the
soil-plant system for a seleniferous region of northwest
India, J. Hydrol., 2003, 272, 120–130.

60 S. K. Dhillon and K. S. Dhillon, Pools of Selenium in some
Indian soils at eld capacity and submerged moisture
regimes, Aust. J. Soil Res., 2004, 42, 247–257.

61 K. S. Dhillon and S. K. Dhillon, Distribution of seleniferous
soils in north-west India and associated toxicity problems in
the soil-plant-animal-human continuum, Land
Contamination and Reclamation, 1997, vol. 5, pp. 313–322.

62 C. K. Hira, K. Partal and K. S. Dhillon, Dietary selenium
intake by men and women in high and low selenium areas
of Punjab, Public Health Nutr., 2004, 7, 39–43.

63 K. S. Dhillon and S. K. Dhillon, Development and mapping
of seleniferous soils in northwestern India, Chemosphere,
2014, 99, 56–63.

64 Y. Zhang and J. Moore, Selenium fractionation and
speciation in a wetland system, Environ. Sci. Technol., 1996,
30, 2613–2619.

65 M. T. Wright, D. R. Parker and C. Amrhein, Critical
evaluation of the ability of sequential extraction
procedures to quantify discrete forms of selenium in
sediments and soils, Environ. Sci. Technol., 2003, 4709–4716.

66 J. R. Bacon and C. M. Davidson, Is there a future for
sequential extraction?, Analyst, 2008, 24–46.

67 F. X. Han, A. Banin, W. L. Kingery, G. B. Triplett, L. X. Zhou,
S. J. Zheng and W. X. Ding, New approach to studies of
redistribution of heavy metals in soils, Adv. Environ. Res.,
2003, 8, 113–120.

68 Q. Peng, L. Guo, F. Ali, J. Li, S. Qin, P. Feng and D. Liang,
Inuence of Pak Choi plant cultivation on Se distribution,
speciation and bioavailability in soil, Plant Soil, 2016, 403,
331–342.

69 F. Ali, Q. Peng, D.Wang, Z. Cui, J. Huang, D. Fu and D. Liang,
Effects of selenite and selenate application on distribution
and transformation of selenium fractions in soil and its
bioavailability for wheat (Triticum aestivum L.), Environ.
Sci. Pollut. Res., 2017, 24, 8315–8325.

70 B. Ravel and M. Newville, ATHENA, ARTEMIS,
HEPHAESTUS: data analysis for X-ray absorption
spectroscopy using IFEFFIT, J. Synchrotron Radiat., 2005,
12, 537–541.

71 K. S. Dhillon and S. K. Dhillon, Accumulation of selenium in
sugarcane (Sacchharum officinarum Linn.) in seleniferous
areas of Punjab, India, Environ. Geochem. Health, 1991, 13,
165–170.

72 A. W. Mathers, S. D. Young, S. P. McGrath, F. J. Zhao,
N. M. J. Crout and E. H. Bailey, Determining the fate of
selenium in wheat biofortication: an isotopically labelled
eld trial study, Plant Soil, 2017, 420, 61–77.
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L. H. E. Winkel, J. Göttlicher, R. Steininger, R. Brendel,
M. von Brasch, K. Konrad and T. Neumann, Tracking Se
Assimilation and Speciation through the Rice Plant –

Nutrient Competition, Toxicity and Distribution, PLoS One,
2016, 11, e0152081.

80 M. P. De Souza, E. A. H. Pilon-Smits, C. M. Lytle, S. Hwang,
J. Tai, T. S. U. Honma, L. Yeh and N. Terry, Rate-limiting
steps in selenium assimilation and volatilization by Indian
mustard, Plant Physiol., 1998, 117, 1487–1494.

81 H.-F. Li, S. P. McGrath and F.-J. Zhao, Selenium uptake,
translocation and speciation in wheat supplied with
selenate or selenite, New Phytol., 2008, 178, 92–102.

82 A. Zayed, C. M. Lytle and N. Terry, Accumulation and
volatilization of different chemical species of selenium by
plants, Planta, 1998, 206, 284–292.

83 M. Arvy, Selenate and selenite uptake and translocation in
bean plants (Phaseolus vulgaris), J. Exp. Bot., 1993, 44,
1083–1087.

84 E. Eiche, F. Bardelli, A. Nothstein, L. Charlet, J. Göttlicher,
R. Steininger, K. S. Dhillon and U. S. Sadana, Selenium
This journal is © The Royal Society of Chemistry 2019
distribution and speciation in plant parts of wheat
(Triticum aestivum) and Indian mustard (Brassica juncea)
from a seleniferous area of Punjab, India, Sci. Total
Environ., 2015, 505, 952–961.

85 G. H. Lyons, J. C. R. Stangoulis and R. D. Graham, Tolerance
of wheat (Triticum aestivum L.) to high soil and solution
selenium levels, Plant Soil, 2005, 270, 179–188.

86 P. D. Whanger, Selenocompounds in plants and animals
and their biological signicance, J. Am. Coll. Nutr., 2002,
21, 223–232.

87 D. Mazej, J. Osvald and V. Stibilj, Selenium species in leaves
of chicory, dandelion, lamb's lettuce and parsley, Food
Chem., 2008, 107, 75–83.

88 S. K. Dhillon and K. S. Dhillon, Phytoremediation of
selenium-contaminated soils: the efficiency of different
cropping systems, Soil Use Manage., 2009, 25, 441–453.

89 M. R. Broadley, P. J. White, R. J. Bryson, M. C. Meacham,
H. C. Bowen, S. E. Johnson, M. J. Hawkesford,
S. T. McGrath, F.-J. Zhao, N. Breward, M. Harriman and
M. Tucker, Biofortication of UK food crops with
selenium, Proc. Nutr. Soc., 2006, 65, 169–181.

90 M. Poblaciones, S. Rodrigo, O. Santamaŕıa, Y. Chen and
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