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nalytical techniques to explain
variability in stored drinking water quality and
microbial hand contamination of female caregivers
in Tanzania†
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and Jennifer Davisae

Exposure to fecal contamination continues to be amajor public health concern for low-income households

in sub-Saharan Africa. Drinking water and hands are known transmission routes for pathogens in household

environments. In an effort to identify explanatory variables of water and hand contamination, a variety of

analytical approaches have been employed that model variation in E. coli contamination as a function of

behaviors and household characteristics. Using data collected from 1217 households in Bagamoyo,

Tanzania, this investigation compares the explanatory variables identified in the three different modeling

methods to explain hand and water contamination: ordinary least squares regression, logistic regression,

and classification tree. Although the modeling approaches varied, there were some similarities in the

results, with certain explanatory variables being consistently identified as being related to hand and water

contamination (e.g., water source type for the water models and activity prior to sampling for the hand

models). At the same time, there were also marked differences across the models. In sum, these results

suggest there are benefits to using multiple analysis methods to assess relationships in complex systems.

The models were also characterized by low explanatory power, suggesting that variation in hand and

water contamination is difficult to capture when analyzing one-time water and hand rinse samples. For

improved model performance, future studies could explore modeling of repeat measures of water

quality and hand contamination.
Environmental signicance

Assessment of microbiological contamination found in stored drinking water and on hands has been conducted extensively as a part of research investigations
and monitoring efforts. Researchers seek to identify covariates for explaining contamination on these sources of fecal contamination exposure in low-income
countries. Data analysis is typically conducted using bivariate tests, or sometimes, more complex regression models, but with limited success in explaining
variation. This study uses data collected from �1200 households in Tanzania to explore the use of multiple analytical techniques to explain hand and water
contamination. Although approaches varied, there were similarities in the results, with certain covariates being consistently identied. The analysis highlights
limitations with current practices of microbial sampling and analysis and suggests further research.
1. Introduction

Exposure to water contaminated with feces is a major public
health concern in sub-Saharan Africa (SSA), where only 24% of
artment of Civil and Environmental
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the population has water piped into their home or yard.1

Instead, most SSA households rely on shared point sources
from which they collect water, then store it in the home for use
throughout the day.1 Such sources can provide water of
reasonably good microbiological quality at the point of collec-
tion. Numerous investigations have demonstrated, however,
that water quality oen deteriorates during transport and
storage, such that water supplies at the point of use are highly
contaminated.2 Some studies conclude that hands entering
stored water could be a major contamination source.3–7 Others
claim that hands themselves serve as a transmission pathway in
the fecal-oral route of diarrheal disease, independent of the
water pathway.8
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In an effort to inform the design of interventions that
minimize the levels of fecal contamination found in water and
on hands, researchers have sought to identify household char-
acteristics and practices associated with microbiological
contamination levels. Some have employed bivariate statistical
tests, evaluating the association between the concentration of
fecal indicator bacteria (such as E. coli) and household charac-
teristics and practices one at a time.9,10 Such an approach,
however, fails to account for potential confounding (i.e., a vari-
able having a spurious association with the outcome variable
because it is also associated with an independent variable). A
small number of studies have employed multivariate regression
models—which can, in theory, address confounding—to iden-
tify associations between explanatory variables and levels of E.
coli in stored water and on hands. For example, Levy et al. used
a generalized estimating equations (GEE) model and found
water source type, water treatment practices, and storage time
to be signicantly associated with levels of E. coli in stored water
in Ecuadorian households.11 Also using GEE models, a second
study in Ecuador by Levy et al. (2009) found source type, water
storage practices, and rainfall to be signicantly correlated with
E. coli in stored water.12 Pickering et al. (2010) used linear
regression and generalized estimating equations in their
investigation of household characteristics and behaviors asso-
ciated with levels of E. coli contamination of stored water and
female caregiver hands in Tanzanian households.5 Contami-
nation on female caregiver hands was the only independent
variable found to be statistically signicantly associated with
stored water quality. Having an infant present in the household
was associated with higher hand contamination and educa-
tional attainment of mother was associated with lower hand
contamination.

Substantive conclusions regarding the correlates of E. coli
contamination in stored drinking water thus vary across these
investigations. For example, water treatment was statistically
signicantly associated with stored water quality in just one of
the studies described above; water source type was signicant in
two of the studies. Several plausible and non-mutually exclusive
explanations exist for such divergence. The differences could
reect variation in the true relationship between water quality
and independent variables across the study sites. In addition,
authors did not evaluate the same independent variables in all
analyses. It is also possible that limited variation in the values of
independent variables caused them to be omitted or found not
to be statistically signicant in some analyses.

Whereas the substantive conclusions across these studies
were compared, goodness-of-t measures were not because
comparable measures were not reported for the majority of the
models. Only the hand contamination linear regression model
in Pickering et al. (2010) reported an indicator reecting model
t.5 The model was characterized by poor explanatory power,
with only 3% of the variation in the level of E. coli on two hands
explained by the independent variables included in the model.

Researchers who employ linear regression techniques
assume that the underlying relationship between log-
transformed fecal indicator bacteria concentration and each
explanatory variable is best represented by a straight-line
894 | Environ. Sci.: Processes Impacts, 2019, 21, 893–903
function. If the effect of an explanatory variable is believed to
be moderated by another variable, then interaction effects must
be modeled explicitly, which has implications for sample size
requirements. It may be, however, that the relationship between
fecal indicator bacteria contamination in water and on hands
and commonly tested correlates (e.g., water management and
hygiene behaviors, types of water sources and sanitation facil-
ities used) is better characterized by nonlinear functions. For
example, continuous explanatory variables and outcome
measures may exhibit threshold effects. In such cases, the two
variables are associated only above or below certain quantitative
limits, or thresholds. Alternatively, such relationships could be
characterized by equinality (multiple causal pathways result-
ing in the same level of contamination), in which different
combinations of explanatory variable values would be associ-
ated with the same level of contamination. Exploring other
analytical methods that relate explanatory variables to water
and hand contamination in fundamentally different ways could
offer insight into these complex relationships.

Logistic regression and classication tree analysis are two
such alternative analytical approaches. Logistic regression
relates independent variables to the predicted probability of
a categorical outcome, which can be binary or have three or
more ordered or non-ordered values. Logistic regression has
been used to model categorical outcomes in many different
elds; for example, it has been applied extensively in medicine
to model the probability of illness as a function of disease risk
factors.13 Each parameter estimate produced by logistic regres-
sion modeling can be interpreted as the average effect of a unit
change in a correlate value on the predicted probability of a case
belonging to a particular outcome category. Applied to fecal
indicator bacteria contamination, logistic regression thus
includes an assumption of threshold effects between contami-
nation and an independent variable. At the same time, logistic
regression methods still assume that the log-transformed pre-
dicted probabilities for a given outcome category are linearly
related to each independent variable.14 This modeling tech-
nique also assumes that the explanatory variables are inde-
pendently related to the outcome, and tests for multicollinearity
must be conducted in order to ensure this assumption holds for
the data analyzed.

Classication tree analysis is a non-linear method that
assigns cases into outcome categories based on the values of the
explanatory variables, which can be continuous or categorical.15

Classication tree models are particularly useful for identifying
non-linear relationships and interactions among explanatory
variables, as well as for predicting outlier cases.15–17 Classica-
tion trees have been used to predict recreational water
quality;16,18–20 they have also been applied, either for prediction
or identication of correlates, in medicine, pharmacology,
ecology, computational biology, and bioinformatics.15,17,21 A
recent investigation employed classication tree analysis to
predict soil-transmitted helminth infections using water, sani-
tation, and hygiene indicators.22 The study identied latrine
structure and cleanliness as the only predictors of infection.22

In this study, we employ logistic regression and classication
trees, along with ordinary least squares regression, to explain
This journal is © The Royal Society of Chemistry 2019
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variation of fecal indicator bacteria concentration in stored
drinking water and hand rinse samples. We use data collected
from 1217 female heads of household in Bagamoyo, Tanzania,
to estimate these three models. The primary objective of the
study is to compare and contrast the explanatory variables
selected in each of these analysis methods. We also assess the
performance of the different models in terms of explaining
variation in the outcome measures, and discuss the practical
implications of our ndings. These models are not optimized
for prediction, and thus should not be used to predict outcomes
for new sample data.
2. Methods
2.1. Study area and household selection

Households (n¼ 1217), each with at least one child under the age
of ve years and a female caretaker, were recruited for the study
using cluster-randomized sampling from 15 different villages
within the Bagamoyo District of Tanzania, East Africa (6�280S
38�550E). Data for this study were collected between March and
May of 2010, during the baseline phase of a larger behavioral
intervention study conducted in the area. Household visits con-
sisted of an in-person interview with the female caretaker, as well
as the collection of stored drinking water and hand rinse samples
from each household. The research was approved by the Stanford
Human Subjects Research and IRB (CA, USA) and the National
Institute for Medical Review (NIMR) of Tanzania (Dar es Salaam,
TZ). Free and informed consent was obtained for each partici-
pating household in the study. A subset of the households (n ¼
93) were included in a previously published study on hands and
water as vectors for diarrheal pathogens.7
2.2. Household interview

Trained local enumerators conducted interviews with the
primary female caregiver of each household. Information about
socio-demographic characteristics along with water, sanitation,
and hygiene behaviors and household health information were
collected from each household and recorded on a handheld
computer using a questionnaire developed with The Survey
System (TSS) (Creative Research Systems, Petaluma, CA).
2.3. Water sample collection

Stored drinking water samples were collected from the house-
hold, with the respondent extracting the water from the storage
container as she normally would and placing it in a sterile
sampling bag (VWR, Radnor, PA). The sample was tested for
chlorine using strips (Hach Company, Loveland, CO); sodium
thiosulfate was added to any sample that tested positive for
chlorine, in order to prevent chlorine-induced E. coli cell inac-
tivation. Information about the stored water sampled was
collected from the respondent, including the source from which
it was obtained; length of time in storage; and whether it had
undergone treatment. The enumerator also noted each
respondent's method of extracting water from the storage
container. All water samples were sealed and placed in a cooler
This journal is © The Royal Society of Chemistry 2019
on ice, then transported to the laboratory for microbial analysis
within 6 h of collection.

2.4. Hand rinse sample collection

A hand rinse sample from the female caretaker was collected
following previously published methods.5 The respondent was
asked to place her hands, one at a time, in a sterile sampling
bag lled with 350 mL of distilled water. Information regarding
the respondent's hand hygiene behaviors was collected,
including time since last hand washing with soap, activity prior
to hand rinse, and how the respondent typically wets and dries
her hands for hand washing. One eld blank of the hand rinse
sampling bags (i.e., taken to the eld in the sample coolers, and
then handled just like the samples) was processed each week to
ensure that no contamination occurred during sample trans-
port. All hand rinse samples were sealed and placed in a cooler
on ice, then transported to the laboratory for microbial analysis
within 6 h of collection.

2.5. Sample processing

In the water microbiology lab at the Ifakara Health Institute in
Bagamoyo, all of the water and hand rinse samples were pro-
cessed for the detection and enumeration of E. coli using
membrane ltration, following USEPA Method 1604.23 Stored
water volumes of 100 mL were processed using membrane
ltration, unless the turbidity of the sample prevented ltering
the entire volume (3% of samples). Volumes of 1 mL and 10 mL
were ltered for all hand rinse samples. If E. coli was not
detected in a sample (i.e., no colony forming units, or CFU,
visible on lter aer incubation), then half of the detection limit
(1 CFU per plate) was used to calculate the concentration of E.
coli per 100mL or 2 hands rinsed. If a lter was too numerous to
count (>500 CFU per lter) then 500 CFU was used to calculate
the concentration of E. coli per 100 mL or 2 hands rinsed. Four
or ve method blanks were processed each day, and 10% of the
samples were processed in duplicate.

2.6. Statistical analysis

Three modeling techniques were used to explain variation in
stored water quality of study households: ordinary least squares
regression, multinomial logistic regression, and classication
tree. The outcome variable of the ordinary least squares
regression model was log-transformed E. coli concentration,
reported as colony-forming units (CFU) per 100 mL. For the
categorical outcome indicator used in the multinomial logistic
regression and classication tree models, water quality was
classied by categories of “low” contamination (0–10 CFU E. coli
per 100 mL), “medium” contamination (11–100 CFU E. coli per
100 mL), and “high” contamination (greater than 100 CFU E.
coli per 100 mL). These categories were selected because they
have been associated with both levels of health risk and water
treatment guidelines for emergency situations.24–26 A complete
list of explanatory variables included in the models are dis-
played in Table 1. These variables were selected because they
have the potential to impact the spread of fecal contamination
(e.g., water, sanitation, and hygiene related variables) or they are
Environ. Sci.: Processes Impacts, 2019, 21, 893–903 | 895
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Table 1 Study sample characteristics

Household characteristics

Number of households in study 1217
Median weekly expenditures per capita for household, Tsh
(USD)

6500
(4.3)

Female head of household works outside of home 22%
Female caregiver completed primary education 73%
Child 1 year old or less present in household 29%
GI illnessa in household in past 48 h 9%
Household has dirt oor in home 51%
Household located within Bagamoyo town 61%

Household sanitation
Household has private latrine 61%
Household latrine has a roof 27%
Household latrine has cement oor 35%
Household latrine has a septic tank 7%
Household latrine has a pit cover 21%
Feces visible around household premises 6%
Children in household practice open defecation 58%
Five or more ies visible in latrine 25%

Household water
Household has JMP improved water source 82%
Water source on household premises 14%
Household actively treated drinking water 15%
Water sampled was stored less than 24 h 24%
Water storage container fully covered at time of sampling 95%
Drinking water extraction method risky 89%
Respondent hand contacted water during stored water
extraction

15%

Household hand hygiene
Household has hand washing station with soap and water 19%
Female caregiver dries hands with fabric aer handwashing 65%
Female caregiver pours water from jerrycan to wet hands for
handwashing

15%

Activity prior to hand rinse sample – washing 14%
Activity prior to hand rinse sample – food handling 20%
Activity prior to hand rinse sample – sitting 60%
Activity prior to hand rinse sample – other 6%
Median time since last hand washing with soap, hours 3

Household microbial indicators
Geometric mean CFU EC per 100 mL in stored water 33
Percent households with 0–10 CFU EC per 100 mL
in stored water

28%

Percent households with 11–100 CFU EC per 100 mL in stored
water

35%

Percent households withmore than 100 CFU EC per 100mL in
stored water

37%

Geometric mean CFU EC per 2 hands of female caregiver 263
Percent household with EC detected on female caregiver
hands

72%

a GI illness described as 3 or more loose and watery stools in a 24 h
period.
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potential confounders (e.g., weekly expenditure, education) as
identied in prior work.5 For predictive comparisons between
models, the predicted log-transformed concentrations from the
ordinary least squares regression model were classied into the
water quality categories that match the categorical outcomes of
the other models.
896 | Environ. Sci.: Processes Impacts, 2019, 21, 893–903
The same three techniques were also used to analyze female
caregiver hand contamination. Concentrations of E. coli in the
hand rinse sample were reported per 2 hands rinsed and log-
transformed for use as the dependent variable in the ordi-
nary least squares regression model. The outcome measure of
hand contamination used in the logistic regression and clas-
sication tree models was whether E. coli was detected (1) or
not (0) in the rinse sample. Because no risk thresholds for
hand contamination were found in the literature, this binary
category of E. coli detection was employed. Each predicted
concentration of hand contamination generated by the ordi-
nary least squares regression model was also classied as
“detect” or “non-detect” of E. coli based on the lower detection
limit of the hand rinse assay (17.5 CFU per 2 hands) to match
the categorical outcome of the logistic regression and classi-
cation tree models.

Ordinary least squares regression and logistic regression
modeling were conducted using PASW Statistics (SPSS Inc.,
Chicago, IL). These modeling techniques assume explanatory
variables are independently related to the outcome. To ensure
variables in the models did not violate this assumption, tests
for multicollinearity were performed by reviewing tolerance
and variance ination factors (VIFs) of explanatory variables
and correlations between explanatory variables. If tolerances
were above 0.2, VIFs were less than two, and Pearson's r
correlations were less than 0.8 between variables, then the
model was assumed not to be compromised by multi-
collinearity.14 Neither model was found to be compromised by
multicollinearity. For the ordinary least squares regression
models, we also tested that residuals were normally distrib-
uted with a predicted probability (P–P) plot and found no
concerning deviations from the normality line. Explanatory
variables for the models were chosen a priori based on theory
and prior published research. For the regression models, all
a priori chosen explanatory variables were included in the rst
run of the model. A reduced model was then estimated by an
iterative process, rst removing variables with p > 0.20, and
then keeping only variables with p < 0.10. The results of the full
models (i.e., including all the a priori explanatory variables) are
found in the ESI.†

Within-sample predictive power was estimated for the
models as a secondary measure of comparison of model
performance (see ESI†), since explanatory power (as measured
by the coefficient of determination, R2) could not be evaluated
for all three modeling techniques. If developing a model for
predictive purposes, predictive power should be evaluated on
a new ‘test’ sample set (i.e., not the sample set that built the
model), as within-sample predictive power could overestimate
performance.27 However, the main objective of this study was
to develop explanatory models, so for model development,
decisions were made to optimize the statistical power (i.e.,
large sample size prioritized over withholding data for a ‘test’
set).

Classication tree modeling was conducted using MATLAB
& Simulink R2010a, version 7.10 (The MathWorks Inc., Natick,
MA) using the ‘classregtree’ command. The classication tree
starts with a parent-node containing all observations; the tree
This journal is © The Royal Society of Chemistry 2019
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is then split into two child-nodes based on an explanatory
variable and the corresponding binary decision (i.e., yes/no or
threshold), such that cases in the two child-nodes are the most
homogeneous with respect to the outcome variable, i.e., the
error cost (percent of cases incorrectly classied) is mini-
mized. The child-nodes then become parent-nodes to undergo
further splitting, and the process is repeated until a chosen
tree optimization parameter is met. Each node in the tree is
assigned a pruning level (i.e., a level of branching) based on its
associated error cost; nodes closer to the top of the tree have
a higher pruning level. Therefore, the explanatory variables
selected at higher pruning levels sort more cases into the
correct outcome categories (i.e., have a lower error cost).

In this study, classication trees were optimized by setting
the ‘minleaf’ parameter, which is the minimum number of
cases in a child-node required for branching of the tree to
continue. The optimal ‘minleaf’ value was determined by
minimizing the pooled error cost of a 10-fold cross-validation of
the tree. A 10-fold cross-validation of the tree divides the full
dataset into 10 equal sets, uses 9 of the 10 sets to train a model,
and then calculates an error cost with the set that was not used
to train the model (i.e., test set). The error cost calculation is
then repeated, alternating the set used as the test set, and
a pooled error cost is calculated. Values of ‘minleaf’ parameters
from 1–100 were tested to nd the value associated with the
minimum pooled error cost of a 10-fold cross-validation of the
tree.
3. Results
3.1. Blanks and duplicates

There were a total of 230 method blanks processed during the
study. There were two blanks with contamination detected on
the MI plate (E. coli-specic media). One CFU grew on the two
contaminated MI plates, which were from blanks processed on
different days. All other blanks processed on those days had
zero growth (i.e., no contamination). Eight eld hand bag
blanks were processed and found to be negative for contami-
nation. Also, ten hand bag lab blanks (from hand bags that did
not go into the eld) were processed and found to be negative
for contamination. As contamination was at very low concen-
trations and occurred in <1% of blanks, we did not correct for
the contamination and included all data collected in the anal-
ysis. For the majority of samples processed in duplicate (>95%),
the duplicate samples had fecal indicator bacteria concentra-
tions of the same order of magnitude. The rst sample pro-
cessed of the duplicate pair was used in the analysis.
Table 2 Percent (and number) of households in each stored water qual

Stored water contamination

Low, 0–10 CFU EC per 100 m

Unimproved water source 10.6%(23)
Improved water source off-plot 32.1%(264)
Improved water source on-plot 32.1%(51)

This journal is © The Royal Society of Chemistry 2019
3.2. Sample household characteristics

Table 1 shows descriptive data of the 1217 sample households.
The average household size was 5.5 people, and households had
a median weekly per capita expenditure of 4.33 USD. Eighteen
percent of households reported having access to an improved
sanitation facility as dened by the Joint Monitoring Program.28

The majority of households reported using an improved water
source (82%), including piped water (60%), borewells (16%),
and rainwater (5%). Only 13% of households had access to an
improved water source located on their premises (i.e., on-plot).
The majority of water samples collected from the households
were contaminated with fecal indicator bacteria, with 28%
having 0–10 CFU E. coli per 100 mL, 35% having 11–100 CFU E.
coli per 100 mL and 37% having greater than 100 CFU E. coli per
100 mL. The relationship between source water type and stored
water quality is further detailed in Table 2. The majority of
stored water samples (68%) originating from improved water
sources (whether on-plot or off-plot) had medium or high E. coli
levels. Notably, whether the improved water source was on-plot
or off-plot, the stored water samples had low E. coli levels for the
same fraction of households (32%) (Table 2). In addition, 15%
of respondents reported treating the sampled stored drinking
water, either by boiling, ltering, or chlorination. More than
half (52%) of these households had highly contaminated stored
drinking water. Almost three quarters of female caregivers were
found to have E. coli in their hand rinse samples.
3.3. Stored water quality: identied correlates

The results of the ordinary least squares regression, multino-
mial logistic regression, and classication tree stored water
models are presented in Table 3, and a diagram of the classi-
cation tree model is shown in Fig. 1. Only two variables were
identied as explanatory variables of E. coli concentrations in all
three models. First, having stored water that was obtained from
an improved versus unimproved source was strongly associated
with higher stored water quality. For instance, stored water
source classication had three times the average effect on E. coli
concentrations as compared to water storage time classication
(more or less than 24 h). Second, the concentration of E. coli on
female caregiver's hands was also identied as an explanatory
variable of stored water contamination in all 3 analyses. In
addition, several variables were found not to be explanatory
variables of stored water E. coli concentrations in any model:
whether the household's water source was located on the
premises, whether the water storage container was covered at
the time of sampling, and whether the respondent extracted
ity category by JMP classified access to improved water source

categories

L
Medium, 11–100
CFU EC per 100 mL

High, >100
CFU EC per 100 mL

33.6%(73) 55.8%(121)
33.7%(277) 34.3%(282)
40.3%(64) 27.7%(44)
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Table 3 Comparison of reduced models explaining stored water quality of households

Variabled

Ordinary least
squares regressiona

Multinomial logistic
regression: medium
EC categoryb

Multinomial logistic
regression: high EC
categoryb

Classication
treec

Be SE B SE B SE Prune level

Constant 1.8 0.1 0.52 0.40 1.16*** 0.37 —
Respondent works outside the homef �0.20*** 0.07 �0.45** 0.18 �0.50*** 0.18 —
Regular weekly expenditure per capita — — — — — — 4
House has dirt oorf 0.16*** 0.06 — — — — —
House located within townf �0.13** 0.06 �0.30* 0.17 �0.41** 0.17 —
Infant present in householdf — — 0.21 0.18 0.40** 0.17 —
Household has private latrinef — — 0.41** 0.16 0.21 0.16 —
Feces visible around householdf — — 0.29 0.36 0.59* 0.35 —
Latrine has a cement oorf — — — — — — 5
Children open defecatef — — — — — — 0
Water source is improvedf �0.52*** 0.07 �0.95*** 0.26 �1.56*** 0.25 2
Water was actively treatedf — — — — — — 2
Water extracted in risky mannerf — — 0.46* 0.25 0.04 0.23 —
Hand contacted water when extractingf 0.14* 0.07 0.19 0.23 0.51** 0.22 —
Water stored for less than 24 hf �0.16** 0.06 �0.40** 0.18 �0.25 0.18 —
Log EC CFU per 100 mL on hands of
caregiver

0.08*** 0.03 0.06 0.08 0.19** 0.08 3

a Dependent variable is log CFU EC per 100 mL water. b Reference group is low contamination level category. c Outcome categories are low,
medium, and high EC contamination categories. d Variables tested, found not to be signicant, and excluded from models include: someone in
the household has GI illness, latrine has a septic tank, latrine has a roof, latrine has a pit cover, ies present in latrine, water source on-plot,
and water storage container is covered. e Unstandardized beta coefficient. f Binary variable (0 or 1). ***p < 0.01 **0.01 $ p < 0.05 *0.05 $ p < 0.10.

Fig. 1 Classification tree for low (0–10 CFU EC per 100 mL), medium (11–100 CFU EC per 100 mL), and high (greater than 100 CFU EC per
100 mL) levels of EC in stored drinking water sample. The predicted category of contamination is in bold above the terminal boxes. The terminal
boxes report the distribution of cases in the terminal node. Minleaf ¼ 75 cases. Expenditure is regular weekly expenditure per capita for the
household in Tanzanian shillings (Tsh.). Log EC per 2 hands is the concentration of E. coli per two hands in female caregiver hand rinse samples.
‘Water treated’ refers to any form of active treatment (i.e., boiling, chlorination, filtration, adding coagulant). Boxes reveal the number (and %) of
cases in the terminal node by contamination category.

898 | Environ. Sci.: Processes Impacts, 2019, 21, 893–903 This journal is © The Royal Society of Chemistry 2019
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water from the storage container using a cup or bowl (versus
a long-handled utensil or decanting).

For some associated correlates, however, the models did not
agree. For instance, reported active treatment of the water,
which included boiling, adding a coagulant, ltration, and
chlorination, was not statistically signicant in the ordinary
least squares regression or multinomial logistic regression
models but was a classication node in the classication tree
model. Having a latrine with a cement oor was the rst clas-
sication node in the classication tree model, meaning it was
the variable that best sorts the cases into homogeneous groups
of the outcome variable.16 This variable was not statistically
signicant in either regression model, however. The modeling
techniques relate explanatory variables to stored water quality
in fundamentally different ways, as mentioned in the intro-
duction, so it is not surprising that differences arise in terms of
explanatory variables identied. However, based on underlying
theory, we are not able to determine which of the models is
‘correct’ (i.e., reecting the true state of the world) but rather,
each model, can offer insight for future hypothesis generation.

Uniquely, the classication tree model identied several
‘recipes’—or combinations of characteristics—for households
with highly contaminated water (Fig. 1). For instance, the pre-
dicted probability of high contamination in stored water was 0.54
for a household without a cement oor in the latrine, that did not
report treating their water, and that obtained their water from an
unimproved source. Interestingly, if a household did not have
a cement oor but reported that they did treat their water, the
model still predicted high contamination. The classication tree
model predicted low contamination in the stored drinking water
for households that had a cement oor in the latrine and regular
Table 4 Comparison of reduced models explaining detection of E. coli

Variabled

Ordinary least squar
regressiona

Be

Constant 2.30***
Respondent works outside the home f —
Regular weekly expenditure per capitag �0.02***
House located in townf 0.39***
Infant present in householdf 0.16**
Household has private latrinef �0.16**
Feces visible around householdf 0.25*
Latrine has a cement oorf —
Latrine has a septic tankf �0.28**
Flies present in latrinef —
Children open defecatef —
Time since last hand washing 1 h or lessf —
Prior activity involved washingh 0.19**
Prior activity food handlingh —
Prior activity (for classication tree only)i —

a Dependent variable is log CFU E. coli per 2 hands. b Reference group is n
female caregiver hands; pruning level represents the level of branching in
d Variables tested, found not to be signicant, and excluded from model
latrine has a roof, latrine has pit cover, respondent has primary educat
aer hand washing, and hands wetted for hand washing by pouring w
(1000 Tsh). h Dummy variables with the reference activity of ‘sitting’ and
being sitting, washing, food handling, or other. ***p < 0.01 **0.01 $ p <

This journal is © The Royal Society of Chemistry 2019
weekly expenditure greater than 6.29 USD (47% of households
reported greater than 6.29 USD regular weekly expenditure). Also,
the model predicted low contamination for households that had
a cement oor in the latrine, female caregiver hand contamina-
tion less than 3.3 log CFU E. coli per 2 hands, and weekly
expenditure of less than 3.48 USD (39% of households reported
less than 3.48 USD regular weekly expenditure).
3.4. Stored water quality: comparison of analytical
techniques

The ordinary least squares regression model had a multiple R2

value of 0.09, and themultinomial logistic regression had a Cox-
Snell pseudo-R2 of 0.10. In both cases, having values close to
zero indicates poor model t; however, the parameters are
calculated differently and do not have the same mathematical
interpretation.14 An analogous parameter cannot be computed
for classication trees. To allow for some comparison of model
performance with the classication tree, within-sample
predictive power was also estimated (see ESI, Table S1†).
3.5. Female caregiver hand contamination: identied
correlates

The results of the three models for female caregiver hand
contamination are shown in Table 4; Fig. 2 shows a diagram of
the classication tree model. The only explanatory variable in all
three models was the type of activity in which the respondent was
engaged just prior to her hand rinse sample being taken (e.g.,
washing, handling food, sitting, or ‘other’ activity). Preparing
food and washing dishes, clothes, hands or children were posi-
tively associated with female caregiver hand contamination.
on female caregiver hands

es Binary logistic
regressionb Classication treec

SE B SE Prune Level

0.09 0.48** 0.23 —
— 0.36** 0.17 —
0.01 — — 1
0.06 0.58*** 0.14 1
0.07 — — —
0.06 �0.33** 0.14 —
0.13 0.84** 0.34 —
— — — 2
0.12 — — —
— �0.26* 0.15 —
— 0.27** 0.14 —
— — — 3
0.09 0.47** 0.21 —
— 0.36** 0.18 —
— — — 1

o detection of E. coli. c Outcome categories are E. coli detected or not on
the tree with nodes at the top of the tree having a higher pruning level.
s include: house has a dirt oor, someone in household has GI illness,
ion, hand washing station with soap present, hands dried with fabric
ater. e Unstandardized beta coefficient. f Binary variable (0 or 1). g In
‘other activities’. i Categorical variable of activity prior to hand rinse

0.05 *0.05 $ p< 0.10.
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Fig. 2 Classification tree for E. coli (EC) detection on the hands of female caregivers (i.e., positive or negative for detection of EC). Female
caregiver hand rinses detecting EC (i.e., positive EC) and not detecting EC (i.e., negative EC). The predicted category of contamination is in bold
above the terminal boxes. The terminal boxes report the distribution of cases in the terminal node. Minleaf¼ 75 cases. Last hand washing is time
since last hand washing with soap. ‘Within Bagamoyo Town’ is whether or not the household is located within Bagamoyo town. Activity prior to
hand rinse is sitting as opposed to any other activity. Expenditure is regular weekly expenditure per capita for the household in US dollars (USD).
Boxes reveal the number (and %) of cases in the terminal node by contamination category.
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Other variables were only identied as correlates in one or
two of the models. A household having a private latrine, as well
as feces being observed on the ground near the household,
were both statistically signicantly associated with higher
levels of E. coli contamination on a respondent's hands in the
ordinary least squares regression and binary logistic regres-
sion models. For the ordinary least squares regression model,
the household having a septic tank was associated with
decreased contamination on the respondent's hands. For the
binary logistic regression model, household children report-
edly practicing open defecation and feces being visible around
the household were statistically signicantly associated with
increased contamination on the respondent's hands. Time
since last hand washing with soap was the rst node in the
classication tree (i.e., highest pruning level), meaning it was
the most effective variable in sorting cases into homogenous
groups of E. coli detect and E. coli non-detect (Fig. 2). Inter-
estingly, the tree predicts E. coli detection in the hand rinse
sample if the respondent reported hand washing with soap
less than 1 hour prior to sampling. The classication tree
model only had one branch that predicted no detection of E.
coli in the rinse sample, and it was for respondents that re-
ported hand washing more than 1 hour prior to rinse, do not
have a cement slab on their latrine, live outside of Bagamoyo
900 | Environ. Sci.: Processes Impacts, 2019, 21, 893–903
town, were sitting prior to the rinse sample, and had
comparatively high regular weekly expenditures.
3.6. Female caregiver hand contamination: comparison of
analytical techniques

For traditional t indexes, the ordinary least squares regression
model has a multiple R2 value of 0.06, and the binary logistic
regression has a Cox-Snell pseudo-R2 of 0.05 (an analogous
statistic cannot be calculated for classication trees). The
within-sample predictive power is shown in the ESI (Table S3†).
4. Discussion

The three analytical methods used to describe microbial
contamination on female caregiver hands and in stored
drinking water of households make fundamentally different
assumptions about the relationships between explanatory
variables and outcome measures of contamination. In partic-
ular, the classication tree identied complex clusters of
explanatory variables associated with a given outcome. By
contrast, the regression models generate estimated average
effects for each explanatory variable. As a result, despite using
the same data set, different explanatory variables were identi-
ed across the models tested. Thus, substantively different
This journal is © The Royal Society of Chemistry 2019
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conclusions were drawn based on the model selected. As
analysis of cross-sectional data is useful for the generation of
hypotheses, the model selected may inuence which hypoth-
eses are recommended for future testing. Selection of the
appropriate analytical technique requires understanding the
relationship between explanatory and outcome variables. For
example, forcing a linear relationship between explanatory
and outcome variables when a threshold relationship exists
would increase the standard error and represent an inaccurate
magnitude of effect associated with the explanatory variable.
Also, models have different assumptions, such as indepen-
dence of co-variates in regression models, that must not be
violated. To appropriately guide future research, the model
selection should reect the understanding of how the
explanatory variables are believed to be related to the outcome.
If the relationships between explanatory variables and the
outcome are unclear, such as the case with water and hand
contamination, then using multiple modeling techniques can
be fruitful. However, it is worth noting that classication tree
does allow for more complex relationships to be identied
between explanatory variables, and this method exhibits
improved within-sample predictive power, particularly for
outlier cases. Additional modeling techniques, such as neural
network analysis and support vector machines, could be
explored to explain variation in stored drinking water and
hand contamination.

There were some explanatory variables that were identied as
related to the outcome variables across the three modeling types
(e.g., water source type for the water models and activity prior to
sampling for the hand models), providing triangulated support
for the relationships. Strikingly, whether an improved water
source is on-plot or off-plot doesn't result in improved water
quality outcomes (Table 2). As an on-plot improved water source
represents the top of the water ladder,28 this study highlights that
if drinking water is still stored in the home, the achievement of
access to improved water infrastructure on the living premises
would not necessarily confer water quality gains.

The explanatory power of the regression models was lower
for hand contamination than for stored water quality, and was
on par with previous research.5 In addition, all three modeling
techniques exhibited low within-sample predictive power (see
ESI†). Similar to other studies,5,11,12 our results highlight the
complexity of explaining stored water quality and hand
contamination in low-resource settings.

Several possible explanations exist for the poor explanatory
and within-sample predictive power of these models. The
limited variation in values of the outcome variable (e.g., low
percentage of cases were non-detects for the hand contamina-
tion categorical outcome models) could contribute to the poor
model performance.22 Also, several of the explanatory variables
used in the analyses were based on self-reported data. Biased
responses could prevent the identication of an existing rela-
tionship between the outcome variable and a correlate. In
particular, unreliable reporting of hygiene behaviors has been
documented in other studies.29,30 Aside from biases in the
collected data, omission of important correlates could limit the
predictive power of the models.
This journal is © The Royal Society of Chemistry 2019
Poor model performance could also stem from E. coli
concentrations not being an appropriate indicator of fecal
contamination in drinking water and on hands. For instance, E.
coli have been found to be naturally occurring in soils (i.e., not
from feces) in tropical environments.31–33 In such a case, one
would not necessarily expect the concentration of these organ-
isms in stored water to be correlated with household water
management and hygiene practices. Additionally, E. coli are
found in the feces frommultiple animal hosts, not just humans,
which is problematic since many of the sanitation-related
variables (e.g., children practicing open defecation) included
in the models focus on contamination from human, rather than
non-human feces.

We also note that E. coli measurements can exhibit consid-
erable intrinsic sampling variability.34 Such random sampling
error can impede efforts to identify associations between E. coli
and extrinsic explanatory variables using multivariate statistical
modeling.35 In theory, taking replicate water quality measure-
ments would reduce measurement error, improve model t,
and increase precision of parameter estimates.35 Future
research that explores the impact of replicate sampling on the
explanatory power and parameter estimates of water quality and
hand contamination models would thus be a valuable contri-
bution. Some researchers have applied the Spearman–Brown
formula to determine the number of replicate measures needed
for a desired level of precision in a parameter estimate.36

Variability in E. coli measurements within a household may
also be non-random. For example, there is evidence that water
quality varies systematically over both short (<1 day) and longer
(>1 day) time scales.12,37 The water and hand samples taken in
the present study were captured at different times of day, and no
information was available regarding temporal trends in
contamination among study households. In future research,
incorporating both repeat measurements within a household
(over a relevant time frame) and replicate measurements (at
each point in time) could allow modeling efforts to estimate the
share of total variance attributable to explanatory variables,
systematic temporal variation, and random variability.

5. Conclusions

Tests of microbial contamination in household environments
has been expanding, particularly in low-income country
settings, in effort to understand disease transmission pathways.
However, as evidenced in this work, analytical techniques used
to identify covariates or risk factors for contamination
outcomes were limited in their capacity to explain variation in
stored drinking water quality and female caregiver hand
contamination. Measurement error and non-random temporal
variability that is not captured by parameter estimates may be
contributing to the unexplained variation. Future research
should explore how different water sample schemes (such as
repeated measures at different temporal scales) can improve
explanatory power of models.

Despite some limitations in the models, this study did
provide some insight between behaviors and household char-
acteristics and contamination in water and on hands that could
Environ. Sci.: Processes Impacts, 2019, 21, 893–903 | 901
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be further explored for causal relationships in experimental
evaluation. This work highlighted how the use of multiple
modeling techniques can be fruitful when underlying relation-
ships between explanatory variables and an outcome remain
unclear. Although the modeling approaches varied, there were
some similarities in the results, with certain explanatory vari-
ables being consistently identied as being related to hand and
water contamination (e.g., water source type for the water
models and activity prior to sampling for the hand models). At
the same time, there were also marked differences across the
models. In sum, these results suggest there are benets to using
multiple analysis methods to assess relationships in complex
systems.
Conflicts of interest

There are no conicts to declare.
Acknowledgements

This study was funded by the National Science Foundation (SES-
0827384). Angela R. Harris was funded by the National Science
Foundation Graduate Research Fellowship and the Stanford
Graduate Fellowship while conducting this work. The authors
would like to thank eld staff and laboratory technicians at the
Ifakara Health Institute for their support as well as participating
households. The authors also acknowledge the support of Omar
Juma, Maggie Montgomery, Emily Viau, Mia Mattioli, and
Michael Harris.
References

1 Joint Monitoring Program, Progress on Drinking Water,
Sanitation and Hygiene, World Health Organization and
United Nations Children's Fund, Geneva, 2017, available
from: https://www.unicef.org/media/media_96632.html.

2 J. Wright, S. Gundry and R. Conroy, Household drinking
water in developing countries: a systematic review of
microbiological contamination between source and point-
of-use, Trop. Med. Int. Health, 2004, 9(1), 106–117.

3 J. V. Pinfold, Faecal contamination of water and ngertip-
rinses as a method for evaluating the effect of low-cost
water supply and sanitation activities on faeco-oral disease
transmission. I. A case study in rural north-east Thailand,
Epidemiol. Infect., 1990, 105(2), 363–375.

4 A. F. Trevett, R. C. Carter and S. F. Tyrrel, Mechanisms
leading to post - supply water quality deterioration in rural
Honduran communities, Int. J. Hyg. Environ. Health, 2005,
208(3), 153–161.

5 A. J. Pickering, J. Davis, S. P. Walters, H. M. Horak,
D. P. Keymer, D. Mushi, et al., Hands, water, and health:
fecal contamination in Tanzanian communities with
improved, non-networked water supplies, Environ. Sci.
Technol., 2010, 44(9), 3267–3272.

6 L. Roberts, Y. Chartier, O. Chartier, G. Malenga, M. Toole
and H. Rodka, Keeping clean water clean in a Malawi
902 | Environ. Sci.: Processes Impacts, 2019, 21, 893–903
refugee camp: a randomized intervention trial, Bull. W. H.
O., 2001, 79(4), 280–287.

7 M. C. Mattioli, A. J. Pickering, R. J. Gilsdorf, J. Davis and
A. B. Boehm, Hands and Water as Vectors of Diarrheal
Pathogens in Bagamoyo, Tanzania, Environ. Sci. Technol.,
2013, 47, 355–363.

8 V. Curtis and S. Cairncross, Reviews effect of washing hands
with soap on diarrhoea risk in the community : a systematic
review, Lancet, 2003, 3, 275–281.

9 S. Shrestha, S. S. Malla, Y. Aihara, N. Kondo and K. Nishida,
Water Quality at Supply Source and Point of Use in the
Kathmandu Valley, J. Water Environ. Nanotechnol., 2013,
11(4), 331–340.

10 a. Shaheed, J. Orgill, C. Ratana, M. a. Montgomery,
M. a. Jeuland and J. Brown, Water quality risks of
“improved” water sources: evidence from Cambodia, Trop.
Med. Int. Health, 2014, 19(2), 186–194.

11 K. Levy, K. L. Nelson, A. Hubbard and J. N. S. Eisenberg,
Following the water: a controlled study of drinking water
storage in northern coastal Ecuador, Environ. Health
Perspect., 2008, 116(11), 1533–1540.

12 K. Levy, A. E. Hubbard, K. L. Nelson and J. N. S. Eisenberg,
Drivers of water quality variability in northern coastal
Ecuador, Environ. Sci. Technol., 2009, 43(6), 1788–1797.

13 S. C. Lemon, J. Roy, M. A. Clark, P. D. Friedmann and
W. Rakowski, Classication and Regression Tree Analysis
in Public Health : Methodological Review and Comparison
with Logistic Regression, Ann. Behav. Med., 2003, 26(3),
172–181.

14 A. Field, Discovering statistics using IBM SPSS Statistics, Sage
Publications Inc., London, 4th edn, 2013.

15 G. De'ath and K. Fabricius, Classication and regression
trees: a powerful yet simple technique for ecological data
analysis, Ecology, 2000, 81(11), 3178–3192.

16 H.-K. Bae, B. H. Olson, K.-L. Hsu and S. Sorooshian,
Classication and regression tree (CART) analysis for
indicator bacterial concentration prediction for a Californian
coastal area, Water Sci. Technol., 2010, 61(2), 545–553.

17 C. Strobl, J. Malley and G. Tutz, An introduction to recursive
partitioning: rationale, application, and characteristics of
classication and regression trees, bagging, and random
forests, Psychol. Methods, 2009, 14(4), 323–348.

18 R. T. Stidson, C. A. Gray and C. D. McPhail, Development
and use of modelling techniques for real-time bathing
water quality predictions,Water Environ. J., 2012, 26(1), 7–18.

19 W. Thoe, M. Gold, A. Griesbach, M. Grimmer, M. L. Taggart
and A. B. Boehm, Predicting water quality at Santa Monica
Beach: evaluation of ve different models for public
notication of unsafe swimming conditions, Water Res.,
2014, 67, 105–117.

20 W. Thoe, S. H. C. Wong, K. W. Choi and J. H. W. Lee, Daily
prediction of marine beach water quality in Hong Kong, J.
Hydro-Environ. Res., 2012, 6(3), 164–180.

21 C. Kingsford and S. Salzberg, What are decision trees?, Nat.
Biotechnol., 2008, 26(9), 1011–1013.

22 K. Gass, D. G. Addiss and M. C. Freeman, Exploring the
relationship between access to water, sanitation and
This journal is © The Royal Society of Chemistry 2019

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8em00460a


Paper Environmental Science: Processes & Impacts

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
A

pr
il 

20
19

. D
ow

nl
oa

de
d 

on
 1

0/
17

/2
02

5 
5:

51
:4

0 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
hygiene and soil-transmitted helminth infection:
a demonstration of two recursive partitioning tools, PLoS
Neglected Trop. Dis., 2014, 8(6), e2945.

23 USEPA. Method 1604, Total Coliforms and Escherichia coli in
water by membrane ltration using a simultaneous detection
technique (MI medium), Washington, DC, 2002.

24 K. Onda, J. LoBuglio and J. Bartram, Global access to safe
water: accounting for water quality and the resulting
impact on MDG progress, Int. J. Environ. Res. Public Health,
2012, 9(3), 880–894.

25 R. Baum, G. Kayser, C. Stauber and M. Sobsey, Assessing the
microbial quality of improved drinking water sources:
results from the Dominican Republic, Am. J. Trop. Med.
Hyg., 2014, 90(1), 121–123.

26 Environmental Health in Emergencies and Disasters: A practical
guide, ed. B. Wisner and J. Adams, World Health
Organization, 2002, ch. 7 Water Supply, pp. 92–126.

27 G. Shmueli, To Explain or to Predict?, Stat. Sci., 2010, 25(3),
289–310.

28 Joint Monitoring Program, Progress on Sanitation and
Drinking Water: 2010 Update, World Health Organization
and the United Nations Children's Fund, Geneva, 2010.

29 V. Curtis, S. Cousens, T. Mertens, E. Traore, B. Kanki and
I. Diallo, Structured observations of hygiene behaviours in
Burkina Faso : validity, variability, and utility, Bull. W. H.
O., 1993, 71(1), 23–32.

30 M. Manun'Ebo, S. Cousens, P. Haggerty, M. Kalengaie,
A. Ashworth and B. Kirkwood, Measuring hygiene
practices : a comparison of questionnaires with direct
This journal is © The Royal Society of Chemistry 2019
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