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Quantifying and elucidating the effect of CO2

on the thermodynamics, kinetics and charge
transport of AEMFCs†

Yiwei Zheng,a Travis J. Omasta, a Xiong Peng,a Lianqin Wang, b

John R. Varcoe, b Bryan S. Pivovarc and William E. Mustain *a

It has been long-recognized that carbonation of anion exchange membrane fuel cells (AEMFCs) would

be an important practical barrier for their implementation in applications that use ambient air containing

atmospheric CO2. Most literature discussion around AEMFC carbonation has hypothesized: (1) that the

effect of carbonation is limited to an increase in the Ohmic resistance because carbonate has lower

mobility than hydroxide; and/or (2) that the so-called ‘‘self-purging’’ mechanism could effectively

decarbonate the cell and eliminate CO2-related voltage losses during operation at a reasonable operating

current density (41 A cm�2). However, this study definitively shows that neither of these assertions are

correct. This work, the first experimental examination of its kind, studies the dynamics of cell carbonation

and its effect on AEMFC performance over a wide range of operating currents (0.2–2.0 A cm�2), operating

temperatures (60–80 1C) and CO2 concentrations in the reactant gases (5–3200 ppm). The resulting data

provide for new fundamental relationships to be developed and for the root causes of increased polariza-

tion in the presence of CO2 to be quantitatively probed and deconvoluted into Ohmic, Nernstian and

charge transfer components, with the Nernstian and charge transfer components controlling the cell

behavior under conditions of practical interest.

Broader context
Anion exchange membrane fuel cells (AEMFCs) have shown significant promise to provide clean, sustainable energy for grid and transportation applications –
and at a lower theoretical cost than more established proton exchange membrane fuel cells (PEMFCs). Adding to the excitement around AEMFCs is the
extremely high peak power that can now be obtained (43 W cm�2) and continuously improving durability (1000+ h), which has made the future deployment of
AEMFCs in real-world applications a serious consideration. For some applications (e.g. automotive), the most critical remaining practical issue with AEMFCs is
understanding and mitigating the effects of atmospheric CO2 (in the air supply) on cell behavior and performance. This study is the first comprehensive
experimental investigation into the effects of CO2 on operating AEMFCs. It is also the first study to be able to quantitatively determine the root causes for
performance decline when CO2 is added to the system, where cell behavior is directly linked to cell chemistry and reaction dynamics. In addition to the
demonstrated technology, the lessons learned in this work can also provide transformational insights to other air breathing and/or AEM-based electrochemical
systems such as metal–air batteries, regenerative fuel cells, electrochemical CO2 capture, CO2 reduction reactors and dialyzers.

Introduction

For decades, the proton exchange membrane fuel cell (PEMFC)
has dominated the research space for low temperature polymer
electrolyte fuel cells. Though significant advances have been

made regarding the performance and stability of PEMFCs over
the years, one of the factors that has limited its wide deploy-
ment is cost.1 It has been broadly suggested in recent years that
a change of electrolyte to a solid alkaline polymer electrolyte
might be able to significantly reduce the cost of polymer-based
fuel cell systems2 because the alkaline environment would allow
for the deployment of a broader range of noble metal free
catalysts as well as less expensive materials to be used for other
cell components such as the membrane and bipolar plates.

Early development of these so-called anion exchange
membrane fuel cells (AEMFCs) was hindered by anion exchange
membranes (AEMs) with very poor alkaline stability3 and very
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poor performance, with typical peak power densities well below
0.5 W cm�2. The combination of low achievable power and
limited durability4,5 made AEMFCs uncompetitive with PEMFCs
for years. However, over the past two years, a significant increase
in the peak power density has been observed,5–9 with state-of-
the-art AEMFCs having the ability to achieve values over
3 W cm�2 operating on H2/O2 gas feeds.10 Also, the performance
stability of AEMFCs has improved dramatically during this time,
with multiple groups reporting 500+ hour stability at low degra-
dation rates (5–10%).11–14

Now that AEMFC performance and stability has been
enhanced to the point where their future deployment in real
applications can be seriously contemplated, it is now an
important time in AEMFC development to begin to answer
some of the other lingering issues that have to date been mostly
put aside in the literature. It can be argued that one of the most
important of these issues is understanding and mitigating the
effects of atmospheric CO2 on AEMFC performance. It is widely
known that when CO2-containing air is fed to the AEMFC
cathode, the OH� anions that are produced from the oxygen
reduction reaction (ORR), eqn (1), react with CO2 to produce
carbonate and/or bicarbonate anions, eqn (2) and (3).

O2 + 2H2O + 4e� - 4OH� (1)

CO2 + OH� " HCO3
� (2)

HCO3
� + OH� " CO3

2� + H2O (3)

As (bi)carbonate anions are produced, they are transported
towards the anode by migration, resulting in a ‘‘carbonation’’
of the anion exchange membrane (AEM) as well as the ionomer
in the electrodes (especially the anode). This carbonation
results in a severe reduction in the operating cell voltage,
with carbonate-related overpotentials as high as 400 mV.15

Though theoretical studies have tried to shed some light on this
phenomena,16,17 unfortunately, there is a very small body of
experimental work in the literature quantifying the impact of
CO2 and determining the root causes behind the extensive
performance drop for AEMFCs when CO2 is present.

Therefore, the purpose of this study is to establish a resolute
understanding of the influence of CO2 on the performance of
AEMFCs. Herein, the CO2 concentration in both the cathode
and anode are parametrically changed over a wide range of
conditions (current density and temperature) that represent
reasonable ranges for their practical operation. Finally, this
work explores the lower limits of CO2 exposure to determine
whether or not there is a baseline CO2 tolerance in AEMFCs,
which informs the field to what degree oxidant gas scrubbing
might be needed.

Experimental
Electrode preparation

The electrodes in this work were prepared using a method that
has been detailed in our previous publications.8,9 Briefly, the
anode and cathode catalysts were 60 wt% PtRu supported on

Vulcan XC-72R (Alfa Aesar HiSPEC 10000, 2 : 1 ratio of Pt : Ru by
mass – Pt nominally 40 wt%, and Ru, nominally 20 wt%) and
40 wt% Pt supported on Vulcan XC-72R (Alfa Aesar HiSPEC
4000, Pt nominally 40 wt%), respectively. Electrode preparation
was initiated by placing an ethylene tetrafluoroethylene (ETFE)
benzyltrimethylammonium (BTMA) solid powder anion
exchange ionomer (AEI) with an ion-exchange capacity (IEC)
of 1.24 mmol g�1 18 into a mortar and manually grinding it with
a pestle for 10 min. The catalyst powder, additional Vulcan
carbon (XC-72R, Cabot), and 1 mL of Millipore deionized (DI)
water (18.2 MO cm resistivity) were added to the mortar and
ground for 10 min. The mass fraction of AEI in the catalyst layer
was always 0.20 and the total mass fraction of carbon was
maintained at 0.48 for both electrodes. Next, the catalyst-AEI
slurry was transferred to a polypropylene vial. Isopropyl alcohol
was added, and the mixture was sonicated (Fisher Scientific
FS30H) for 60 min. The water in the ultrasonic bath was
maintained below 5 1C to avoid degrading the supported
catalyst and the AEI and to maximize the electrochemically
active area by avoiding agglomeration. The ink dispersions
were sprayed onto Toray TGP-H-0600 gas diffusion layers with
5% PTFE wetproofing with an Iwata Eclipse HP-CS (feed gas
was 15 psig Ultra High Purity N2) to create gas diffusion
electrodes (GDEs). The target GDE catalyst loading was
0.6 � 0.1 mgPt cm�2.

Anion exchange membrane fuel cell (AEMFC) assembly and
break-in procedure

Before cell assembly, the GDEs were soaked in 1 M aqueous
KOH solutions (prepared from Fisher Chemical pellets/certified
ACS and DI water) for 60 min, exchanging the solution twice
during this time. At the same time, the AEM was also soaked in
an identical solution. Two different AEMs were used in this
work. The first was a 50 mm thickness (fully swollen in water)
ETFE–BTMA radiation-grafted AEM,19 which was used for the
CO2 dosing experiments at 60 1C. The second AEM was a 25 mm
thickness (fully swollen in water) LDPE (low density polyethylene)–
BTMA radiation-grafted AEM.7 The LDPE–BTMA AEM is more
chemically and mechanically stable at elevated temperatures than
its ETFE–BTMA counterpart and was used when investigating the
influence of elevated temperature on CO2-related overpotential
losses.

After soaking for 1 h, excess KOH was removed from the
GDEs and AEMs before cell assembly. The GDEs and AEMs
were pressed together in the cell to form the membrane
electrode assembly (MEA) with no prior hot pressing. The MEAs
were loaded into 5 cm2 Scribner hardware between two single
pass serpentine graphite flow plates. An 850e Scribner Fuel Cell
Test Station was used to control the gas stream dew points, cell
temperature, gas flowrates and the operating current density.

Before CO2 measurements were made, all cells underwent a
break in procedure. First, the cell was brought to its operating
temperature under N2 flow on both sides of the cell at 100%
relative humidity. Next, the feed gases were switched to ultra
high purity H2 and O2 (Airgas) at the anode and cathode,
respectively. Then, the cell was operated galvanostatically
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stepwise from 0.7 V to 0.3 V (0.1 V steps, held for a minimum
of 30 min at each step) as the reacting gas dew points
were optimized per our standard procedure.8 The optimized
reacting gas dew points were very repeatable from cell-to-cell;
the dew points were typically 52 1C at the anode and 54 1C at
the cathode for an AEMFC operating at 60 1C. Following the
optimization of the reacting gas dew points, the cells were
operated galvanostatically at the current density of interest
(0.2, 0.5, 1.0 or 2.0 A cm�2) and allowed to equilibrate for at
least 30 min before CO2 exposure was initiated. Multiple cells (no
less than three) were constructed and tested for each measurement.

AEMFC carbon dioxide measurements

Following the break-in procedure and 30 min equilibration, the
cell current was maintained and CO2 was parametrically added
to the ultra high purity O2 cathode stream. We chose to add CO2

to O2 instead of air in order to simplify observations and isolate
the effects of CO2 on performance, since air has additional O2

mass transport impact (e.g. N2 dilution) during cell operation,
which is largely eliminated by utilizing O2 as the reacting gas.
The flowrate for O2 and H2 in all experiments was 1 L min�1.
CO2 cathode concentrations as low as 2 ppm and as high as
3200 ppm were tested. Typically, after CO2 addition, the cell
was operated for 30 min, which was much longer than the time
required to reach quasi-steady-state operation (typically o5 min,
though lower CO2 concentrations took longer). After 30 min
operation at constant current, CO2 was removed from the gas
stream and the cell was allowed to decarbonate for an initial
30 min. After this, the cell was further decarbonated through self-
purging by one of two approaches: (i) the cell was allowed to
operate at the same current density until the voltage reached its
pre-CO2 level and no CO2 emission was measured at the anode
(shown in Fig. S1 in the ESI†); or (ii) more typically, to reduce the
time between CO2 trials, the cell potential was pulsed down to
0.1 V for 1 min (Fig. S2 in the ESI†), after which no CO2 emission
was measured in the anode stream. When CO2 was fed to the
cathode, the concentration of CO2 being emitted from the anode
and cathode were both constantly monitored in real time using a
PP Systems WMA-5 non-dispersive infrared CO2 gas analyzer
(a water trap was placed in-line before the WMA-5 in order to
preserve the unit and its calibration).

A second set of experiments were done where CO2 at con-
centrations between 2 and 400 ppm were added to the anode
instead of the cathode. This was meant to simulate two possible
scenarios: (i) CO2 accumulation in the anode; and (ii) CO2

exposure at the anode from the oxidation of carbonaceous fuels
(through reforming or direct alcohol oxidation). When CO2 was
fed to the anode, the concentration of CO2 being emitted from
the anode and cathode was constantly monitored in real time
using the WMA-5. The cathode data will not be shown since the
CO2 concentration there was always below the detection limit
during operation (though a very small amount of CO2 was
observed in the cathode exhaust when the cell current was
turned off due to diffusion across the AEM, which is shown).

The final set of experiments investigated the effects of
temperature on CO2-related voltage losses. CO2 was fed

separately to both the cathode and anode at 400 ppm. The cell
setup and operation were identical to the previous description
with one exception: the AEM used for these temperature studies
was LDPE–BTMA (IEC = 2.5 mmol g�1), and not ETFE–BTMA
(IEC = 2.05 � 0.05 mmol g�1), because of its superior thermo-
mechanical stability.

Results and discussion

In a typical analysis of fuel cell performance, it is often assumed
that the cell voltage (Vcell) can be represented by eqn (4):

Vcell = VOCV � i(RO + Rct + Rmt) (4)

where VOCV is the open-circuit voltage, i is the cell current, RO is
the ohmic resistance to ion transport, Rct is the charge transfer
resistance and Rmt is the mass transport resistance. In PEMFCs,
it is typically assumed that Rct is dominated by the oxygen
reduction reaction (ORR), but this is likely a poor assumption
in AEMFCs where the kinetics for the hydrogen oxidation
reaction (HOR) are slower in alkaline vs. acid electrolyte and
the HOR overpotential can be significant.20 Therefore, discussion
regarding charge transfer resistance should take into considera-
tion both the ORR and HOR, which can be denoted as RctORR and
RctHOR, respectively. PEMFCs also assume that Rmt is dominated
by oxygen diffusion, which is likely to hold in AEMFCs as well
(can be denoted as RmtORR), though this can often be neglected
with high stoichiometry pure O2 flows. However, the presence of
CO2 and carbonate anions complicates this type of analysis.

The electrochemical production of hydroxide anions in the
presence of CO2 and their subsequent equilibrium reactions
were summarized in eqn (1)–(3). It should be noted here that
OH�/CO3

2�/HCO3
� equilibrium constants exist such that OH�

and HCO3
� can never exist together in large quantities. How-

ever, CO3
2� can exist in high concentrations with either OH� or

HCO3
�. During cell operation at practical current densities, a

significant amount of OH� is produced and CO2 is purged from
the cell. Therefore, the two ions that dominate under operating
conditions are OH� and CO3

2�, which has been confirmed
through theoretical modeling.16 For this reason, the remainder
of the discussion in this work will only consider the presence of
‘‘carbonate’’ as CO3

2�, although it is recognized that bicarbonate
is often present in highly carbonated AEMs and AEMFCs before
significant levels of electrochemical ORR have occurred at the
cathode. It is also possible for there to be at least some bicarbo-
nate accumulated in the anode if the degree of carbonation in the
AEMFC is high.

After their formation at the cathode, the CO3
2� anions are

transported through the AEM to the anode by migration,
resulting in the ‘‘carbonation’’ of the AEM and the catalyst
layer ionomers (Fig. 1). This carbonation reduces the AEM
conductivity since CO3

2� has a lower intrinsic mobility
than OH�,21–23 which increases the area-specific resistance
(ASR, estimated as the product of the measured high frequency
resistance and the cell active area) relative to OH�-only opera-
tion (DASR). However, this effect should not be overstated as it
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is only able to account for a small fraction of the performance
loss when CO2 is added to the cathode stream. Definitive
experimental evidence will be presented below to support this.
Less discussed, though thoughtfully pointed out and modeled
by a few studies in the literature,16,24,25 migration is not the
only mass transport event that influences the location and
distribution of CO3

2�; diffusion also plays a role. The interplay
between migration and diffusion results in carbonate concen-
tration profiles that impact performance in two primary ways
beyond Ohmic considerations, one pH-based (Nernstian) and
the other electrocatalytic.26

Nernstian performance loss in the presence of CO2 in
operating AEMFCs is due to concentration gradients that
develop across the cell. Under typical operating currents, net
migration of ions across the AEM is very fast (on the order of 1 s
at relevant current densities and AEM thicknesses). This ionic
flux towards the anode leads to lower concentrations of CO3

2�

in the AEM and cathode compared to the anode (though the
extent will depend on factors including membrane thickness,
current density and the CO2 concentration in the cathode
stream). The resulting CO3

2� concentration gradient provides
a driving force for back-diffusion of CO3

2� anions from the
anode towards the cathode – setting up a steady-state con-
centration gradient where there is significant carbonate accu-
mulation within the anode,16,24,26 although the absolute and
variation of the carbonate level within the anode has yet to be
determined directly. The presence of carbonate in the anode
decreases the local pH, leading to an increase in the anode
potential (DVNernst) according to the Nernst equation during
operation, which has been theoretically estimated to be as high
as 180–350 mV.16,27

Electrocatalytically-driven CO2-related voltage losses arise
from the reduced migrational supply and reduced local

concentration of reacting OH� anions as CO3
2� carries charge

from the cathode to the anode and accumulates there. Previous
work (and the data in Fig. S2 in the ESI† for a cell pulsing to
0.1 V) has shown evidence that at high anode overpotentials
CO2 is quickly removed from operating AEMFCs – suggesting
that carbonate may directly react with H2 at those over-
potentials to produce water and CO2, thereby significantly
accelerating decarbonization (also supported by data on slide
17 in ref. 28). However, the long timescales needed to comple-
tely decarbonate AEMFCs at typical operating current and
higher cell voltages (lower anode overpotentials), such as
Fig. S1 in the ESI,† strongly suggests that such direct reaction
does not appreciably occur at conditions of practical interest.
Hence, it can be assumed in this work that essentially the
entirety of the steady-state electrochemical current is generated
through OH�-based ORR and HOR reactions (eqn (1) and (5),
respectively). Therefore, when CO3

2 anions carry charge
through the AEM, the balance of reacting OH� that is no longer
supplied by migration (due to CO3

2� conduction) must be
compensated for by diffusion, which is an intrinsically slower
process.

H2 + 2OH� = H2O + 2e� (5)

Therefore, CO3
2� in the anode effectively shuts off catalyst sites

with high local CO3
2� concentration due to reduced access

to OH� ions – increasing the effective current density on OH�

accessible anode catalysts. This means that although the
presence of carbonate species does not negatively impact the
intrinsic HOR electrocatalysis,29 the high CO3

2� concentration
in the anode does cause an increase in the kinetic resistance,
inducing polarization losses that lower the operating cell
voltage (denoted as DRctHOR).

Fig. 1 Illustration of the carbonate and hydroxide transport and distribution in operating AEMFCs with CO2 present in the cathode reacting gas. The top
section of the diagram isolates the CO3

2� behavior in operating cells, with the color gradient representing the concentration gradient. The top section of
the diagram shows the OH� concentration gradient, as well as the directionality for hydroxide migration and diffusion.
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These new resistances lead to a more complex equation for
the operating cell voltage, though one that is insightful for the
analysis of AEMFCs that have been carbonated:

Vcell = VOCV � i(RO,OH + RctORR + RmtORR + RctHOR)

� DVNernst � i(DASR + DRctHOR) (6)

The assignment of all of the new kinetic overpotential to the
anode is supported by experimental work by Matsui et al.30 who
found, using a three-electrode AEMFC configuration with a
reversible hydrogen reference electrode, that the cathode over-
potential was hardly changed by the presence of CO2, while the
overpotential of the anode increased considerably.

The above-discussed behavior of carbonated AEMFCs is very
similar to cation-contaminated PEMFCs,31–34 though some
critical differences do exist. Most importantly, in this case the
‘‘contaminant’’, CO3

2�, is continuously created at the cathode,
moved to the anode, and removed from the anode gas stream.
Similar processes do not exist for cation-contaminated PEMFCs
with the exception of the NH3/NH4

+ couple.35 For CO2 contain-
ing AEMFCs, CO3

2� can be removed during operation by
introducing a CO2-free oxidant, activating a ‘‘self-purging’’
mechanism, which has been discussed elsewhere.15 For
reasons discussed above, under normal operating conditions
this self-purging is not a result of direct electrochemical reac-
tion of carbonates, but rather thermodynamic equilibrium.
Under pseudo steady-state conditions, the CO2 uptake rates at
the cathode equal the release rates at the anode and a static
concentration polarization exists across the anode, AEM, and

cathode – based on balancing between migration and diffusion
of OH� and CO3

2�, as illustrated in Fig. 1.
In order to minimize the effect of CO2 and carbonation on

operating AEMFCs, it is important for the field to better under-
stand how CO2 uptake, membrane carbonation, and CO2 release
occur. There are both transient and steady-state concerns with
little experimental data to provide insight or validate existing
models. The results presented here quantify the uptake and
release rates of CO2, quantify the amount of CO2 within the
MEA under different steady-state conditions, and provide data
as to the performance and resistance of AEMFCs under specific
CO2 conditions. This first of its kind data provides significant
insight into the performance losses and ultimate potential of
AEMFCs when exposed to CO2. This work provides direct evidence
regarding the extent to which the CO2 fed to the cathode becomes
integrated into the AEMFC, directly correlates carbonation with
AEMFC performance, and provides critical data needed to validate
modeling efforts that try to quantify rates of CO2 uptake and
release, as well as the negative effects of CO2 on performance.

Dynamic observation of CO2 uptake and transport in operating
AEMFCs

To probe the uptake and release of CO2 in AEMFCs, CO2

(100, 200, 400, 800, 1600 and 3200 ppm) was added to the
cathode of cells under open circuit conditions as well as cells
operated at 0.2, 0.5, 1.0 and 2.0 A cm�2. For the entire data set,
the concentration of CO2 leaving both the anode and cathode
was measured in real time. The results for 400 ppm CO2 in O2

are shown in Fig. 2a and b, and the results for all of the other

Fig. 2 Uptake of 400 ppm CO2 fed to both the anode and cathode of H2/O2 AEMFCs operating at 60 1C and discharging at 0.00 (load off), 0.20, 0.50,
1.0 and 2.0 A cm�2 current densities. (a) Voltage decrease and ASR increase upon introduction of CO2 into the cathode reacting gas; (b) CO2 emission
from the anode (solid lines) and cathode (dotted lines) when 400 ppm CO2 was fed to the cathode; (c) CO2 flux fed to the cell and released from the
anode (solid lines) and cathode (dotted lines) when 400 ppm CO2 was fed to the cathode; (d) voltage decrease and ASR increase upon introduction of
CO2 into the anode reacting gas; (e) CO2 emission from the anode (solid lines) and cathode (dashed line) when 400 ppm CO2 was fed to the anode;
(f) CO2 molar flux fed to the cell and released from the anode (solid lines) and cathode (dashed line) when 400 ppm CO2 was fed to the anode. The AEM
used was ETFE–BTMA (IEC = 2.05 mmol g�1).
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CO2 concentrations are shown in the ESI,† Fig. S3–S7. The first
condition assessed was steady-state at the open-circuit voltage
(OCV, labeled as 0.0 A cm�2), which allows the diffusional
dynamics of ionomer and membrane carbonation to be
observed since there is no current driving the movement of
CO3

2� from the cathode to the anode. Though the OCV did not
change, in agreement with the work by Inaba et al.,36 it was
clear during the experiment that the AEM and AEI were being
converted to the carbonate form since the amount of CO2

leaving the cathode was far below the 400 ppm feed, Fig. 2b,
especially over the first 300 s.

After the CO2 was added to the cathode at OCV, the concen-
tration initially rose from zero to ca. 130 ppm as two things
were occurring: absorption of CO2 into the AEM and ionomer
and the increase in the CO2 partial pressure in the gas stream
(the humidifier and cell lag in the CO2 concentration is denoted
as ‘‘blank’’ in Fig. 2b – determined in a cell containing a Teflon
membrane, which does not uptake CO2 and form CO3

2�

anions). Comparing the ‘‘blank’’ and 0.0 A cm�2 (black dotted
line) plots in Fig. 2b, it was clear that there was rapid CO2

uptake into the AEM because the concentration of CO2 leaving
the AEM-containing cell was always lower than the ‘‘blank’’. By
600 s, the concentration of CO2 in the cathode rose to the inlet
concentration, suggesting that the AEM was extensively carbo-
nated after 10 min, which is in good agreement with previous
studies on AEM carbonation in the presence of gas-phase
CO2.15,37,38 Also from the difference in the response of the
AEM and ‘‘blank’’, it was possible to calculate that essentially
all of the charge carrying groups in the AEM and AEI were
carbonated during this time (and at steady-state contained a
mixture of HCO3

� and CO3
2�, details in the ESI,† Fig. S8 and

accompanying discussion).
When CO2 was added to the cathode of a fully broken-in cell

operating at a constant current density, the cell response was
very different. In all cases (from 0.2 A cm�2 to 2.0 A cm�2), after
a brief time lag, the cell operating voltage precipitously
declined, the ASR increased, and CO2 was emitted at the anode;
this is shown in Fig. 2a and b. What changed with current
density were the magnitude and timing of these phenomena.
At the highest current density that was tested, 2.0 A cm�2, it
took approximately 31 s for CO2 to be measured in the anode
stream (from the time that the reacting gas CO2 concentration
increased). It took another 96 s after CO2 was initially measured
in the anode gas before a quasi-steady-state was achieved.
When the current was halved to 1.0 A cm�2, the time for
CO2 break-through to the anode was approximately doubled
(65 vs. 31 s), though the time to reach equilibration was
very similar (90 vs. 96 s). This trend continued for 0.5 A cm�2

and 0.2 A cm�2.
The CO2 breakthrough time increasing with decreasing

current density is intuitive as the rate of ion movement through
the AEM is slower at lower current density. The timescale for
CO2 breakthrough was much longer than the amount of time it
would take for an ion to travel between the cathode and anode.
At current densities of 2.0 A cm�2, 1.0 A cm�2, 0.5 A cm�2, and
0.2 A cm�2, the average time for a net single-charged anion to

travel through the AEM is 410 ms, 820 ms, 1.6 s and 4.1 s,
respectively (the ETFE–BTMA AEM had an IEC of 2.05 �
0.05 mmol g�1 with ca. 43 mmol of charge-carrying, covalently-
bound positively-charged groups in the 5 cm2 membrane active
area). The fact that the breakthrough time for CO2 was much
longer than the average time it takes for an anion to move from
the cathode to the anode directly supports the idea that CO2 is not
emitted as part of a direct electrochemical process during normal
operation and needs time to reach a critical concentration in the
anode that allows it to be released into the anode exhaust
(through the equilibrium reactions of eqn (2) and (3)). This
explains the lag in the CO2 release as well as provides an
explanation as to why breakthrough occurs earlier at higher
currents since CO3

2� back-diffusion is less effective – resulting
in critical anode concentrations being reached sooner. At
steady-state, the rate of CO3

2� formation at the cathode will
equal the rate of carbonate release (CO2 emission) at the anode;
the transient and steady-state fluxes for CO3

2� reaction and
CO2 emission at several current densities and CO2 concentra-
tions to the cathode are given in Fig. 2c.

From the transient flux data, the amount of carbonate in the
system at steady-state, as well as the degree of carbonation,
could be calculated (Table S1 and subsequent discussion in the
ESI†). As expected, there was a greater amount of CO3

2� present
in the system with higher concentrations of CO2 in the cathode
stream. It was also found that the total amount of CO3

2� in the
system decreased with increasing current density. The change
in the total number of CO3

2� anions in the system with current
density and cathode CO2 concentration clearly explains the
trends in the ASR. However, one interesting observation was
that a plot of the total carbonate in the system vs. the change in
the ASR, Fig. 3, did not yield a single straight line for all
conditions, but there were trends as a function of current
density and CO2 concentration. To understand this, it should
be noted that the high frequency resistance measurement by

Fig. 3 ASR changes vs. quantity of carbonate in the cell as a function of
current density and cathode CO2 concentration. The fact that the relation-
ship between the amount of carbonate and the change in the ASR does
not fall on a single line suggests that more of the carbonates are in the
anode electrode than the AEM with increasing current density.
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the fuel cell test station is only measuring the two closest points
separated by the ionomer; in other words, it is essentially a
measurement of the membrane resistance. Therefore, the fact
that the ASR is lower at a higher current density, even under
conditions where the total amount of CO3

2� in the cell is nearly
identical to a lower current density, suggests that there is less
carbonate in the AEM and more carbonate in the anode
electrode as the current density is increased.

In summary, there were seven interesting observations when
CO2 was fed to the AEMFC cathode: (1) the CO2 concentration
leaving the cathode was only very modestly affected by the
current density (Fig. 2b), at least at the high flowrates investi-
gated in this work; (2) the decrease in the cell voltage (Fig. 2a)
started to occur before CO2 was measured in the anode exhaust;
(3) the ASR increased immediately when CO2 was added to the
cell (Fig. 2a); (4) the steady-state ASR was realized before the
steady-state voltage was achieved and CO2 was measured in
the anode effluent (Fig. 2a and b); (5) the steady-state ASR
increased with decreasing current density (Fig. 2a); (6) increas-
ing current density decreased the amount of CO3

2� present in
the system at steady-state (Table S1, ESI†); and (7) even at
the highest current density and lowest CO2 concentration
(2.0 A cm�2 and 100 ppm, respectively) the CO2-related over-
potential was significant (167 mV), and the CO2-related over-
potential at 2.0 A cm�2 and pseudo-air conditions (400 ppm
CO2) was even higher (259 mV). Combined, these observations
suggest that: (i) CO3

2� formation at the cathode is very rapid
(likely in quasi-equilibrium, which will be discussed more
later); (ii) initially CO3

2� accumulates in the membrane and
anode electrode and CO2 release in slow until a critical concen-
tration is reached; and (iii) higher current densities increase
the amount of CO3

2� in the anode electrode.
To further study the dynamics of CO2 uptake and CO3

2�

formation in the AEMFC system, as well as to simulate CO2 that
would build up in the anode or could be formed as an oxidative
product of an alcohol fuel, CO2 was also directly fed to the
anode. For comparison sake, the CO2 concentration in the
anode H2 reacting gas was also 400 ppm. The results of these
experiments are shown in Fig. 2d–f. The first thing that should
be noted is that while current was flowing, no measurable CO2

was ever found leaving the cathode, which can be attributed to
the high net anionic flux relative to typical diffusion rates.
Simply, CO3

2� cannot diffuse and accumulate to a critical
concentration at the cathode faster than migration pushes it
to the anode under the conditions tested. Therefore, Fig. 2e
only shows the CO2 concentration of the anode effluent and
Fig. 2f only shows the anode CO2 flux. Like the cathode, there
was approximately a 45 s lag between the time that CO2 was
turned on and its measurement (Fig. S3, ESI†). In this set of
experiments, the dynamic CO2 concentration in the effluent
(before steady-state) increased with increasing current density,
suggesting lower CO2 uptake and CO3

2� formation at higher
currents. Also, the overall voltage decrease and ASR increase
were both lower (but only slightly so) when CO2 was fed to the
anode vs. the cathode, most likely because of reduced carbona-
tion stemming from the direction of ion transport.

Relationship between anode-evolved CO2 and the CO2

concentration in the cathode

At practical fuel cell current densities, the vast majority of the
charge is carried by OH�, not CO3

2�, even at very high levels
of carbonation. Therefore, a metric relating the amount of
charge carried by CO3

2� (measured by the flux of CO2

leaving the anode at steady state) at various current densities
and CO2 levels in the cathode (e�/CO2) would be useful – not
only for fuel cells, but also for potential applications such as
AEM-based electrochemical CO2 capture.39 Relating this ratio
to the partial pressure of CO2 in the cathode starts by defining
the metric:

log
e�

CO2

� �
¼ log

i

ic

� �
¼ log i � log ic (7)

where i is the total current and ic is the component of the
total charge carried by CO3

2�. This is an acceptable definition
because at steady-state, when the net accumulation of
CO2/CO3

2� in the membrane is zero, the amount of CO3
2� formed

in the cathode and carried through the AEM by is balanced by
current through the external circuit. An expression for ic can be
obtained by assuming Butler–Volmer-type kinetics (assuming that
the ORR at the cathode, where the CO3

2� is formed, is irreversible),
and correcting the directionality of the current:

ic ¼ �i0 exp
�aF
RT

E � E�
0

� �� �
(8)

where i0 is the exchange current density, a is the effective transfer
coefficient, F is Faraday’s constant, R is the ideal gas constant, E is
the electrode potential and E10 is the formal potential. Rearranging:

E � E�
0 ¼ RT

aF
ln i0 �

RT

aF
ln ic

¼ 2:303RT

aF
log ic �

2:303RT

aF
log i0

(9)

It has been noted in the literature,15 and suggested by the
data in Fig. 2, that carbonation during the ORR is very fast, and,
therefore, it can be assumed that the CO2 in the cathode gas
stream is always in quasi-equilibrium with the generated
anions. This Nernstian process can be represented by the
Nernst equation, combining the reactions in eqn (1) and (2),
where the equilibrium potential is replaced by the actual
electrode potential:

E � E�
0 ¼ RT

nF
ln
PO2

PH2O
2PCO2

4

HCO3
�½ �4

¼ 2:303RT

nF
log

PO2
PH2O

2

HCO3
�½ �4
þ 2:303RT

nF
logPCO2

4

(10)

where Pi is the partial pressure of each gas, [HCO3
�] is

the concentration of HCO3
� in the AEM, and n is the

number of electrons transferred in the ORR (n = 4). It has been
shown16 and is generally accepted in the field (and assumed
above) that the dominant anion in the operating AEMFC is
CO3

2�, not HCO3
�. Therefore, it is important to express the

Nernstian process relative to CO3
2�, not HCO3

�. Inserting the
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equilibrium expression between the CO3
2� and HCO3

� (eqn (11))
into eqn (10):

HCO3
�½ � ¼

CO3
2�� 	

PH2O

OH�½ �Kb2
(11)

E � E�
0 ¼ RT

nF
ln
PO2

PCO2
4 OH�½ �4Kb2

4

PH2O
2 CO3

2�½ �4

¼ 2:303RT

nF
log

PO2
OH�½ �4Kb2

4

PH2O
2 CO3

2�½ �4
þ 2:303RT

nF
logPCO2

4

(12)

where [CO3
2�] is the concentration of carbonate in the AEM and

Kb2 is the equilibrium constant for the reaction in eqn (3).
Combining eqn (9) and (12), ic can be found as a function of
the partial pressure of CO2 in the cathode.

log ic ¼ log i0 �
a
n
log

PO2
OH�½ �4Kb2

4

PH2O
2 CO3

2�½ �4
þ a logPCO2

(13)

This result suggests that the CO3
2� current should increase with

the partial pressure of CO2 in the cathode, which is logical. The
final step in the derivation, relating the number of electrons
transferred to the CO2 partial pressure, combines eqn (7) and (13).

log
e�

CO2

� �
¼ a log i � log i0 þ

a
n
log

PO2
OH�½ �4Kb2

4

PH2O
2 CO3

2�½ �4

" #

� a logPCO2

(14)

Eqn (14) makes two predictions, both of which are confirmed
experimentally in Fig. 4, which shows the results of steady-state

measurements of CO2 emission at various current densities and
concentrations. First, at any one current density (where everything
in the brackets in eqn (14) is constant), there is a linear relation-
ship between the log e�/CO2 and log PCO2

with a negative slope
equal to the effective ORR transfer coefficient. The slope in Fig. 4
is approximately �1, which is consistent with measurements of
the effective transfer coefficient for the ORR in operating fuel
cells.40,41 Second, this equation predicts that lines at other current
densities should be parallel as long as the mechanism is
unchanged, and that higher current densities will yield a lower
portion of CO3

2� carrying the charge (increasing log e�/CO2). In
fact, Fig. 4 shows that charge is overwhelmingly carried by OH� in
these systems – even when the degree of carbonation at steady-
state (Table S1 in the ESI†) is high. Only at very high CO2

concentrations (3200 ppm) and low operating current densities
(0.2 A cm�2) is the portion of the charge carried by the CO3

2� ion
significant (ca. 10%), though these are not realistic operating
conditions for AEMFCs (whereas 400 ppm is). However, the fact
that carbonate does carry charge through the system when CO2 is
present has significant impacts on the operating voltage, which
will be discussed later.

The results from Fig. 2, 4 and Table S1 (ESI†) show that the
large overpotentials experienced by AEMFCs when CO2 is added
to the inlet streams are caused by a relatively small overall
CO3

2� population. What is missing from the literature, and
the discussion thus far, is a conclusive determination of which
of the fundamental drivers (Ohmic, Nernstian or anode HOR
kinetics) primarily control the carbonate-related losses. Such
insight would be invaluable in understanding the behavior
(and design) of ambient air-utilizing AEMFC systems.

Deconvolution of carbonate-related losses in operating
AEMFCs

Though the previous two sections have established some basic
parameters for the behavior of CO3

2� in operating AEMFCs
(e.g. it induces polarization losses, is formed in quasi-steady-
state with the ORR and its concentration gradient changes with
feed concentration and current density), what would be the
most helpful from a design and operation perspective is a
quantitative deconvolution of the polarization losses. Identify-
ing which of the carbonate-related processes is performance-
limiting would allow for solutions to be proposed and evaluated
systematically.

The first step in quantifying the carbonate-related losses in
operating AEMFCs was to track the performance decline for
cells operating at steady-state at several current densities over a
wide range of cathode CO2 concentrations. The response of a
steady-state AEMFC operating at 1 A cm�2 to the introduction
of 100, 200, 400, 800, 1600, and 3200 ppm CO2 to the cathode
reacting gas is shown in Fig. 5a, and equivalent data for
AEMFCs operating at 0.2, 0.5 and 2.0 A cm�2 are provided in
Fig. S9a–c in the ESI.† Between each tested CO2 concentration,
the cell was rapidly decarbonated as described in the Experi-
mental section. The data shown in Fig. 5a and Fig. S9a–c (ESI†)
show one hour of AEMFC behavior at each CO2 concentration –
the first 30 min segment shows the carbonation event and the

Fig. 4 Visualizing the steady-state transport of CO2/CO3
2� from the

cathode to the anode in AEMFCs operating at 0.2, 0.5, 1 and 2 A cm�2

at 60 1C over a wide range of CO2 concentrations. The linear relationship
with a slope of �1 verifies the relationship predicted in eqn (14) between
the cathode CO2 feed concentration and the portion of the charge that is
carried by CO3

2�, showing that CO2 uptake and CO3
2� incorporation is a

Nernstian process and driven by the ORR.
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re-establishment of a new steady-state. The second 30 min
segment shows the initial response following CO2 removal
(where pure O2 is again fed).

As discussed earlier, the introduction of CO2 to operating
AEMFCs initiates an interesting series of dynamic events that,
in concert, lead to reduced steady-state performance through
three mechanisms: increasing the Ohmic resistance (DASR),
increasing the anode charge transfer resistance (DRctHOR) and
increasing the thermodynamic anode potential (DVNernst). The
challenge here is to find a systematic way to use the CO2

exposure and removal data in Fig. 5a (and Fig. S9 in the ESI†)
to quantify the contribution of each of these resistances to the
total CO2-related overpotential. The general approach to
extracting these three losses from the data was consistent
regardless of the experiment. A representative description for
400 ppm CO2 at 1.0 A cm�2 is given here for illustrative
purposes, and then the summary of all of the calculated
parameters is shown in Fig. 5b–d.

Before adding any CO2 to the AEMFC operating at 1.0 A cm�2,
steady-state performance was established. The steady-state oper-
ating voltage at this condition was 0.72 V. The operating voltage
for this cell is given by eqn (4). What this means is that the CO2-
free steady-state operating voltage already contains RO,OH, RctORR

and RmtORR; hence, the deviation of the operating voltage after
adding CO2 will only come from DVNernst, DASR and DRctHOR, as
shown in eqn (6). After adding 400 ppm CO2 to the cell, the new

steady-state voltage that was reached was 0.44 V – meaning
that the total CO2-related overpotential was ca. 280 mV. While
the stoichiometries used in these experiments were high,
leading to high CO2 dosages, the observed performance losses
(in combination with the total CO2-related overpotential of
B260 mV for a cell operating at 2.0 A cm�2 with 400 ppm
CO2) suggest that the ‘‘self-purging’’ mechanism has a relatively
modest effect in decarbonating the cell, and reducing CO2-
related voltage losses to an acceptable level during operation on
direct ambient air will be a significant challenge, and may not
be possible at all.

The first CO2-related loss that was calculated was DASR. The
ASR as a function of time is shown in Fig. 5a, and under this
operating condition, DASR was 25 mO cm2. Assuming this
DASR resulted in proportional Ohmic losses, at 1 A cm�2

this would result in an Ohmic loss of 25 mV. For completeness,
we acknowledge that the measured ASR values do not yield the
exact potential drop related to ion movement through the AEM
due to the influence of diffusion.31,32 However, the value
measured here does give an accurate measure of average anion
mobility and is presented here as an overestimation of the
maximum Ohmic resistance that could be attributed to carbo-
nation. Perhaps what is most important is that this observation
clearly shows that the ASR change caused by the emergence and
transport of CO3

2� through the AEM represents a very small
portion of the overall CO2-related overpotential (o10%).

Fig. 5 (a) Response of an AEMFC operating at 1.0 A cm�2 to various concentrations of CO2 in the cathode reacting gas; (b) summary of the change in the
ASR at various current densities and CO2 concentrations; (c) AEMFC Nernstian voltage loss as a function of current density; (d) increase in anode charge
transfer resistance with increasing CO2 concentration and decreasing current density. All cells were operated at 60 1C with an ETFE–BTMA AEM
(IEC = 2.05 � 0.05 mmol g�1).
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For the AEMFC operating at 1.0 A cm�2 with 400 ppm CO2 in
the cathode, at minimum, 255 mV of the CO2-related loss
remains to be accounted for. The next stage of the deconvolu-
tion comes when CO2 is removed from the cathode stream.
Experimentally, a rapid increase in the cell potential was
observed, to ca. 0.54 V, though the potential never exactly levels
off to reach a new steady-state. That is because the only way that
a true steady-state can be reestablished is for all of the CO3

2� to
be removed, either by waiting for many hours (Fig. S1, ESI†), or
by accelerated decarbonation at 0.1 V (Fig. S2, ESI†). However, it
is important to consider what is happening phenomenologi-
cally in the AEMFC when the cathode gas is switched from CO2-
containing O2 to pure O2. When CO2 is removed from the
cathode, no new CO3

2� anions are generated there and
the concentration of CO3

2� at that electrode drops towards
zero. As OH� is produced, the CO3

2� that was in the cathode
and the AEM is progressively pushed toward the anode by
migration (recall that the migrational residence time through
the AEM at this current is 820 ms). This suggests that there will
be a brief transient period to establish a new quasi steady-state
(on the order of B10 min according to Fig. 5a) after which
essentially all of the migrational charge that is carried from the
cathode to the anode is carried by OH�. If this is the case, at the
new quasi steady-state, no OH� will need to be provided by
diffusion in the anode for the HOR to occur. Therefore, the
voltage increase during this 10 min establishment of the new
quasi steady-state after CO2 is removed can be mostly attributed
to the relaxation of the kinetic limitations described by DRctHOR

(though the new ASR acting on charge transport needs to be
corrected for as well). At the condition above, 1.0 A cm�2 with
400 ppm CO2 fed to the cathode, DRctHOR was calculated by
eqn (15) and (16).

DVctHOR (mV) = [0.544 V � 0.443 V] � 1000

� (1.0 A cm�2)(83.5 mO cm2 � 75.3 mO cm2)

= 93.7 mV (15)

DRctHORðmOÞ ¼ 93:7 mV

1:0 A cm�2ð Þ 5 cm2ð Þ ¼ 18:7 mO (16)

Because not all of the reacting catalyst in the anode can be
assumed to be completely void of carbonation effects (because
of the balance of carbonate migration and diffusion), the
calculations made from eqn (15) and (16) are likely a lower
limit for DRctHOR, though the real value should be close since
the rate of carbonate removal after the initial voltage increase
is slow.

From here, the Nernst-related loss can be calculated for this
case: 162 mV (281 mV � 25 mV � 94 mV = 162 mV). Because the
estimate for DRctHOR is a lower bound, 162 mV is an upper
bound for the for DVNernst, though it should be close to the
true value for the reasons discussed above. Interestingly, the
Nernstian and charge-transport losses had a similar effect on
the cell performance, and both were far more important in
dictating the performance decline than the Ohmic loss.

Conducting the same analysis over the entire range of
current densities and CO2 concentrations can yield values for
the total CO2-related overpotential, DASR, DRctHOR, and DVNernst

as well as the Ohmic voltage loss (DVOhmic) and the CO2-related
kinetic polarization (DVctHOR) at every condition. All of these
values are given in Table S2 of the ESI.† Performing the data
deconvolution over such a wide range of current densities and
cathode CO2 concentrations yielded some very revealing
trends and important insight into the behavior of carbonated
AEMFCs. Not too surprisingly, the total CO2-related overpoten-
tial was increased with decreasing current density and increas-
ing CO2 concentration in the cathode (Table S2 in the ESI†).
However, understanding why this happened requires digging
into the trends in DASR, DRctHOR, and DVNernst more extensively.

Fig. 5b presents the DASR values at all conditions. As
the concentration of CO2 in the cathode reacting gas was
decreased, there was less of a negative impact on the ASR. This
makes sense from the transient and steady-state experimental
results (Table S1, ESI†), which showed that the total amount of
CO3

2� in the AEMFC was lower at lower cathode CO2 concen-
tration and increased current density. As discussed earlier, the
overall trends in the ASR with current density and cathode CO2

concentration (Fig. 3) led to the conclusion that increasing the
current density shifts the CO3

2� concentration gradient toward
the anode electrode. Hence, with increasing current density,
relatively less and less CO3

2� is present in the AEM (though the
total CO3

2� flux is higher, Fig. 2c), resulting in a lower ASR.
The fact that the concentration gradient shifts toward the

anode with current density might lead to the assumption that
DVNernst (Fig. 5c) should also increase with current density.
However, there are two counter points that require discussion.
First, the total quantity of carbonate in the cell is decreasing
with increasing current density, which alone might limit the
achievable value for DVNernst, particularly at high currents.
Second, the anode potential is measured at the outermost
portion of the anode at the gas diffusion layer, which is likely
the point of the highest CO3

2� concentration, as illustrated in
Fig. 1, and it is possible for that one specific location to be close
to saturation over a wide range of conditions. We observed that
DVNernst appeared to decrease with increasing current density,
though the values at current densities r1.0 A cm�2 were
very similar.

The assertion that the outermost portion of the anode can
be close to saturation was supported by the magnitude of
DVNernst at the lower current densities, B165 mV. The effective
alkalinity of an AEMFC cathode is between pH 13–14. It is also
known that CO3

2� is overwhelmingly the dominant carbon-
based charge carrier and this can only happen in water at pH
values 411. Therefore, the maximum pH shift that could be
expected at the anode in an operating cell would be 3, resulting
in a DVNernst,max of ca. 180 mV. The only data point in Fig. 5c
where DVNernst is markedly lower is at very high current,
2.0 A cm�2, where DVNernst is B125 mV. This lower value can
be explained by either the lower overall carbonate concen-
tration in the cell and anode at higher currents, and/or the
development of a mixed potential throughout the anode
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because at high current density there is a significant number of
OH� ions being released throughout the anode as CO2 is
evolved through the reverse of eqn (2) and (3), though the root
cause for this behavior will likely need to be teased out through
computational modeling. It is also noteworthy that DVNernst was
essentially unaffected by the cathode CO2 concentration, which
gives additional support to the arguments above. One area
where the higher carbonate concentration in the anode did
have a major impact on the AEMFC behavior is DRctHOR, Fig. 5d.
At higher overall carbonate content (increased cathode CO2

concentration and/or lower current density) DRctHOR was also
higher, and the current density had a particularly profound
influence on the effect of the cathode CO2 concentration. This
observation yields important insight into the location of carbo-
nate in electrodes, suggesting that higher current densities
compress the volume occupied by carbonates to the outermost
portion of the anode, which effectively allows more catalyst
sites to have easy access to reacting OH�.

AEMFC response at low CO2 concentrations

A practical interpretation of the experiments shown in Fig. 5 is
that the polarization losses from AEMFC carbonation are signifi-
cant at all current densities and near-ambient CO2 concentra-
tions, and that AEMFCs will likely require pre-scrubbing of CO2

from the operating air. Additionally, the dynamics of CO2 uptake
(fast) and release (slow) mean that even if CO2 could be quickly
removed from the anode stream to avoid significant accumula-
tion, losses would still be high. One sensible approach to reducing
CO2-related overpotential is to lower the cathode inlet concen-
tration, which is particularly intriguing for stationary implemen-
tations of AEMFCs where the volume and weight of a CO2

scrubber is less of a concern than it is for mobile or transportation
applications. Fig. 6a explores the response of an AEMFC operating
at 1 A cm�2 with 5–50 ppm CO2 in the cathode reacting gas.
Though the voltage loss was less than at higher concentrations,
even down to 5–10 ppm CO2 in the cathode, the CO2-related
polarization was significant, approximately 140 mV.

Fig. 6b shows the response of an AEMFC operating at
1 A cm�2 with 5–50 ppm CO2 added to the anode H2 reacting gas.

The behavior of low-level CO2 in the anode is very similar to the
cathode. At 10 ppm, the total CO2-related voltage loss was 136 mV.
For CO2 present in both the cathode and anode, Fig. 6 suggests
that if there is a lower threshold below which an operating AEMFC
is immune to carbonation, it is very low – below 5 ppm (although
it should be noted that dosage is also important and decreasing
flow rates could also have a beneficial impact).

Influence of temperature on CO2-related polarization losses at
400 ppm

Fig. 6 shows that removing even a large portion of the CO2 in
ambient air will not be sufficient to eliminate the CO2-related
losses in operating AEMFCs. In fact, we demonstrated that even
at 5 ppm CO2 significant performance losses occurred. There-
fore, it is important for researchers to identify some funda-
mental and operational properties of the system that can be
manipulated to reduce the AEMFC sensitivity to CO2. One
pathway to reducing the amount of carbonate accumulated in
the system is to increase the cell operating temperature.
Increasing temperature could possibly impact cell carbonation
because: (i) CO2 has lower solubility in water as the temperature
is increased;42 (ii) the kinetics for CO2 release (reverse of eqn (2)
and (3)) at the anode will improve; (iii) the mass transport rate
of evolved gaseous CO2 from the anode will increase; and (iv)
the intrinsic kinetics for the ORR and HOR will improve.

Fig. 7 summarizes the response of AEMFCs with a LDPE–
BTMA membrane operating at 0.2, 0.5, 1.0 and 2.0 A cm�2 and
several temperatures (60, 65, 70, 75, and 80 1C) following the
introduction of 400 ppm CO2 to the cathode or anode. Regard-
less of where the CO2 was introduced, increasing the tempera-
ture simultaneously decreased the total CO2 overpotential and
the ASR (Fig. 7a and c). This experimental result is in stark
contrast to recent modeling results that suggested increasing
the cell temperature would not have a beneficial effect on
AEMFC operation with CO2 in the feed gas.16 Fig. 7b shows
that as the temperature was increased, the concentration of
CO2 being emitted from the anode side of the cell (when it is
fed to the cathode) decreased. The most likely explanation for
this trend, and coupled performance increase, is that less CO2

Fig. 6 Exploring the existence of a lower threshold concentration for CO2 present in the (a) cathode and (b) anode compartments. The AEMFCs were
operated at a current density of 1.0 A cm�2 at 60 1C with an ETFE–BTMA AEM.
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was taken up into the system. Fig. 7d shows that when CO2 was
fed to the anode, increasing the temperature resulted in lower
CO2 uptake at that electrode as well, which is shown by the
increasing concentration of CO2 in the anode effluent. It should
also be noted in Fig. 7b and d that the values trend upward with
increasing current density due to the consumption of the fuel
and oxidant gases. Positively, the improved performance at
elevated temperatures suggests that increasing temperature is
indeed one possible mechanism to improve the CO2 tolerance
of operating AEMFCs; however, the CO2-related overpotential is
still too high for many practical applications. A combination of
lower CO2 concentration, more modest air stoichiometry, and
elevated temperature can further reduce the total CO2 over-
potential. For instance, we observed that an AEMFC operating
at 1 A cm�2 and 80 1C with 10 ppm CO2 fed to the cathode
(the same LDPE–BTMA membrane) had a total CO2 overpoten-
tial of only 90 mV.

Deconvoluted data for AEMFCs operating at different
temperatures but at a constant current of 1 A cm�2 and
constant cathode CO2 concentration of 400 ppm (showing the
DASR, DVNernst and DRctHOR) can be found in Table S3 in the
ESI.† As expected, the ASR generally decreased with increasing
temperature due to the lower quantity of carbonates that were
taken up into the membrane. However, the ASR value only
varied slightly with increasing temperature, which meant that a
similar portion of CO3

2� anions were carrying the charge
through the AEM (supported by the results of accelerated
decarbonation experiments at 0.1 V, Table S4 in the ESI†),
which led DRctHOR to be fairly constant with temperature as
well. Therefore, the primary impact of an overall reduced
number of CO3

2� anions in the AEM was that the carbonate
accumulation in the anode (and hence the concentration

gradient across the cell) was less severe with increased tem-
perature. As a result, DVNernst was the most dependent on
temperature, decreasing by nearly 50% from 60–80 1C.

It is possible that even higher temperatures (490 1C) may
help. Though no AEMs are currently readily available with
stability above 80 1C in highly alkaline media that also have
acceptable conductivity and water transport properties,3 there
is promising work ongoing in this area. Recent reports by Yan
and coworkers3,43 have shown that it is possible to create AEMs
that are conductive and stable to at least 95 1C. Another
important consideration for AEM and AEMFC researchers is
that the membrane chemistry (both backbone and headgroup)
and morphology are likely to influence the uptake, transport
and release of CO2. What this really points to is that improving
the CO2 tolerance of AEMFCs will likely require a combination
of approaches to achieve success, at least some of which are not
known today and will be particularly challenging for dynamic
operation.

Conclusions

Even in highly performing AEMFCs, the addition of CO2 has a
severe negative impact, where the cell operating voltage is
generally decreased by 200–400 mV depending on the reaction
conditions. Lower CO2 concentration in the reacting gas, higher
current density and higher operating temperature all reduce
the voltage penalty, but none have been shown be able to
sufficiently minimize the CO2 impact. One of the primary
reasons for this is that decarbonation of the cell does not occur
through direct electrochemical reaction. This means that
decarbonation during operation by the so-called ‘‘self-purging’’

Fig. 7 Impact of temperature on the total CO2-related overpotential, ASR and anode CO2 exhaust with 400 ppm CO2 fed to the cathode at multiple
current densities. Total CO2 overpotential (solid lines) and ASR (dashed lines) when CO2 was fed to the (a) cathode and (c) anode. CO2 concentration in
the anode effluent when CO2 was fed to the (b) cathode and (d) anode. An LDPE–BTMA AEM (IEC = 2.5 mmol g�1) was used in these experiments.
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mechanism is slow, taking several hours even after only transient
exposure to CO2. Hence, ‘‘self-purging’’ cannot be relied upon to
decarbonate AEMFCs efficiently.

The dominating loss in operating AEMFCs in the presence
of CO2 is not due to an increase in the Ohmic resistance
from electrolyte carbonation. The dominating mechanism for
voltage loss is accumulation of carbonate anions in the anode,
which results in two performance-robbing mechanisms: (1) a
Nernstian thermodynamic shift in the anode potential from a
decrease in the anode pH with carbonates; and (2) an increase
in charge transfer resistance due to a lack of availability of
reacting OH� anions. The CO2 concentration in the cathode
and the current density are both determining factors for the
quantity of CO3

2� in the system, and the current density
appears to play a primary role in dictating the CO3

2� location
and distribution. The HOR charge transfer resistance increases
markedly with both increased CO2 concentration and lower
current density. Increasing the cell operating temperature
appears to have almost no effect on the charge transfer
resistance, but a significant effect on the Nernstian loss, mean-
ing that the total CO2-related overpotential can be reduced by
increasing the temperature – or better yet, through a combi-
nation of higher current density, lower CO2 concentration and
higher operating temperature.

These new insights can help both modeling groups and
experimental researchers to better understand operating AEMFCs,
as well as allow them to pose and assess new solutions.
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