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City-scale decarbonization experiments with
integrated energy systems†

Jacques A. de Chalendar, *a Peter W. Glynnb and Sally M. Benson a

Decarbonization of electricity generation together with electrification of energy-and-carbon-intensive

services such as heating and cooling is needed to address ambitious climate goals. Here we show that

city-scale electrification of heat with large-scale thermal storage also cost-effectively unlocks significant

additional operational benefits for the power sector. We build an optimization model of fully electrified

district heating and cooling networks integrated with other electric loads. We leverage real-world

consumption and operational data from a first-of-a-kind facility that meets heating, cooling and

electrical energy requirements equivalent to a city of 30 000 people. Using our model, we compute

optimal operational strategies for the controllable loads and thermal storage in this system under

different economic hypotheses. In our example, electrifying the previously gas-based heating and

cooling infrastructure has led to a 65% reduction in the overall campus carbon footprint. Through least-

cost scheduling, the load shape of the aggregate energy system can be flattened and annual peak

power demand can be reduced by 15%. Through carbon-aware scheduling that takes advantage of

variations in grid power carbon intensity, heating and cooling emissions could further decrease by over

40% in 2025 compared to the 2016 baseline, assuming a policy-compliant electricity mix for California.

However, rethinking electricity rates based on peak power usage will be needed to make carbon-aware

scheduling economically attractive.

Broader context
It was estimated in 2017 that two-thirds of global carbon emissions from fuel combustion were attributable to electricity, heat and transportation. Such
statistics are strong arguments for massively electrifying transportation and heat while decarbonizing electricity: the power sector will play a pivotal role in a
low-carbon future, and successfully integrating different energy networks will be a key component of that future. Cross-sectoral energy flexibility will have
special value, both to face structural uncertainty about the future and to ease the integration of non-dispatchable renewable generation. Urban centers are large
and growing. Meeting their heating, cooling and electrical energy demands is both a challenge and an opportunity. By considering consumption data from a
first-of-a-kind facility that meets energy requirements equivalent to a city of 30 000 people, this work provides a prime example of how to reduce challenging
heating and cooling related emissions. Thermal-storage-backed, electrified district energy systems open the door to least-cost or carbon-aware scheduling and
represent a very real option for introducing low-cost flexibility in future power grids while decarbonizing the energy sector. This option should be considered
alongside electrochemical storage as it will often represent a cheaper alternative to provide the same energy services.

Driven by the need to curb global emissions,1,2 large-scale
penetration of renewables is occurring around the world.3 While
adding carbon-free and zero-marginal cost renewable electricity
has many advantages, it creates a challenge for power grid
operators both at the transmission and distribution system levels
and entails a necessary paradigm shift in overall system design

and operation to accommodate these new sources of variability.4–9

Electric loads can offer energy services and flexibility, in the form of
demand-side management,10–13 to maintain the balance of supply
and demand that is so critical to reliable grid operations. In this
work, we explore a deeper integration between the heat and power
sectors in an urban setting through the grid-friendly management
of electrified district heating and cooling networks with thermal
storage. The discussion is of special relevance in the context of rapid
urbanization, grid decarbonization, and the interaction between the
urban environment and energy systems.

Alongside electricity and transportation, heat is one of the
three main pillars of our energy systems, but also one of the
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major contributors to carbon dioxide (CO2) emissions: the
International Energy Agency estimates that two thirds of global
CO2 emissions from fuel combustion are attributable to two
sectors: the generation of electricity and heat (42%) and trans-
port (24%) in 2015.14 Heating buildings alone corresponds to
about 13% of global energy demand.15 While the word heat will
be used throughout this paper, most of the discussion applies
to both heating and cooling systems.

If heat and transportation are electrified in an uncontrolled
fashion, they become a threat to the stability of the power system
because of the sheer energy volumes involved. On the other hand,
there are numerous opportunities for virtual storage that arise
from the fact that physical processes, and therefore characteristic
operational times, are typically much slower in the heat sector
compared to the electrical energy sector. This potentially significant
source of flexibility will only appear through a deeper integration of
our energy systems across energy pathways and scales.16,17 Given
that forecasting our long-term energy needs is so difficult,18 such
cross-sectoral and structural flexibility will have special value. There
is a wealth of previous work on managing demand-side resources to
prove that exploiting their flexibility is a cost-effective way of
integrating renewable energy. At the residential and commercial
levels, Thermostatically Controlled Loads (TCLs) are a popular
target19–28 because they represent such a high share of home
energy consumption (80% in Europe and 60% in the United
States), but several other controllable loads show potential.29–34

Industrial demand response has also been studied extensively35–38

since the famous Alcoa aluminum smelting plant experiment.39

District heating systems originated in the 1880s and supplied
11.5 EJ of heat in 2014, 85% of which were for China, Russia,
and the European Union (to be compared with a total heat
demand from buildings of 74 EJ in 2014).15 District cooling
systems originated much more recently, in the 1960s, and
supply around 300 PJ of cooling each year (200 PJ for the Middle
East, 80 PJ for the US, and 10 PJ for Europe).15 In most of the
European Union, China and Japan, district cooling capacity
represents less than a percent of district heating capacity (except
France, Italy, Norway and Sweden where it represents less than
4%), to be compared to 30% in the United States, where the vast
majority of district cooling systems use chilled water supplied
by steam-driven absorption chillers.40,41

Large-scale, fully electric, district energy systems integrating
hot water and chilled water delivery such as the one that provides
the data for this study remain first-of-a-kind experiments. Only
1% of the energy used by district energy in the U.S. was electrical
energy (all for electric chillers). The bulk of the academic
literature on integrating heat and electricity at the district level
has originated from and focused on European and, in particular,
Scandinavian countries.15,42–45 In the case of Sweden, the country
consumed 200 PJ of heat in 2014, 55% of which were met by
district heating and 28% by local heat pumps.46 Notable recent
work has focused on optimizing design and operations, stochastic
control for district heating networks, as well as how the industry can
adapt to heat demand reductions and future energy prices.47–52

A recent example of renewed interest in district heating in the
context of decarbonization and grid integration of large-scale

renewable power is in northern China, where Combined Heat
and Power (CHP) plants constrain the flexibility of the regional grid
there.53–55 In the winter, the (mostly coal-based) CHP units are used
to supply district heating networks, but also produce electrical
energy, thereby leading to high curtailment rates for wind energy
(15% in 2015).56 In the majority of the literature related to district
energy, CHP is the main heat producer, and the (more recent)
cooling networks receive much less attention.

However, recent efforts have highlighted the value of large-
scale heat pumps, electric boilers and thermal storage for
decarbonizing the energy system.57–60 Calls for 100% renewable
energy systems emphasize the need for a holistic, cross-sector
approach.61,62 City63 and country-scale64,65 road maps highlight
that electrification of heat (and transport) will likely be required
to achieve climate goals and is possible without compromising
grid reliability and at low cost,66 although other low-carbon
heat supply options have been explored, such as hydrogen-
based pathways for micro-CHP.67

Here we expand on the benefits of electrified heating and
cooling by showing that, when achieved at the district scale, it
also opens the door to inexpensive flexibility for the power grid,
whether in the form of demand charge management, demand
response or carbon-aware scheduling. In this paper, we critically
assess the financial, grid and carbon benefits of thermal-storage-
backed electrified district energy systems, in an operational
context. We leverage a unique source of real-world data to assess
these operational and decarbonization benefits for the power
grid. A data-driven optimization model is built to study the
operations schedules for such systems under different pricing
schemes and used to show how they can provide flexibility, both to
the local energy ecosystem they serve and to the larger grid they
draw power from, by consuming or shedding load at different
times of the day.

By applying our modeling framework to a real-life case study,
we are able to provide insights into the opportunities from the
coupling of heat and electricity in solar-dominated power grids. In
this work, we assume that the heating and cooling infrastructure is
fixed to our case study and study operational behavior under
different economic hypotheses. However, the insights we derive
are widely applicable to other district heat electrification designs
incorporating thermal storage at scale.

Storage-backed heat recovery to meet
concurrent heating and cooling needs

As the main supplier of heating and cooling to over 150 buildings on
campus, the California-based Stanford Energy System Innovations
(SESI) project provides an ideal case study for this work.68 In a $485
million overhaul completed in 2015, the campus district energy
system switched from a gas-fired co-generation-based system with
steam distribution to the current electrified, integrated heating
and cooling system with hot and cold water distribution, meeting
the bulk of its heating and cooling loads with large heat recovery
chillers. These are electric heat pumps that use the return heating
and cooling streams from the buildings as a heat sink and source,
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respectively, and that simultaneously produce usable heating and
cooling streams. The energy system redesign led to an estimated
reduction of 65% in the annual carbon emissions that can be
associated with campus energy operations, from 200 to 70 thousand
tonnes of CO2 (see Note 1; metric tonnes will be used throughout
this paper, ESI†).

From 0.6 to 2.9 TJ of hot water and 0.5 to 5.7 TJ of chilled
water is produced daily with electric heat pumps and stored in
large tanks before it is sent to the campus buildings. These also
consume from 1.9 to 2.4 TJ of electrical energy daily. Annually,
the campus uses 0.81 PJ of cooling, 0.57 PJ of heating and 0.75 PJ
of electricity. This represents the annual energy consumption of
33 000 households in California (more detailed energy con-
sumption data can be found in the ESI†). Typical for a university
campus, thermal loads are seasonal, whereas electrical loads are
mostly driven by occupancy. Although the demand for hot water
is dominant in the winter and chilled water dominant in the
summer, a significant daily overlap for heating and cooling
demand can be observed. Fig. 1 shows this daily overlap in 2016
and how up to 51% of cooling and 90% of heating loads could
potentially be met by electric Heat Recovery Chillers (HRCs)
simultaneously producing heating and cooling. When there are
greater energy needs for heating in the winter or cooling in the
summer, the HRCs are complemented by chillers and gas-fired
boilers, respectively. The maximum cooling output of the chillers
is 1.6 times that of the HRCs, and the maximum heating output
of the boilers is 1.5 times more that of the HRCs.

Nine different designs were considered: steam was compared
to hot water as a carrier for heat, co-generation was compared to
buying power from a utility and the value of heat recovery was
assessed.68 The selected design was the lowest cost option, with a
net present cost of $1.3 billion from 2015–2050, to be compared
with $1.6 billion for the business-as-usual option. In the remainder
of this paper, the discussion is focused on operational con-
siderations. We assume the infrastructure design is fixed to the
one shown in Fig. 2, and assess the additional financial, carbon
and grid benefits from operating this integrated system under
different regimes.

Optimal operations scheduling for
district energy systems

To study the rational behavior of a district energy system under
different pricing signals, an optimization model is built to
minimize the campus energy bill over the course of a year. Like
many large energy consumers, Stanford pays a monthly price
for gas and both a time-varying price for electrical energy and a
capacity-based price for its maximum electrical demand (called
a demand charge). The problem solved here is that faced by the
manager of the CEP: (i) decide how much power and gas to buy
from the grid at each hour, and (ii) set the hourly schedule of
the different machines in the CEP in order to meet demand
from the campus buildings for electricity, heating, and cooling.
The yearly scheduling problem is formulated in the Methods
section as a Quadratic Program with around 150k variables and
240k constraints. This formulation is implemented using the
Julia JuMP package69 and solved using the Gurobi software.70

Since our aim is to assess the operational value of thermal
storage, we solve a planning problem based on historical data.
It should be noted that our formulation could be used almost
as is to implement a control strategy however, e.g., using a
classic look-ahead algorithm like Model Predictive Control.71

We use a modular approach to describe the different com-
ponents of the campus district energy system, where the different
terms in the objective function are additive and tied together by
global import variables for quantities such as electricity and gas.
A program was built to describe the rational behavior of the
Stanford energy system, but the framework that is used could
easily be extended to describe a district energy system with
other components, such as CHP for heat generation.

Real energy data are used, measured on campus during the
year of 2016 for the heating, cooling and electricity demand
from the campus buildings, as well as the publicly available
Locational Marginal Price (LMP) paid by the university. The
possibility for the campus management to self-impose a carbon
tax is also modeled. In that case, the price for electricity is
augmented by an hourly price that is calculated from the carbon

Fig. 1 Daily heating (orange and red) and cooling loads (blue and green) on the Stanford University campus for 2015–2017. Note that throughout the
year there is simultaneous demand for heating and cooling. The red and green areas correspond to the amount of these loads than can be met by heat
exchange using the heat recovery chillers. Over the course of these two years, 51% of cooling and 90% of heating loads can be met using the HRCs. This
calculation assumes that HRCs produce 1.4 times more energy in the form of heating than cooling, and that enough thermal storage is present so that all
of the heating and cooling can be produced simultaneously, irrespective of the hour of the day at which it they are actually meeting heating or cooling
loads.

Energy & Environmental Science Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
A

pr
il 

20
19

. D
ow

nl
oa

de
d 

on
 1

/9
/2

02
5 

5:
56

:4
3 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8ee03706j


1698 | Energy Environ. Sci., 2019, 12, 1695--1707 This journal is©The Royal Society of Chemistry 2019

tax and hourly Average Emissions Factors (AEFs) for the California
Independent System Operator’s (CAISO) balancing area. These
AEFs are estimated from the Intergovernmental Panel on Climate
Change’s Life-Cycle Analysis estimates for generation sources
and CAISO historical generation data, as described in detail in
the Methods section.

Power and energy scheduling

Fig. 3 shows the thermal dispatch schedules and corresponding
power injections that are computed by the optimization model
for four days in the summer and winter of 2016. Both in the
summer and winter, the bulk of the heating and cooling loads
is met by the heat recovery chillers; these are supplemented by
chillers in the summer, and gas-fired heaters in the winter. The
hot and cold thermal storage tanks are used to create hot and
chilled water buffers and shift the electrical energy consumption of
the CEP throughout the day. They can store five hours to a day’s
worth of both heating and cooling loads. As operated today, the
HRCs produce most heavily at night and when both the electricity
price and the campus electricity load are low. During peak price
periods, they are typically turned off.

These figures illustrate how systems that couple heating and
cooling streams can adapt to a range of operating conditions.
The utilization patterns of the thermal storage highlight very
different operating regimes: whereas they are fully charged and
discharged in a fairly simple, repetitive daily pattern during the
summer, the trajectories that are chosen by the optimization
model are more complex in the winter. For 2016, 50% of cooling
and 89% of heating loads are met by the HRCs, within two
percent of the values calculated in Fig. 1. The remainder is met
by the chillers and heaters, so that electricity is the main energy
input to the system, and yearly gas consumption is kept low.

The hot and cold storage provide a buffer to decouple the
output hot and cold water streams from the HRCs and shift
loads in time. By using this buffer, the CEP is scheduled so as to
avoid high price periods and minimize peak demand. The flat
electrical profile that is presented by the aggregate campus to
the utility is typical of demand-side resources under a schedule
that includes a demand charge. Here, the annual peak demand
is reduced from 40 to 34 MW (15%) through the introduction of
thermal storage. Meeting loads with the same number of HRCs
and boilers but without thermal energy storage would also require
almost twice as many chillers, which represents significant capital
costs (see Economic case section below).

The CEP consumes only 25% of the annual electrical campus
energy, but its maximum power draw represents 45% of the
campus peak load, so the energy impacts of shifting loads are
necessarily less significant than the power impacts. Typical
electricity distribution systems are sized for the worst-case load,
in this case 48 MW, or 29% above the 2016 annual peak load
with thermal storage.

Carbon-aware scheduling

We now turn to carbon-aware operations scheduling for district
energy systems. Since we are considering a hypothetical future
with some form of carbon pricing, a decision needs to be made
on how to account for carbon. In order for carbon considerations
to guide scheduling decisions, we choose to attribute a carbon
intensity to electrical energy flowing through the power system in
units of kgCO2 per MW h. Carbon-aware scheduling will have
value in grids where the carbon intensity varies over the course of
the day depending on the mix of generating sources. In the
extreme case with a zero-emission grid, carbon-aware scheduling
becomes irrelevant.

Fig. 2 Schematic for a campus district energy system with thermal storage backed heat recovery. On a typical university campus, buildings consume
cooling, heating and power. At Stanford, hot water and cold water is produced on site, at the Central Energy Plant (CEP), and distributed to the buildings
through a network of underground pipes. Return flows from the hot and cold water loops are regenerated at the CEP. The heat recovery chillers are
electric heat pumps that move heat from the return cold water stream to the return hot water stream, without the need for cooling towers. When
additional cooling is needed, conventional chillers are run and waste heat from the chillers is rejected through cooling towers. Similarly, if additional heat
is needed, boilers are used to heat the hot water. Large insulated steel tanks can store five hours to a day’s worth of both heating and cooling loads. The
entire campus consumes electrical energy from the same distribution feeder, and one bill is paid for the aggregate.
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Two scenarios for the AEFs of the CAISO balancing area are
shown in Fig. 4 and correspond to (top) AEFs that are estimated
using 2016 generation data, when gas-fired generation was
dominant, and (bottom) AEFs for a 2025 scenario where solar
generation is increased to three times (scenario 3�) the 2016
capacity of utility-scale solar installations and provides 27% of
the annual produced energy, up from 9% in 2016, and significantly
reduces the carbon intensity of the grid in the middle of the day.
This scenario does not attempt to accurately represent the future
grid mix for California but represents one possible future in order
to evaluate to what extent thermal storage can be used to shape
electricity consumption patterns.

Optimal CEP operating schedules are computed for these
scenarios in three different operating modes: (i) a business-as-
usual mode that uses the current tariff as its objective function;
(ii) a mode where a $100 per tonne carbon tax is assumed and
the hourly carbon intensities shown in Fig. 4 are used to modify
the objective function; and (iii) a carbon-optimal mode that

uses a very high price on carbon, so that the carbon intensity of
the grid now plays a predominant role in making scheduling
decisions. The resulting changes in demand charges, attributable
emissions and annual peak load are reported in Table 1, where
operating costs are calculated according to the current tariff, i.e.,
excluding carbon payments.

Under the 2016 carbon intensity data, carbon policies have
practically no impact on the electrical consumption schedule of
the campus, due to the small daily variations in carbon intensity
(m = 265, s = 47 kg MW h�1), as can be seen in Fig. 4. In contrast,
scenario 3� (m = 195, s = 105 kg MW h�1) illustrates the double
benefit for an electrified district energy system in a power grid with
increased solar generation: (i) a reduction in carbon emissions in
the business-as-usual mode that comes from the fact that most
of the campus energy needs are now met through electricity; and
(ii) the even greater reductions that can be achieved by following
the carbon intensity fluctuations of a highly renewable grid and
switching to carbon-aware scheduling policies.

Fig. 3 A storage-backed heat recovery system can meet a range of operating conditions. Optimal thermal dispatch schedule to meet hot (HW load) and
chilled (CW load) energy needs for a Thursday to Sunday period in the summer (a) and winter (b), and corresponding electrical energy flows and electricity
price (c and d). Heating is provided by a stream of hot water at 1601 F and cooling is provided by a stream of chilled water at 401 F. (a and b) Display both SI
and engineering units. In figures (c and d), red and mauve represent the campus dispatchable loads, while green is their sum (total CEP load); orange
represents the campus building loads, or the non-dispatchable loads; and blue represents the total campus load as seen by the outside utility, that is used
to compute the campus electrical bill (loads from CEP plus campus buildings).
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A $100 per tonne carbon tax corresponds to a volumetric
price for energy of 4.7 cents per kW h for natural gas-powered
generation, which is comparable to current wholesale electricity
prices paid by Direct Access customers (ignoring transmission and
distribution costs). While 2025 emissions are reduced by 20%
compared to the 2016 business-as-usual baseline for the $100 per
tonne case, the increased cost paid for peak load (demand charge)
remains severe and continues to guide scheduling. The solution
from the optimization model avoids high carbon intensity periods
to reduce emissions but also avoids the increase in peak load and
therefore cannot fully respond to the solar power injections. In the
2025 carbon-optimal mode, heating-and-cooling-related CEP
emissions are reduced by over 40% compared to the 2016
business-as-usual baseline (17.6 to 9.8 ktonnes). This reduction in
the heating and cooling system operational footprint is an added
benefit to the 65% reduction in the overall carbon footprint that was
already achieved by switching the primary fuel from gas to electricity.

Fig. 5 compares the aggregate campus electricity imports for
a Business-as-Usual (BAU) schedule (top) to those for a carbon-
optimal schedule where the scenario 3� grid carbon intensity
guides operations (bottom). This figure illustrates how operations
are shifted from a mode that minimizes peak load and avoids the
high prices that recurrently occur in the early evening to one that
increases load in the middle of the day and avoids nighttime
emissions. The annual grid imports are the same in both schedules,
but consumption patterns are very different. The HRCs are used at
full capacity during the daylight hours to fill the hot and chilled
water storage tanks, regardless of energy costs and demand charges,
as shown in Fig. S4 (ESI†). The compressed operating schedule of
the HRCs result in the higher demand charges reported in Table 1.
The major portion of the operating cost changes are due to the
demand charge, which suggests that this would be the major
constraint to switching to carbon-aware scheduling.

Fig. 4 Heat maps for hourly Average Emissions Factors (AEFs) for the
CAISO balancing area: 2016 actuals (top) and 2025 scenario with increased
solar generation (bottom). In the images, each row corresponds to an hour
of the day, and each column to a day of the year.

Table 1 Summary results for the carbon analysis: demand charge increase, total operating emissions, total peak load and CEP operating emissions
under the 2016 and scenario 3� carbon intensities for three different CEP operating modes. The aggregate energy costs are made up of gas and
electrical energy costs and demand charges. In all of the cases presented here, energy costs vary by less than a percent, and the aggregate bill changes by
less than 10%

Operating
mode

2016 AEFs Scenario 3X AEFs

Total op.
emissions
(ktonnes)

CEP op.
emissions
(ktonnes)

Demand charge
increase (%)

Total peak
load (MW)

Total op.
emissions
(ktonnes)

CEP op.
emissions
(ktonnes)

Demand charge
increase (%)

Total peak
load (MW)

Business-as-usual 73.5 17.6 0.0 33.9 54.3 14.2 0.0 33.9
$100 per tonne tax 73.3 17.4 0.8 33.9 53.0 12.9 3.4 35.5
CO2-Optimal 72.2 16.3 30.7 44.5 49.9 9.8 33.0 44.7

Fig. 5 Change in pattern of grid imports from the Business-As-Usual
(BAU) scheduling mode to the carbon-aware scheduling mode under
scenario 3� solar. The heat maps show aggregate hourly electricity
imports for the campus. In the images, each row corresponds to an hour
of the day, and each column to a day of the year.
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The peak-to-trough change in energy consumption that is
highlighted by Fig. 5(bottom) directly relates to the solar generation
capacity that can be accommodated in this case: here estimated to
be roughly 15–20 MW from Fig. S5 (ESI†), corresponding to 66–88%
of heating sector-related electricity consumption (but only 13–18%
of the total campus electricity consumption).

Carbon abatement cost curves

For any given table of hourly prices, the optimal scheduling
model can produce a schedule of corresponding hourly power
draws. We now use that capability to build carbon abatement cost
curves for a range of scenarios, shown in Fig. 6. The baseline
scenario corresponds to the 2016 hourly carbon intensity of the
grid; also shown are results for 2018, and cases with two, three
and five times the 2016 solar generation. Fig. 6 also considers
reducing the demand charges to 50% and 10% of 2016 values.
These are redistributed as a fixed cost so that the total bill does
not change. These curves show the cost per tonne of reducing
heating-and-cooling-related emissions from 2016 BAU levels. Under
a policy-compliant 2025 energy mix for California (scenario 3�),
Fig. 6 shows that heat sector emissions could be reduced by above
40% from 2016 levels but that the cost for this would be just above
$200 per tonne. If the demand charge is reduced to 10% of the
current rate, costs are reduced to below $40 per tonne.

In each scenario, emissions are lowered first through reductions
in the overall carbon intensity of the grid and further through
carbon-aware scheduling, that is shown here to be an effective
mechanism to deal with challenging heat sector emissions. The
value of thermal storage is directly tied to the daily variability of
the grid carbon intensity: reducing emissions becomes cheaper
as we move from the 2016 California energy mix to one where
solar generation capacity doubles and then triples. In scenario 5�,
overgeneration is assumed to be redistributed evenly on all hours

of the day by storage, which reduces the daily variability of grid
carbon intensity and consequently the need for load-shifting.

The economic case for thermal storage

Fig. 7 shows the summary results from an analysis of the
annual operating cost savings attributable to thermal storage,
and of an economic comparison of thermal storage to electro-
chemical storage. The peak load reductions shown in Fig. 7a
represent direct savings in the form of operating cost reduc-
tions that can be estimated to be $0.77 million (3.5% savings)
of the $22 million annual operating costs from Fig. 7b. These
direct savings are mostly tied to reduced demand charges,
that typically represent $5–20 kW�1 in California.72 Peak load
reductions also translate to substantial economic benefits for
the grid, as they allow for distribution system upgrade deferrals
in the short-term and smaller distribution system sizes in the
longer term. Increasing the size of the hot storage does not
reduce peak load but reduces the need for gas heaters and thus
decreases capital costs (as well as emissions).

Large-scale battery technologies are increasingly proposed
as a means to integrate ever larger shares of renewable power.
For comparison, we compute the electrical energy required to
fully recharge hot and chilled water tanks of a given size in
Fig. 7c, assuming the electricity is first stored in a battery with a
round trip efficiency of 85%. According to this calculation,
detailed in the Methods section and Note 2 (ESI†), the thermal
storage tanks in the Stanford design are equivalent to 85–95 MW h
of electrochemical storage.

The equivalent electrochemical storage capacity in Fig. 7c is
then used to normalize the operating cost savings from Fig. 7b
and generate Fig. 7d. These normalized operating cost savings
can directly be used to generate the payback periods of storage
for different capital costs. At Stanford, thermal storage saves

Fig. 6 Carbon abatement cost curves in different scenarios for the increase of solar penetration (1� to 5�) on the California grid relative to 2016, and in
2018. For a range of different prices on carbon, optimal hourly operating schedules are computed. We report the change in annual operating costs as a
function of heating and cooling emissions reductions from 2016 BAU levels. Costs are normalized by emissions reductions to calculate an effective carbon
cost. For the full lines, costs are calculated according to the current rate structure, while for the paler lines, demand charges are reduced by first 50% and then
90%. In each scenario, the effective cost per tonne is zero for the BAU operating mode. In the 3� scenario, there is a small amount of overgeneration (see
Table S2, ESI†). In the 5� scenario, it is assumed that overgeneration is evenly redistributed throughout the day (through some form of storage), lowering the
carbon intensity of all hours (see Fig. S3, ESI†). As the daily variability of carbon intensity reduces, so does the value of loads that shift consumption in time.
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$8.3 kWhe-eq�1 year�1, which corresponds to a ten-year payback
period for thermal storage tanks that are expected to have a lifetime
of 35 years and cost $7.4 million. Finally, while capital costs for
commercial battery storage are estimated to be $280 kW h�1 in
201873 they would have to drop beyond current expectations74,75 to
below $45 kW h�1 to become a more financially attractive option
than thermal storage (assuming a ten-year lifetime for electro-
chemical storage;76 see Note 2, ESI†).

We note that the comparison in Fig. 7c is only an energetic
equivalence however, since it would not be technically possible to
directly replace the thermal storages with electrochemical storage.
The HRCs produce heating and cooling streams at a fixed ratio.
When cooling demand is high and heating demand is low, the
excess heating that is produced by the HRCs is sent to the hot
storage, and the opposite is true when cooling demand is low and
heating demand is high. A battery cannot play this decoupling role.

Conclusions

This study demonstrates the operation and value of an electrified
heating and cooling system with large-scale thermal storage,

using data from a real-world city-scale experiment. Benefits from
electrification are provided in three ways: (1) shifting electrical
loads to reduce operating costs; (2) decreasing CO2 emissions
now and in the future as the carbon intensity of the electrical grid
decreases; and (3) a cost-effective alternative to battery storage for
providing operational flexibility and price arbitrage.

We leverage real-world consumption and operational data
from a first-of-a-kind facility that meets heating, cooling and
electrical energy requirements equivalent to a city of 30 000 people.
Heat-recovery chillers provide the backbone of the heating and
cooling system. Thermal storage enables them to be turned off
when electricity prices are high and to avoid large demand charges.
Based on actual operating conditions, the campus heating and
cooling system provides a 15 MW dispatchable load corresponding
to 25% of annual campus electrical energy and 45% of peak power.

Compared to the case where no thermal storage is available,
peak demand is reduced from 40 to 34 MW, annual operating
cost savings represent $770 000 (3.5% of the entire campus
energy bill), and the number of electrical chillers required to
meet cooling loads drops from 7 to 3.

On top of the 65% reduction in the overall campus carbon
footprint that was achieved by electrifying the heating and cooling

Fig. 7 Estimating the operating value of thermal storage: (a) annual electrical peak load, (b) operating cost savings, (c) equivalent electrochemical
storage size and (d) normalized operating cost savings as a function of thermal storage capacity. Figure (c) answers the question of how much
electrochemical storage would be needed to replace a given hot and chilled storage design. The minimal amount of thermal storage needed for the 2016
dataset that is used here can be computed by reducing the capacity of the thermal storage tanks until the optimization program no longer finds a feasible
hourly operations schedule to meet hot and chilled loads throughout the year with the existing HRCs, chillers, and boilers. The corresponding frontier is
shown as a dashed black line in Fig. 6a, b and d. Below that threshold, additional chillers are needed, which results in significant increases in capital costs.
In the extreme case with no thermal storage, seven chillers are needed (up from four in the present-day design). Cost savings are reported on an annual
basis. Calculations are discussed in the Methods section and Note 2 (ESI†).
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infrastructure, thermal storage can also drive a reduction of over
40% in heating sector carbon emissions from 2016 to 2025 under a
policy-compliant solar generation scenario, and the combined
district energy system can absorb the output from a 15 to
20 MW solar farm.

The flexibility provided by thermal storage is very inexpensive:
achieving comparable flexibility with battery storage would require
costs of $45 kW h�1, to be compared with 2018 estimated prices
for batteries ($280 kW h�1).73

Today, the main economic value proposition for thermal
storage lies in the mitigation of demand charges by decreasing
peak load. In the future, if carbon-aware scheduling becomes
the norm, thermal storage can and should be used to increase
load in the middle of the day when solar power is abundant.
However, capabilities to increase load in times of excess generation
or low carbon intensity are not valued by utility signals today.
Current rate structures encourage consumers to present a high
load factor to the utility (ratio of average load to maximum load).
Even with time-varying prices, the optimal operations schedule for
a rational consumer that is subject to a tariff with a demand
charge maintains an aggregate load that is as flat as possible. The
carbon abatement curves that we build quantify the potential to
reduce heating sector emissions. Under today’s demand charges,
unlocking that potential is prohibitively expensive.

The work presented here draws on data and experience from
a real-world case study, but the statements that are made are, in
fact, quite general. While they were derived in the context of a
specific location, we believe the main conclusions to be robust,
in particular concerning the capability of thermal storage to
provide peak-load management and to unlock the potential for
carbon-aware scheduling in electrified district energy systems,
at a low cost. Demand charges, also called capacity charges, are
very common in the power sector, and are usually linked to
either monthly or annual peak usage. Given the typical weight of
such charges,72 thermal storage will remain attractive to provide
peak shaving under a rate structure that includes a flat, time-of-
day-dependent, or dynamic volumetric price in addition to a
demand charge. As for the carbon-aware scheduling mode that
was explored, our modeling efforts make two generic assumptions:
(i) some price is put on carbon (this applies equally to a carbon tax
or a cap-and-trade system), and (ii) the carbon accounting metric
that is used captures hourly fluctuations in the carbon intensity of
the grid. Under the carbon-optimal mode where the price on
carbon is dominant in scheduling operating decisions, the carbon
intensity of the grid plays the role of a dynamic electricity price,
which highlights that thermal storage would also provide signifi-
cant benefits under a rate structure that does not include a
demand charge, but only includes a dynamic electricity price.
The hourly carbon intensities that are used in this paper are
specific to solar-rich California, and so our quantitative results
on decarbonization benefits are also specific to the California
grid mix. However, similar decarbonization benefits are to be
expected in other locations where the availability in clean power
varies throughout the day.

The type of energy system we describe is directly applicable
to universities, hospitals and industrial campuses that typically

operate shared infrastructure. It is also more broadly applicable
to cities, towns municipalities and communities in urban areas.
District heating and cooling networks already play a key role in
many developed countries and are expected to be economically
competitive in urban areas in the future,50,77 but their energy
supply is currently dominated by fossil fuels.15 In the design that
was described here, a central authority manages the district
heating and cooling networks but does not control the electrical
consumption of the other components of the energy system,
which greatly simplifies implementation, but limits the potential
for complete decarbonization of the campus energy system.
However, the framework we consider is flexible enough that
other energy assets controlled by a central authority could be
incorporated. A notable example would be the charging infra-
structure for an electrified transportation network. This study
outlines a viable path forward to electrify preexisting systems
and provides further arguments to expand their utilization.

As was noted by previous authors,42,44,63 the main barriers to
adoption of such renewable district energy systems are more
political and social than technological or economic. For example,
in the case we describe here, retrofit of the existing systems using
electrification and heat recovery for the heating and cooling
system had the lowest cost of all the options considered. For
campuses and large commercial/industrial facilities, investment
planning is centralized thus making cost-effective investments in
such systems easier. Similarly, for newly built communities,
installation at the time of construction can also be easily accom-
plished if the appropriate regulations or incentives are in place.
However, for cities with many property owners in communities
that are not centrally planned, retrofit of district heating and
cooling systems will require a high degree of cooperation in
urbanized areas, as well as strong commitments to support the
high upfront capital costs that are typical of such systems. The
experiment we considered in this paper was driven by financial
and social responsibility decisions on the part of a university, and
there were no policies in place to incentivize the electrification of
heat at a district scale. The other condition necessary for such
systems to have large carbon reduction benefits is access to an
electric power supply with low carbon intensity. California does
provide a strong and stable framework for decarbonization of the
electricity grid through its Renewable Portfolio Standard.78 Any
set of policy measures to decarbonize the electricity grid will
benefit the decarbonization of electrified heating and cooling.
Even at a modest price of $50 per metric tonne, electrifying the
heating and cooling system would have resulted in net present
savings of $106 million over 35 years for the Stanford campus,
to be compared with a net present cost that was estimated at
$1.3 billion (assuming a 5% annual discount rate). This paper
explored the further benefits that would be achieved by a
carbon price from carbon-aware scheduling, which will have
strong value in energy grids with high shares of solar and
wind power.

Thermal-storage-backed electrification is a prime example of
how to reduce emissions in the challenging heat sector. This
work provides new options for regulators and policymakers and
highlights that district scale thermal storage represents a very
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real option to provide low-cost flexibility for future power grids
and decarbonization of the heating sector.

Methods
Summary

This paper models the rational behavior of a district energy
system. Hourly thermal and electrical energy consumption and
emissions factors data are compiled from different sources.
These data are entered into an optimization model that determines
the optimal operating schedule for the different energy assets in the
district energy system. The program we build minimizes operating
costs subject to a set of technological constraints and such that
thermal and electrical campus loads are met. The objective function
can include components to reflect costs from the monthly peak
power draw (demand charges), hourly energy usage, or carbon
dioxide emissions. The weights that are chosen for these different
components determine what mode the system is operating in.
The equivalent electrochemical storage system to a given thermal
storage design is also computed, to compare the economic values
of thermal and electrochemical storage in the context of district
energy networks.

Energy consumption data

Electrical, cooling and heating loads are provided by the Stanford
Energy Systems Innovations Project68 (SESI). These hourly time
series data are measured at the Central Energy Plant (CEP) and
provide an estimate of the aggregate campus consumption served
by the CEP. The electrical load measurements are taken from
the master meter at the substation, which is the point of entry
for electrical energy on campus. Thermal loads reported here
correspond to measurements of energy leaving the CEP, so they
include both the consumption of the buildings and losses in
the ten-mile distribution networks for hot and chilled water.
Missing data points are filled by taking the average of the
surrounding values. Heat maps for the three energy streams
are presented in the ESI.† To produce Fig. 1, the daily loads for
heating and cooling are computed by summing the corres-
ponding hourly loads. The maximum daily heating and cooling
load that could be met by heat recovery chillers is then computed,
assuming that they produce 1.37 GJ of heating per GJ of cooling
(or 0.016 mmbtu per ton-hour).

Emissions factors

Average Emissions Factors (AEFs) measure the average carbon
intensity of the electrical energy flowing through the power
grid, calculated in units of kgCO2-eq per MW h from the generation
sources that are producing at a given instant. Generation data for
the CAISO balancing area can be publicly accessed79 and are used
together with Life-Cycle Assessment carbon intensities from the
IPCC80 to estimate hourly AEFs for the considered time frame (also
see Tables S1, S2 and Fig. S2, ESI†). AEFs should not be confused
with Marginal Emissions Factors (MEFs), that measure the short-
term avoided emissions impact of an intervention on the power
grid, by calculating the carbon intensity of generators that are

dispatched last in a marginal-cost-based system. These would also
be the first to be shut down if demand is reduced or zero-marginal
cost renewable generation increases. In the context for this
work, we are considering the carbon payments that should be
made for actual attributable emissions, so we choose to use
AEFs. We emphasize that changing from one metric to another
or using more granular grid data does not affect the methodology
presented in this work – as long as we use some form of hourly
price that reflects the environmental impact associated with the
electrons flowing through the power system – although it could
change the results and their interpretation.

Optimal scheduling of the different energy assets in a district
energy system

We model a district energy system in which scheduling decisions
are made centrally to minimize aggregate system operating costs.
The decision epoch is hourly, and we consider a program with T
timesteps. In the infrastructure design we consider, three types of
machines are used to produce heat: gas boilers, heat recovery
chillers (HRCs) and conventional chillers. Both types of chillers
are heat pumps, that extract heat from the environment. The
decision variables associated with the heat pumps are their
hourly electrical power input pHRC,t and pCh,t. They are char-
acterized by their efficiency (hot and chilled water efficiency for
the HRCs, and chilled water efficiency for the chiller):

8t = 1. . .T � 1, qC,HRC,t = ZC,HRCpHRC,t, (1)

8t = 1. . .T � 1, qH,HRC,t = ZH,C,HRCqC,HRC,t, (2)

8t = 1. . .T � 1, qCh,t = ZChpCh,t. (3)

In eqn (1)–(3), the letter Z denotes an efficiency (typical
values are given in Table S3, ESI†) and q denotes a water flow
rate. The output of the machines is constrained:

8t = 1. . .T � 1, qC,HRC,t A [0,%qHRC], (4)

8t = 1. . .T � 1, qCh,t A [0,%qCh]. (5)

The gas boilers consume mostly gas, and some electricity, to
produce hot water. The decision variables associated with their
operation correspond to their gas consumption gBo,t A [0,%gBo]:

8t = 1. . .T � 1, qBo,t = ZBogBo,t. (6)

It is also convenient to define a dependent variable to represent
electrical consumption:

8t = 1. . .T � 1, pBo,t = ZG,E,BogBo,t. (7)

Changing the output of the machines too often leads to higher
wear-and-tear and maintenance, that we model by including a
small penalty to changes in the power going into the machines.
For machine j, j A {HRC,Ch,Bo}, we introduce the (T � 2)
variables zj,t A R, t = 1. . .T � 2 and the 2(T � 2) constraints:

8t = 1. . .T � 2, zj,t Z pj,t � pj,t+1, (8)

8t = 1. . .T � 2, zj,t Z pj,t+1 � pj,t. (9)
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These are equivalent to the non-linear absolute value constraint:

8t = 1. . .T � 2, zj,t Z |pj,t+1 � pj,t|. (10)

The auxiliary variables zj,t can then be penalized in the objective
function. The thermal storage tanks can be used to store both
heating and cooling for later use and are characterized by their
state of charge sH,t and sC,t, t = 1. . .T. We write the equations for
their dynamics:

8t = 1. . .T � 1, sH,t+1 = sH,t + qH,HRC,t + qBo,t � dH,t + du
H,t,

(11)

8t = 1. . .T � 1, sC,t+1 = sC,t + qC,HRC,t + qCh,t � dC,t + du
C,t.
(12)

In eqn (11) and (12) we introduced the unmet loads du
H,t, du

C,t Z 0,
that are used to ensure the program remains feasible. These are
penalized in the objective function (and should be zero or near
zero in normal operating conditions). The amount of energy in
the tanks is constrained:

8t = 1. . .T, sH,t A [0,%sH], (13)

8t = 1. . .T, sC,t A [0,%sC]. (14)

Boundary conditions are also imposed:

sH,1 = sH,i, sH,T = sH,f, (15)

sC,1 = sC,i, sC,T = sC,f. (16)

It is convenient to define global import variables for the
electrical and gas energy coming into the campus:

8t = 1. . .T � 1, pt = pHRC,t + pCh,t + pBo,t + dE,t,
(17)

8t = 1. . .T � 1, gt = gBo,t. (18)

With these global import variables, we can state the form of the
campus bill:

XT
t¼1

pE;tptdt þ pG;tgtdt
� �

þ
X
j2M

pP;m max
t:mðtÞ¼j

pt: (19)

This form is very typical of energy systems billed under a two-
part tariff including a demand charge. The two components of
the bill reflect that the customer is paying fees for both capacity
(power) and energy usage. The second sum in eqn (19) is non-
linear, but can be linearized81 by introducing variables yj, j AM,
where M is the set of months, and enforcing the constraints:

8t = 1. . .T � 1, ym(t) Z pt. (20)

The maxima in eqn (19) can then be replaced by variables yj,
j A M. We note that eqn (19) is general enough to account for
an hourly carbon price. This can be done simply by replacing
the hourly prices for electricity pE,t and gas pG,t by prices p̂E,t

and p̂G,t that factor the carbon externality:

p̂E,t = pE,t + pE,CO2,t, p̂G,t = pG,t + pG,CO2,t. (21)

The optimization program minimizes the linearized version of
eqn (19) subject to the constraints stated in eqn (1)–(18) and (20)

and can be classified as a Quadratic Program (the full objective
also has quadratic penalties for unmet loads). Increasing the prices
of different components in the objective function will increase the
weight of the costs associated with energy usage, demand charges
or carbon emissions in the optimization program and determines
the mode the campus is operating in. For the BAU mode that
corresponds to Fig. 3 and 5(top), the carbon price is set to zero, and
we use actual values for gas, electricity prices and demand charges.
For the different carbon-aware modes in Table 1 and Fig. 6,
different carbon prices are used with the computed AEFs to
generate the hourly carbon prices for electricity pE,CO2,t and gas
pG,CO2,t. The carbon-optimal mode in Fig. 5(bottom) corre-
sponds to an arbitrarily high price on carbon, such that
scheduling decisions are now overwhelmingly guided by carbon
considerations. This optimization program is implemented using
the Julia JuMP package,69 and solved using the Gurobi software.70

Although this model was built to describe the different energy
assets on the Stanford campus, the modular approach that is
taken here can easily be extended to include other controllable
sources and sinks of energy, such as CHP or electric vehicle
charging, as long as costs are additive, and the new assets are
accounted for in the global import variables in eqn (17) and (18)
and the storage dynamics in eqn (11) and (12).

Equivalency between thermal storage and electrochemical storage

We calculate the electrical storage size that would be required
to generate as much chilled and hot water as what is in the
thermal tanks. We call r the proportion of the cooling loads that
are met by heat recovery chillers, the remainder being met by
the conventional chillers. Since heat recovery chillers and
chillers are each used to meet half of the cooling loads in our
2016 cost-minimization solution to the scheduling problem, we
use that as an assumption here. We further assume that heat
recovery chillers consume ZHRC,c = 1.32 kW h of electricity to
produce 1 ton-hour of cooling and ZHRC,h = 0.02 mmbtu of heating;
that the chillers consume ZCh,c = 0.45 kW h per ton of cooling; and
that the round-trip a.c.–a.c efficiency of electrochemical storage is
Ze = 85%.82 We calculate the equivalent electrochemical storage
size to (Sc, Sh) of chilled and hot thermal storage as:

max
r ZCh;c þ ZHRC;c

� �
Ze

Sc;
ZHRC;h

Ze
Sh

 !
(22)

The main assumption behind eqn (22) is that there must be
at least enough electrochemical storage to generate enough
hot or chilled water as specified by (Sc, Sh). We note that the
energetic equivalence described by eqn (22) only relates to
the ability of thermal storage to shift electrical load, not to the
ability of the hot and cold water storage to align non-concurrent
heating and cooling loads. Technically, electrochemical storage
could therefore not directly replace thermal storage in this
system. Some amount of thermal storage would still be needed
to fully enable the use of the HRCs by allowing machines that
must output heating and cooling streams with a constant ratio
to meet thermal loads that do not have a constant ratio. Also see
the discussion in Note 2 (ESI†).
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