## Dalton Transactions

## CORRECTION

Check for updates

**Cite this:** *Dalton Trans.*, 2019, **48**, 16812

## Correction: Luminescent Nd<sub>2</sub>S<sub>3</sub> thin films: a new chemical vapour deposition route towards rare-earth sulphides

Stefan Cwik,<sup>a</sup> Sebastian M. J. Beer,<sup>a</sup> Marcel Schmidt,<sup>b</sup> Nils C. Gerhardt,<sup>c</sup> Teresa de los Arcos,<sup>d</sup> Detlef Rogalla,<sup>e</sup> Jana Weßing,<sup>a</sup> Ignacio Giner,<sup>d</sup> Martin Hofmann,<sup>c</sup> Guido Grundmeier,<sup>d</sup> Andreas D. Wieck<sup>b</sup> and Anjana Devi\*<sup>a</sup>

DOI: 10.1039/c9dt90217a

rsc.li/dalton

Correction for 'Luminescent Nd<sub>2</sub>S<sub>3</sub> thin films: a new chemical vapour deposition route towards rare-earth sulphides' by Stefan Cwik *et al., Dalton Trans.,* 2019, **48**, 2926–2938.

The authors regret an incorrect assignment of proton signals in the <sup>1</sup>H NMR spectrum of complex 2  $[Nd(dpamd)_3]$  (right spectrum in Fig. 2) which was published in their original submission. The correct NMR assignment is explained in the following text and depicted in Fig. 2:



Fig. 2  $^{1}$ H-NMR spectrum (200 MHz, C<sub>6</sub>D<sub>6</sub>) of complex 2 [Nd(dpamd)<sub>3</sub>].

In the <sup>1</sup>H-NMR spectrum (Fig. 2) of the presented complex 2  $[Nd(dpamd)_3]$  the proton signal for the methyl moieties of the iPr-groups ("a") is detected at -4.5 ppm exhibiting a total integral of 36 H. The lone protons of the CH moiety within the iPr group are shifted to the low-field regime at 20.9 ppm due to their close spatial distance to the Nd metal center. Furthermore, the integral of 6 H is in accordance to the suggested structure. This proton signal is assigned as "**b**". The signal at 12.76 ppm (total integral of 9 H) can be unambiguously assigned to the CH<sub>3</sub> moiety located at the NCN backbone of the ligand.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

View Article Online

<sup>&</sup>lt;sup>a</sup>Inorganic Materials Chemistry, Ruhr University Bochum, 44801 Bochum, Germany. E-mail: Anjana.devi@rub.de

<sup>&</sup>lt;sup>b</sup>Applied Solid-State Physics, Ruhr University Bochum, Germany

<sup>&</sup>lt;sup>c</sup>Photonics and Terahertz Technology, Ruhr University Bochum, Germany

<sup>&</sup>lt;sup>d</sup>University Paderborn, 33098 Paderborn, Germany

<sup>&</sup>lt;sup>e</sup>RUBION, Ruhr University Bochum, Germany