

Cite this: *Dalton Trans.*, 2019, **48**, 4067

DOI: 10.1039/c9dt90055a

rsc.li/dalton

Correction: A novel polymer containing phosphorus–nitrogen ligands for stabilization of palladium nanoparticles: an efficient and recyclable catalyst for Suzuki and Sonogashira reactions in neat water

M. Gholinejad,*^a F. Hamed^a and P. Bijl^b

Correction for 'A novel polymer containing phosphorus–nitrogen ligands for stabilization of palladium nanoparticles: an efficient and recyclable catalyst for Suzuki and Sonogashira reactions in neat water' by M. Gholinejad, *et al.*, *Dalton Trans.*, 2015, **44**, 14293–14303.

The authors regret that the second step in Scheme 1 of the above mentioned paper was incorrect, this has been corrected below and the characterization supporting the identity of compound 2 is presented herein. This correction does not affect the discussion or conclusions of the original article.

Scheme 1 Steps for the preparation of polymeracrylamide containing phosphorous ligand (**3**).

The ^{31}P NMR spectrum of product **2** showed a chemical shift for ^{31}P at 36.7 ppm (Fig. 1).

The ^1H NMR spectrum of compound **2** showed a single peak at 9.64 which is related to a phenolic proton (Fig. 1a). Adding a drop of D_2O to the sample, resulted in removing the phenolic hydrogen signal at 9.6 ppm and confirmed that the compound has a phenolic proton (Fig. 2b). The presence of the hydroxyl group was also confirmed by FTIR showing a related peak at 3347 cm^{-1} (Fig. 3).

The ^1H NMR spectrum of the product shows three multiple signals at (5.7–5.8), (6.3–6.6), (7.5–7.7), and (7.8–8.0) ppm that may be coupled with the ^{31}P nucleus. To investigate this issue, we compared the original ^1H NMR spectrum with its $^1\text{H}\{^{31}\text{P}\}$ spectrum. Results indicated removal of the small splitting caused by the phosphorous group in the above mentioned area (Fig. 4).

Procedure for the preparation of polymer **3**.

^aDepartment of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), P. O. Box 45195-1159, Gavazang, Zanjan 45137-6731, Iran.
E-mail: gholinejad@iasbs.ac.ir

^bNanotech Research, Innovation and Incubation Center, PSG Institute of Advanced Studies, Coimbatore-641 004, India

Fig. 1 ^{31}P NMR of 2-((1-((diphenylphosphino)oxy)allylidene)amino)phenol.

Fig. 2 ^1H NMR of 2-((1-((diphenylphosphino)oxy)allylidene)amino)phenol in CDCl_3 and in the presence of D_2O .

Acryloyl chloride (1 mmol, 0.08 mL) was added to a flask containing a solution of 2-aminophenol (1 mmol, 0.11 g) in dry THF (5 mL) at 0 °C under an argon atmosphere. Then, Et_3N (1 mmol, 0.14 mL) was added dropwise at 0 °C and the mixture was stirred for 2 h at room temperature. Afterwards, the reaction mixture was filtered to separate the triethylammonium chloride salt produced. To the resulting solution, chlorodiphenylphosphine (1.1 mmol, 0.2 g) and Et_3N (1 mmol, 0.14 mL) was added and the reaction was stirred for 24 h at 50 °C. Then, solvent was evaporated and the desired product was purified by plate chromatography. For polymerization of the obtained monomer, the phosphinite monomer (2) (5 mmol, 1.7 g) was dissolved in $t\text{-BuOH}$ (5 mL) and AIBN (0.008 g, 0.5% w/w) was added to the mixture under argon protection. The mixture was stirred for 24 h at 70 °C under an argon atmosphere. Then, $t\text{-BuOH}$ was evaporated and the obtained pale yellow solid was washed with H_2O (10 mL) and hexane (30 mL) and dried in an oven for 24 h at 80 °C.

Fig. 3 FT-IR spectrum of 2-((1-((diphenylphosphino)oxy)allylidene)amino)phenol.

Fig. 4 Expanded ^1H NMR (a) and $^1\text{H}\{^{31}\text{P}\}$ (b) of 2-((1-((diphenylphosphino)oxy)allylidene)amino)phenol.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

