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The reaction of (diphenylmethylene)hydrazone or 1,4-bis-hydra-
zone-ylidene(phenylmethyl)benzene with Lewis acidic boranes
B(2,4,6-FsCgH,)s or B(3,4,5-FzCgHy)s generates the Lewis acid—
base adducts. Alternatively, when (9H-fluoren-9-ylidene)hydra-
zone is employed several products were isolated including
1,2-di(9H-fluoren-9-ylidene)hydrazone, the 2:1 borane adduct of
NH,-NH, and the 1-(diarylboraneyl)-2-(9H-fluoren-9-ylidene)
hydrazone in which one ArH group has been eliminated. The benz-
hydrazide starting material also initially gives an adduct when
reacted with Lewis acidic boranes which upon heating eliminates
ArH generating a CON,B heterocycle.

With over a century since the dawn of the Haber-Bosch
process, the activation and subsequent functionalisation of
dinitrogen remains a challenge. Typically, metal catalysts, such
as those based upon Fe or Mo, have been trialled for the
reduction of N, to NH;. The ability of transition metal com-
plexes to bind to N, has been attributed to the roles of the
metal d-orbitals in bonding and back-bonding interactions
with N,." Recently however, the activation of nitrogen-nitrogen
bonds such as azides, diazo-compounds, hydrazones and di-
nitrogen using boranes has gained momentum.>’ Both
Szymczak® and Simonneau® reported the use of B(CeFs); to
activate M-N, (M = Fe, Mo, W) complexes (Fig. 1) towards pro-
tonation or borylation/silylation. A major advance in this area
was to remove the transition metal altogether. While (N,)BF;
has been generated via supersonic expansion at 600 Torr and
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170 K,® it was only last year that the metal-free activation of N,
was reported using a cyclic (alkyl)(amino)carbene (CAAC)
stabilised borylene (Fig. 1).” Prior to this, Stephan®**® had
shown that the strong Lewis acid B(CeFs); can be used to
release N, from Ph,CN,, and can be used in reactions with
Ph,C=NNH, to form an adduct (Fig. 1). Yamashita® has sub-
sequently shown that a highly Lewis acidic diborane can react
with azobenzene and pyridazine via diboration and, when
phthalazine is employed, N=N bond cleavage occurs. At a
similar time, we have been investigating the synthesis and
comparative reactivity of new boranes bearing fluorinated aryl
groups as an alternative to the archetypical B(C¢Fs5);."° In this
regard, we were interested in comparing the reactivity of
boranes other than B(C4Fs); with a variety of N-N bonded com-
pounds including hydrazones and hydrazides, which are
reported herein (Fig. 1). These may provide alternative reactiv-
ity and reaction rates depending upon the borane Lewis
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Fig. 1 Previous work on activation of N-N bonds using B(C¢Fs)s and
borylenes, and outline of the work described in this article.

Dalton Trans., 2019, 48, 12391-12395 | 12391


www.rsc.li/dalton
http://orcid.org/0000-0001-8958-4302
http://orcid.org/0000-0003-0480-5386
http://orcid.org/0000-0002-8990-0667
http://orcid.org/0000-0003-3142-2831
http://crossmark.crossref.org/dialog/?doi=10.1039/c9dt01359h&domain=pdf&date_stamp=2019-08-14
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9dt01359h
https://pubs.rsc.org/en/journals/journal/DT
https://pubs.rsc.org/en/journals/journal/DT?issueid=DT048033

Open Access Article. Published on 09 August 2019. Downloaded on 1/25/2026 11:26:54 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Communication

?ArF3
N/NH2 BAI'F3 N/NHZ
—_—
Ph” Ph Ph)J\Ph

1a Arf =2,4,6-F3C¢H, 2a

or 3,4,5-F306H2 2b
I?ArF3

HoN, HoN,

Ph N
N, Ph N Ph

NH, NHz
BArT;

1b Arf =2,4,6-F;C¢H, 2¢

Scheme 1 Reactions of hydrazones with Lewis acidic boranes.
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Scheme 2 Reactions of 1c with B(2,4,6-F3CgH5)s.

acidity."* Initially, the hydrazone compounds 1a-c (Schemes 1
and 2) were prepared from the condensation reaction of the
corresponding ketone with hydrazine monohydrate. Upon
reaction of 1a with B(2,4,6-F3;C¢H,); or B(3,4,5-F;C¢H,); the
corresponding N — B adducts 2a and 2b were formed in which
the -NH, group of the hydrazone coordinated to the Lewis
acidic boron atom analogous to that reported by Stephan
when 1a was combined with B(CgFs);.° Similarly, when bis-
hydrazone 1b was reacted with B(2,4,6-F3C¢H,); in a 1:2 stoi-
chiometric ratio a 1:2 adduct (2¢) was formed. Compounds
2a, 2b and 2c¢ were isolated in 61%, 65% and 56% yield
respectively. Adducts 2a-c all displayed a broad peak ranging
between —2.6 and —6.2 ppm in the ''B NMR spectrum.
Recrystallisation of the reaction mixtures from a CH,Cl,/
pentane solution resulted in single crystals of the adducts
whose structures were determined by single crystal X-ray diffr-
action (Fig. 2). In these structures the boron atom adopted a
tetrahedral arrangement with B-N bond lengths ranging from
1.646(5)-1.696(4) A, similar to those observed in previous
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Fig. 2 Solid-state structures of 2a (top), 2b (middle) and 2c (bottom).
C: black, N: blue, B: pink, F: green. Thermal ellipsoids drawn at 50%
probability. H atoms except N—H omitted for clarity.

reports (1.631(7) A).” The single N-N bond lengths (range
1.438(4)-1.449(2) A) were also similar to those reported pre-
viously.® Likewise, the C=N bond lengths of 1.287(3)-1.294(5) A
are typical of C=N double bonds.'”> In all cases, heating
adducts 2 resulted in an unidentifiable mixture of compounds
and no elimination of Ar"H was observed, in contrast with pre-
vious reports where B(C4Fs); was employed as the Lewis acid.®
Alternatively, if the compound 1c was used in the reactions
with boranes BAr‘; (Arf = 3,4,5-F;C¢H,, C¢Fs), the reaction
gave a complex and inseparable mixture of products. However,
if 1c is reacted with the less Lewis acidic borane B(2,4,6-
F3CgH,) several products could be selectively crystallised from
the reaction mixture to shed light on this reactivity. These could
be structurally identified by single crystal X-ray diffraction as the
previously reported 1,2-di(9H-fluoren-9-ylidene)hydrazone (3),"?
the bis borane adduct of hydrazone, NH,NH, (4) and the 1-(di-
arylboraneyl)-2-(9H-fluoren-9-ylidene)hydrazone (5) (Scheme 2
and Fig. 3). It is unclear how the three products are formed
from the reaction, but it is likely that initially an adduct is
formed between 1c and the borane. Indeed, in situ NMR studies
showed that when 1c is added to the borane in toluene then a

This journal is © The Royal Society of Chemistry 2019
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Fig. 3 Solid-state structures of 4 (top) and 5 (bottom). C: black, N: blue,
B: pink, F: green. Thermal ellipsoids drawn at 50% probability. H atoms
except N—H omitted for clarity.

characteristic broad shift at § = —5.1 ppm in the "B NMR spec-
trum was observed. Two divergent pathways then operate to
generate either 3 and 4, or compound 5. Elimination of Ar'H
generates 5 which is similar to observations made by Stephan
for hydrazone Ph,C=NNH, with B(C¢F5);.® The trigonal planar
boron atom in 5 can be observed in the solid-state structure
with N-B-C bond angles of 117.8(1)° and 119.7(1)°, and a
C-B-C bond angle of 122.5(1)°. The B-N bond length of
1.397(2) A was also significantly shorter than observed in the
adducts 2 indicating some n-donation from N — B generating a
trans-diene structure in which the CN,B atoms lie in the same
plane. If the reaction of 1c with B(2,4,6-F3CsH,); is performed at
low temperatures (0 °C) in toluene then compound 5 is formed
selectively in 46% yield.

Alternatively, another reaction can take place when 1c is
reacted with B(2,4,6-F3C¢H,);. Here a hydrazone metathesis
reaction occurs to yield the azine (3) and borane adduct of
hydrazone (4). This reaction is more predominant when the
reaction is performed at elevated temperatures (e.g. r.t. to
50 °C). N-N-linked diimines (azines) are an important class of
compounds isoelectronic to 1,3-butadiene. These compounds
have a variety of uses including applications as chromophores
in optoelectronic devices.'* Previously, 3 has been reported
to have been synthesised by the decomposition of diazo
compounds catalysed by Pt(C,H,)(PPh;),."> Similar reactions
which generate a diazine from hydrazones have been reported

This journal is © The Royal Society of Chemistry 2019

View Article Online

Communication

and involve harsh conditions and long time periods e.g. reflux-
ing in ethanolic hydrogen chloride for several hours.'® More
interesting is that, in our case, the borane adduct of hydrazone
4 is also generated in the reaction. Previously, the hydrazine
bisborane N,H,4(BH;), has been postulated as a good hydrogen
storage material containing 16.9 wt% hydrogen. Additionally,
coordinated hydrazine has been identified as a potential inter-
mediate in nitrogen fixation reactions."””® While N,H,(BH3),
is easily prepared from the reaction of hydrazine sulfate with
sodium borohydride, other borane adducts are more challen-
ging to synthesise and a search of the literature reveals that
generally intramolecular bis boranes are employed. Previously,
Gabbai®® and Szymczak'” have reported that intramolecular bis-
boranes can react with hydrazine monohydrate (N,H,-H,0). In
these reactions, the use of a bisborane appears key to trapping
and activating the hydrazone unit. We attempted to generate 4
independently from the reaction BAr; (Ar = 2,4,6-F;C¢H,) and
hydrazine monohydrate (N,H,-H,0) in a 2 : 1 ratio with the use
of molecular sieves to trap the water by-product. Pleasingly,
this led to the formation of compound 4 as observed by in situ
multinuclear NMR spectroscopy. The structure of 4 displays a
B-N bond length of 1.673(2) A which is longer than that in
hydrazine bisborane (1.609 A)** and slightly shorter than that
reported by Gabbai (1.688(2) A) and Szymczak (1.697(2) A and
1.698(2) A) for the chelating bisborane complexes.'”*°
The N-N distance of 1.461(2) A is similar to that reported
for other hydrazine bisborane complexes (range 1.356(2) A-
1.469(2) A).'7202?

Finally, we turned our attention to other N-N bonded sub-
strates, namely hydrazides (Scheme 3). When commercially
available benzhydrazide was reacted with BAr; an adduct was
formed initially between the NH, group and the borane. In the
case of the boranes where Ar = 2,4,6-F;CcH, or C¢F5 the adducts
6a-b could be isolated in 56% and 71% yield, respectively.
Recrystallisation of the solutions afforded crystals of the
adducts which could be structurally determined (Fig. 4 and
ESIf). The "B NMR spectra showed a broad peak at § =
—6.1 ppm (6a) and —6.2 ppm (6b) similar to that observed with
the hydrazone borane adducts. In the case of 6b in situ heating
of the BAr"; adduct of benzhydrazide to 110 °C in toluene led
to loss of ArfH and generation of a CON,B heterocycle (7).
Recrystallisation of the reaction mixture afforded pink crystals
of the product in 82% yield. Compound 7 crystallised in the
P1 space group with two molecules in the asymmetric unit.
The N-H hydrogen atoms were identified in the difference
map. X-ray diffraction analysis revealed the CON,B rings to be
planar with r.m.s.d. of 0.010 A and 0.023 A. The B-N bond

r
o} BAFF, o} ?Ar% 110 °C Ar \B/ArF
Ph)J\N/NHZ Ph)J\N/NHZ ArFH /o[ NH
]  NH,
H H P N

Arf = 2,4 6-F3C5H, (56%) 6a
Arf = Cg4F5 (71%) 6b

ArF = CgF5 (82%) 7

Scheme 3 Reaction of hydrazides with BArfs.
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Fig. 4 Solid-state structures of 6b (top) and 7 (bottom). C: black,
N: blue, O: red, B: pink, F: green. Thermal ellipsoids drawn at 50% prob-
ability. Non-essential H atoms omitted for clarity.

lengths of 1.621(2) A and 1.608(3) A are slightly shorter than
that in the adduct 6a-b (1.635(3) A and 1.643(2) A respectively)
presumably due to the formation of a 5-membered intra-
molecular chelate. Conversely, the N-N bond in 7 is slightly
longer at 1.468(2) A and 1.464(3) A compared to 1.429(3) A and
1.426(2) A in 6a-b.

Preliminary computational studies (DFT B3LYP-D3/6-31G(d,p))
to probe these elimination reactions (Scheme 3) focused on
the model compound MeCONHNH, — BPh;. Calculations
revealed 1,4-elimination of CgHe (implementing the NH,
proton) appears to be the thermodynamically favoured process
and forms acyclic MeCON(H)N(H)BPh,, whereas 1,5-elimi-
nation (using the amide-NH) is a near energetically neutral
process leading to formation of a 3-membered BN, heterocycle
as the initial elimination product (see ESIT).

Conclusions

In conclusion we have prepared a series of hydrazone and
hydrazide adducts of Lewis acidic boranes to investigate the
interactions of Lewis acidic boranes with nitrogen containing
compounds which may be of interest to those working in the
area of metal-free dinitrogen activation and conversion.
Initially adducts are formed which upon heating lead to loss of
ArFH to generate novel covalent N-N-B systems including the
chain compound 5 and heterocyclic compound 7. Of particular
interest is the reaction to generate the bisborane hydrazine
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dimer 4 from a hydrazone metathesis reaction. Subsequent
studies to explore the independent synthesis and reactivity of 4
in hydrogen release are ongoing within our group.
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