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Novozym 435 (N435) is a commercially available immobilized lipase produced by Novozymes. It is based

on immobilization via interfacial activation of lipase B from Candida antarctica on a resin, Lewatit VP OC

1600. This resin is a macroporous support formed by polyĲmethyl methacrylate) crosslinked with divinyl-

benzene. N435 is perhaps the most widely used commercial biocatalyst in both academy and industry.

Here, we review some of the success stories of N435 (in chemistry, energy and lipid manipulation), but we

focus on some of the problems that the use of this biocatalyst may generate. Some of these problems are

just based on the mechanism of immobilization (interfacial activation) that may facilitate enzyme desorp-

tion under certain conditions. Other problems are specific to the support: mechanical fragility, moderate

hydrophilicity that permits the accumulation of hydrophilic compounds (e.g., water or glycerin) and the

most critical one, support dissolution in some organic media. Finally, some solutions (N435 coating with

silicone, enzyme physical or chemical crosslinking, and use of alternative supports) are proposed. However,

the N435 history, even with these problems, may continue in the coming future due to its very good prop-

erties if some simpler alternative biocatalysts are not developed.

1. Introduction
1.1. Lipases in biocatalysis

Chemistry is being continuously (and vigorously) pushed to
become more environmentally friendly and compatible, there-
fore green chemistry is nowadays the final goal in most chem-
ical industry developments.1–4 This is coupled with an ever-
increasing demand for products with growing complexity, in
many instances with multiple functions and chirality in many

of them. In this environment, the use of enzymes as indus-
trial catalysts is rising.5–7 Enzymes have many properties that
make them very interesting: they are the most efficient cata-
lysts in nature, performing their function under very mild
conditions (at low pressure and temperature) in aqueous me-
dia. Moreover, they are very selective and specific, saving
many protection/deprotection steps.8–13 However, enzymes
are catalysts with a biological origin, and they have evolved
under natural selection to be able to respond under stress
conditions. Thus, enzymes are inhibited by diverse compo-
nents, their stability is moderate even under physiological
conditions and their excellent properties are only exhibited in
physiological reactions and substrates.14 Besides, they are
usually water soluble. These properties, although physiologi-
cally necessary, are a problem if they are going to be used as
industrial biocatalysts, where they are expected to perform
their function under standardized conditions. In this respect,
maximal stability and activity will always be desired, and the
substrates, as well as reaction conditions, may be quite far
from the physiological ones.

As a result, enzymes normally need to be improved in
many instances before their industrial implementation.
Thanks to the development of many different scientific areas,
there are several ways of improving these enzyme limitations.
Microbiological (metagenomics)15–20 and genetic (site-di-
rected mutagenesis,21–23 directed evolution,24–28 etc.) tools
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may provide high enzyme production with improved proper-
ties compared to the native enzyme. Immobilization was first
a requirement to solve the issue of enzyme solubility, but it
has recently become a powerful tool to improve many other
enzyme properties like stability, activity, selectivity, specific-
ity, purity, inhibition, or resistance to chemicals.29–39 As
such, enzyme immobilization has evolved from a require-
ment to use these expensive catalysts to a tool to greatly en-
hance enzyme features.

Lipases are among the most widely used enzymes in bioca-
talysis.40,41 The biological function of lipases is the hydrolysis of
triglycerides to produce free fatty acids and glycerol.42 The
heterogeneity of the natural substrate43–48 has converted lipases
in enzymes with a very broad specificity, accepting substrates
very different from glycerides (even amides). Thus, lipases are
used in vitro to catalyze reactions different from those of the
natural hydrolase function,49–54 such as esterification,55–61

acidolysis,62–67 interesterificaton,68–71 transesterification,72–76

aminolysis,77–81 perhydrolysis,82,83 etc., together with a collec-
tion of the so-called promiscuous reactions.84–92

Lipases are usually quite stable, and so they have been
used in diverse media, like aqueous media, organic
solvents,93–95 ionic liquids,96–99 supercritical fluids,100–102 and
deep eutectic solvents.103–106 This way, lipases have a huge
range of possibilities in industrial biocatalysis. Besides, they
have a peculiar mechanism of action called “interfacial acti-
vation”, which will be explained below.

1.1.1. Interfacial activation of lipases: drawbacks and new
opportunities. As previously stated, the natural substrates of
lipases are glycerides.49–54 These molecules have low solubility
in water, therefore they form insoluble drops, where the li-
pase must act. For this purpose, lipases have a peculiar mech-
anism of action, called interfacial activation, which permits li-
pases to become adsorbed on the hydrophobic surface of the
glyceride drops and act in the interface (this is why lipases
are called “interfacial enzymes”).107 This mechanism is based
on the existence of a large hydrophobic pocket surrounding
the active center.108–115 An enzyme molecule with this large
hydrophobic pocket will be very unstable and will have low
solubility in aqueous media. However, this problem is
avoided because this hydrophobic pocket it is covered by a
polypeptide chain called lid, which generally isolates the ac-
tive center from the reaction medium (in this “closed” form,
the lipase is inactive). The lid also has an internal hydropho-
bic face that interacts with the hydrophobic areas of the active
center and a hydrophilic external face, which interacts with
the reaction medium.108–115 This lid can move, and when it is
shifted, it forms a huge hydrophobic pocket exposing the ac-
tive center to the medium, resulting in the “open” and active
form of the lipase, with the hydrophilic phase of the lid inter-
acting with the protein surface. Both conformational lipase
forms are in equilibrium, but in the presence of oil drops, the
open form becomes adsorbed on the hydrophobic surface of
the drops, shifting the conformational equilibrium towards
the open form of the lipase and permitting the attack of the
glycerides by the enzyme108–115 (Fig. 1).

This catalytic mechanism may be a problem for lipase
handling.116 Lipases are adsorbed on any hydrophobic sur-
face. As an example, lipases tend to form dimeric aggregates
by interaction between two open forms of lipases (giving al-
tered properties)117–119 (Fig. 2) or may interact with hydro-
phobic proteins on the crude extract (also altering enzyme
properties).120 This may also be a problem when
immobilizing a lipase on a solid support, as the lipase mole-
cules will be isolated from the external medium and external
drops of the hydrophobic substrate can hardly interact with
the enzyme, making their interfacial activation impossible.

However, once this phenomenon is known, it can be uti-
lized for some purposes. For example, properly oriented
immobilized lipases have been used as a chromatography
matrix to purify other lipases via interaction between the
open forms of two lipase molecules120,121 (Fig. 3).

Moreover, as described later, this allowed development of
one of the most utilized protocols for lipase immobilization:
the immobilization of lipases on hydrophobic supports via
interfacial activation.122

1.2. Lipase B from Candida antarctica

CALB has a molecular weight of 33 kDa, with a pI of 6.0.
CALB is an α/β protein with many features similar to those of

Fig. 1 Conformational equilibrium and interfacial activation of lipases.

Fig. 2 Formation of dimeric aggregates between two open forms of
lipases.
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other lipases. The structure of CALB has been fully resolved
and shows that the enzyme has a Ser-His-Asp catalytic triad in
its active site, with a very small lid that is unable to fully se-
clude the active center.123,124 Even with that small lid, CALB
retains its capacity to be adsorbed on hydrophobic surfaces,
that is, it remains an interfacial enzyme. For this reason it is
considered a true lipase, although the closed form is not re-
ally closed as in other lipases.125,126 This may make its han-
dling simpler than using other lipases, as it does not have the
strong tendency of other lipases to form dimeric aggregates.

This enzyme is among the most stable commercialized li-
pases127,128 and has been used in a wide range of reactions;
it is in fact very likely the most widely used lipase.129–131 This
lipase has been utilized in almost all areas of lipase utiliza-
tion, from triglyceride modification to biodiesel production,
from resolution of racemic mixtures to regioselective reac-
tions, production and degradation of polymers, promiscuous
reactions, etc.132–152

This good stability has made CALB one of the most inten-
sively researched enzymes in ionic liquids.153–155 CALB prop-
erties have been improved via genetic tools.156–159 Some pa-
pers are based on the comparison of commercial CALB and
some other recombinant CALB expressed in different hosts
(mainly Pichia pastoris) presenting in some cases very differ-
ent properties.160–166

1.3. Immobilization of lipases

As previously stated, immobilization of enzymes is a require-
ment for most industrial enzyme uses, and the same thing oc-
curs when using lipases. As discussed above, immobilization
may be a tool to improve enzyme features; the objective
should be to have a reusable, active and, if possible, improved
biocatalyst.29–39 This way, the costs associated with immobili-
zation may be fully compensated. Here, we will not review the
immobilization; there are some excellent review papers that

may be used for that purpose.29–39,167–172 However, in the case
of lipases some points must be carefully considered.

The first point is that an enzyme immobilized on porous
supports will not be exposed to external interfaces. This is
positive because enzyme inactivation is not possible by inter-
action with these interfaces,33 but if the enzyme is inside a
porous support, interfacial activation is not possible, (except
when using nearly anhydrous media that can penetrate the
support porous system).

Second, as previously explained, lipases tend to form bi-
molecular aggregates involving the open forms of two lipase
molecules.117–119,121,173–175 If immobilization is performed
under conditions where this is favored, the effect may be
quite negative because these dimers will be immobilized to-
gether with the monomeric enzyme molecules (Fig. 4). These
dimeric lipase forms generally presented altered properties
and lower activity than the monomeric enzyme.117,173 More-
over, the percentage of dimers and monomers will depend
on the exact immobilization conditions, making it difficult to
reproduce the results when using different enzyme batches.
Additionally, if only one of the enzyme molecules forming
the dimer is attached to the support, some enzyme leakage
may be produced contaminating the final product (Fig. 5).
The use of detergents during immobilization may solve this
problem: it will break the dimers and allow the immobiliza-
tion of monomeric enzymes.117–119,121,173–175 (Fig. 6) More-
over, if immobilization is via an intense enough enzyme–sup-
port interaction, the presence of detergent during
immobilization can also improve enzyme activity by
maintaining the open form of the lipase when the detergent
is eliminated176–183 (Fig. 6).

On the other hand, the active center of lipases is very flexi-
ble, and it has been shown in many instances that lipase
properties may be strongly modulated via
immobilization.184–204 However this also has a counterpart: if
the enzyme already has the desired specificity of selectivity,
keeping the properties of the lipase after immobilization may

Fig. 3 Use of immobilized lipases as a chromatographic phase to purify lipases.
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Fig. 4 Problems generated in lipase immobilization by the tendency of lipases to form enzyme dimeric aggregates.

Fig. 5 Risk of enzyme desorption if dimeric aggregates are immobilized via one enzyme molecule only.

Fig. 6 Immobilization of lipases in the presence of detergents to break the dimers ensures immobilization of monomeric forms.
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be quite difficult.32 Thus, lipase immobilization must con-
sider some points that are not required for other enzymes.

1.3.1. Immobilization of lipases via interfacial activation.
As stated above, the ability of lipases to become adsorbed on
any hydrophobic surface makes immobilization of lipases on
hydrophobic supports a very popular strategy.122 There are
many advantages for this protocol: immobilization, purifica-
tion and stabilization of the lipases become a one-step pro-
cess, the immobilized enzyme is stabilized (because the open
and adsorbed form of the lipase is more stable),205–207 the
open and monomeric form of the lipase become fixed (that
is, lipases are less dependent on the immobilization condi-
tions) (Fig. 7)122 and the immobilized lipase is less sensitive
to the experimental conditions (because there is no conforma-
tional equilibrium to be shifted).122,208,209

Thus, lipases immobilized by interfacial adsorption may
almost fully retain their activity even under very high ionic
strength, while a conventional immobilized enzyme will have
the active center closed under these conditions.122 However,
the method also has some problems. Immobilization is re-
versible and based on hydrophobic interactions, which
means that lipase molecules may be released to the medium
at high temperatures, in the presence of co-solvents or deter-
gents.210 Special care must be taken with some substrates or
products with detergent properties,211 for example triglycer-
ide hydrolysis will release free fatty acids and di- or mono-
glycerides, which have recognized detergent properties and
can favor enzyme release. It has been reported that even di-
acylglycerols from short chain carboxylic acids such as
diacetin or dibutyrin may be enough to favor enzyme release
from the support.212,213 This problem may be reduced if
some intermolecular crosslinking (covalent or physical) is
performed,214–218 or using heterofunctional supports (sup-

ports having the acyl moiety and some reactive groups able
to give rise to an additional covalent or ionic
immobilization).210,219–227 Later on, this will be discussed in
detail in this review.

Thus, the immobilization of lipases via interfacial activa-
tion may be the most popular immobilization strategy, using
silica (and other inorganic materials) nanoparticles or natural
hydrophilic supports coated with long acyl groups, hydropho-
bic polymeric supports coated (or uncoated) with hydropho-
bic groups, etc.191,228–247

1.3.2. Novozym 435. Novozym 435 (N435) is an
immobilized preparation of CALB supplied by Novozymes,
and the first manuscript reporting its use dates from 1992.248

The utilized support is Lewatit VP OC 1600, a macroporous
acrylic polymer resin, where CALB is adsorbed via interfacial
activation, although apparently the way the enzyme is
immobilized results in the immobilization of some
aggregates.249–251 The features of CALB immobilized on other
hydrophobic supports is, in some instances, quite different
from that of N435, suggesting some particularities on the im-
mobilization during N435 preparation, although the enzyme
may be fully released from the support using detergents.252

This is the most used lipase preparation in the literature. A
search in Scopus on 27th November 2018 revealed 1500 papers
related to this commercial immobilized enzyme. This review
will present some examples of successful use of this biocatalyst
(focused from 2016 onwards), very likely one of the most com-
mercially available stable and active preparations that have per-
mitted many studies to be performed. Later, a deep discussion
on the problems in the use of this biocatalyst will be performed;
some will be related to the immobilization mechanism of the
enzyme and shared with any other lipase immobilized just by
the lipase interfacial activation mechanism. Other problems will

Fig. 7 Immobilization of lipases on hydrophobic supports at low ionic strength via interfacial activation: immobilization of monomeric and open
forms of lipases.
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be related to the support. Finally, some alternatives to solve the
problems will be presented.

2. Lewatit VP OC 1600

The N435 support, Lewatit VP OC 1600, is a macroporous ma-
trix with a spherical bead morphology. This organic carrier is
made of macroporous polyĲmethyl methacrylate) crosslinked
with divinylbenzene, and it is currently marketed by Lanxess
(Germany) as Lewatit VP OC 1600.249,253

The chemistry of the synthesis of the Lewatit support has
not been described in detail. However, it is presumed that
the polymethacrylate divinylbenzene copolymer matrix is pro-
duced through condensation polymerization reactions or by
addition between methacrylic esters and divinylbenzene.254

Lewatit VP OC 1600 has an average particle size, surface area,
and pore diameter of 315–1000 μm, 130 m2 g−1, and 150 Å,
respectively (product information Lewatit VP OC 1600,
Lanxess, edition: 2011-10-13). These characteristics have
allowed its application to enzyme immobilization, especially
for immobilizing lipases due to its relative hydrophobicity.
This support has not been exclusively used by Novozymes to
produce N435.

For example, CALB has been immobilized on this support
in some laboratories. Thus, the enzyme was immobilized on
different hydrophobic supports, including Lewatit VP OC
1600. The home-made preparation obtained using this sup-
port did not differ in its properties from N435, suggesting
that industrial immobilization did not modify the enzyme.252

However, both preparations differ in the enzyme catalytic
properties from CALB immobilized on other hydrophobic
supports (giving inverse enantiospecificity in the hydrolysis
of rac-2-O-butyryl-2-phenylacetic acid and different selectivity
in the hydrolysis of 3-phenylglutaric acid dimethyl diester).252

Considering the success of N435, it could be expected that
many other lipases have been immobilized on the same sup-
port. However, only some examples may be found.

For instance, a lipase from R. arrhizus was immobilized
on Lewatit VP OC 1600, Duolite A568, Amberlite X. A.D 761
and O-pentynyl dextran and used to prepare geranyl
octanoate in organic solvent. The results showed that
O-pentynyl dextran was clearly superior compared to adsor-
bents like Lewatit VP OC 1600, for which only a loading of
1.1% protein was obtained, additionally it was 3 times less
active in the esterification of geraniol and octanoic acid.255

In another instance, phospholipase A1 was immobilized
on Lewatit VP OC 1600, showing a good immobilization effi-
ciency (79% global immobilization yield) and a very high spe-
cific activity (6.7 × 10−3 μmol per g protein per min) in the
modification of phosphatidylcholine with n-3 polyunsatu-
rated fatty acids.256 These results surpassed those obtained
using other hydrophobic supports such as silica coated with
octyl groups, Accurel MP 1000 or Celite 545, among others.256

Rhizopus oryzae and Carica papaya lipases were also
immobilized on Lewatit, and used in biodiesel production by
transesterification of Jatropha oil with methanol. The results

obtained showed that the highest immobilization yield was
achieved with the lipase from Carica papaya (98%), while for
lipase from Rhizopus oryzae the immobilization yield was
only 77.2%.257 However, the percentage of methyl ester pro-
duction was 65%, w/w when using the lipase from Rhizopus
oryzae while for Carica papaya lipase it was 51.7%.257

In a last example, the lipase from Penicillium sp. (CBMAI
1583) was immobilized on a battery of hydrophobic supports
including agarose-butyl, agarose-phenyl and agarose-octyl,
acrylic Toyopearl, octadecyl Sepabeads and Lewatit VP OC
1600. The biocatalysts were used in the hydrolysis of fish oil
to get omega-3 fatty acids and ethanolysis to produce the re-
spective ethyl esters. Immobilization yields were very high in
all cases (over 75%) and the expressed activity ranged from
54.2% to 144.9% compared to the free enzyme. However, the
least stable preparation at drastic pH values was that pre-
pared using Lewatit.258

As such, the great success of Lewatit VP OC 1600 with
CALB cannot be extrapolated to other lipases. It has been
clearly showed that the selection of the “optimal” support
may depend on the enzyme, the specific reaction (e.g., to de-
termine the activity, selectivity or specificity) and the experi-
mental conditions (e.g., to determine the enzyme stability, ac-
tivity, selectivity or specificity).185,191,234,252,259

3. Novozym 435: a history of success
3.1. Use in chemistry and fine chemistry

3.1.1. Esterification reactions. The production of esters is
one of the main applications of lipases in fine chemistry.
Even though they can be synthesized chemically, the use of
enzymes permits labelling the products as green and thus in-
creases the price. N435 has been used in many examples. Es-
ters can be produced via esterification, using unmodified
substrates (that is, a thermodynamically controlled synthe-
sis), or an activated acyl donor (i.e., a kinetically controlled
process).260

Many simple esters have been produced via esterification
catalyzed by N435 using different media. As an advantage of
enzyme specificity, the specific acylation of primary alcohols
in the presence of secondary alcohols and phenols was dem-
onstrated using ethyl acetate as a medium and acylating
agent and N435 as a catalyst.261 For example, butyl butyrate
was produced by esterification in a solvent-less medium.262

Optimization via the response surface methodology gave a
yield of butyl butyrate near 100%. In a very interesting paper,
N435 was used to esterify 1-butanol and butyric acid using
diesel as the reaction medium, with a 90% yield.263 The die-
sel thus modified has some improved properties. Another pa-
per shows that butyric acid and ethanol were esterified in
n-hexane using N435.59 In another paper, the esterification of
L-ascorbic acid and n-octanoic acid or n-caprylic acid cata-
lyzed by N435 permitted yields above 85% to be reached.264

N435 was used to modify Konjac glucomannan via esterifica-
tion with oleic acid in isooctane.265 Butyl caprylate was pro-
duced from caprylic acid and butanol in a solvent-free system
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employing a stirred batch reactor catalyzed by N435 (yield
was 92%).266 N435 was used to study the thermodynamics in
the esterification of succinic acid with ethanol.267 More than
95% citronellyl palmitate ester from palmitic acid was pro-
duced by esterification catalyzed by N435 using hexane as a
solvent.268 Azelaic acid was diesterified with lauric alcohol
using N435 and used as a bacteria growth inhibitor.269 An-
other paper shows that methyl caffeate production via esteri-
fication catalyzed by N435 was improved via a microfluidic
strategy in a continuous-flow reactor (yields surpassed 98%
in 2.5 h).270 N435 was also used in the esterification of oleic
acid and kojic acid in a stirred tank reactor with a yield near
43%.271 Using a fluidized tank reactor the yield decreased,
but the operational stability of the biocatalyst was enhanced.
Esters of some free fatty acids and picolinol were produced
using N435 in toluene as the biocatalyst for the determina-
tion of free fatty acids, but they could not be applied for
some epoxy free fatty acids, fatty wax, or parinaric acid.272

The esterification of furfuryl alcohol and castor oil fatty acid
catalyzed by N435 in a solvent-free system gave a yield of
88.64% (% w/w) at 5 h.273

Ionic liquids, deep eutectic solvents and supercritical
fluids have been used in some instances as reaction media in
N435 esterification reactions. Several alkyl dihydrocaffeates
were synthesized in ionic liquids by the esterification of di-
hydrocaffeic acid with methanol, hexanol octanol and
dodecanol catalyzed by N435.274 Lauryl ferulate was produced
via esterification of ferulic acid and lauryl alcohol catalyzed
by N435 in ionic liquids (yields were higher than 90%).275

This biocatalyst was used in the esterification of n-butanol
and D,L-lactic acid in supercritical trifluoromethane/ionic liq-
uid and supercritical carbon dioxide/ionic liquid medium.276

Butyl stearate and ethyl stearate were produced via esterifica-
tion catalyzed by N435 (92% yield).277 Enzyme reuses were
not satisfactory (activity decreased after 3 or 5 reuses). The es-
terification of dihydrocaffeic acid with hexanol in ionic liq-
uids was statistically optimized using N435 as a catalyst (yield
of 84.4%).278 Oleic acid was esterified with different alcohols
in supercritical carbon dioxide using N435.279

Ultrasound has been used to intensify some of these ester-
ification reactions. The solvent-free ultrasound-assisted syn-
thesis of citronellol laurate via esterification catalyzed by
N435 gave more than 95% conversion and allowed the en-
zyme to be reused for 5 cycles.280 N435 was used under ultra-
sonic irradiation to produce L-ascorbyl fatty acid esters as
antioxidant materials.281 Ascorbyl linoleate was obtained by
the esterification reaction between linoleic acid and ascorbic
acid catalyzed by N435, using an ultrasound bath.282 The
yields reached 90% using tert-butanol as an organic solvent.

Microwave irradiation has been used in many examples as
a heating strategy. n-Butyl propionate was synthesized by es-
terification of propionic acid with n-butanol under microwave
irradiation by N435, Lipozyme TL-IM and Lipozyme RM-
IM.283 N435 was the most active biocatalyst, reaching 92%
conversion. In another paper, esterification of valeric acid
and ethanol in solvent-free medium was intensified by micro-

wave irradiation of N435, Lipozyme TL-IM and Lipozyme RM-
IM.284 N435 gave almost 70% conversion and could be
reused. The solvent-free microwave-assisted production of
isoamyl acetate via esterification (acetic acid) or trans-
esterification (acetic anhydride and ethyl acetate) catalyzed
by N435 and Lipozyme RM-IM has been studied.285 N435 was
found to be the optimal catalyst, using acetic anhydride; how-
ever it did not exhibit a good operational stability.

N435 has been compared with other lipases in some in-
stances. For example, benzyl propionate was synthesized by
lipase catalyzed esterification, comparing N435, Lipozyme TL-
IM, Lipozyme RM-IM and a home-made biocatalyst from
CALB.286 Among them, N435 exhibited the best performance
in solvent-free medium, with a yield of more than 40%. Ester-
ification of geraniol with some acids was performed using
different catalysts, with N435 being the most active one.144

Geraniol and butanoic acid were esterified by N435 in a
solvent-free system with a yield of over 95%, higher than the
yield observed using a home-made biocatalyst.287 N435 was
also the best enzyme preparation among the assayed ones in
the synthesis of several geraniol esters via an esterification
process in a continuous-flow packed-bed reactor (e.g., 87% of
geranyl propionate).288 Ethyl lactate was produced via esterifi-
cation catalyzed by N435, with a yield near 90%.289 N435
presented better results than some homemade biocatalysts or
Lipozyme RM-IM. 5-Hydroxymethylfurfural and levulinic acid
were used to produce 5-hydroxymethylfurfuryl levulinate by
esterification catalyzed by N435 (the best enzyme among sev-
eral assayed).290 A yield of 85% was achieved using
2-methyltetrahydrofuran as a reaction solvent. Levulinic acid
was esterified with 1-butanol, ethanol, and methanol cata-
lyzed by N435.291 In another paper, n-butyl levulinate was
synthesized by esterification using Lipozyme RM-IM,
Lipozyme TL-IM, and N435 in both a stirred tank batch reac-
tor and a continuous flow packed bed tubular micro-
reactor.292 N435 was the best catalyst (yields of 85%). Solvent-
free production of cetyl laurate, myristate, palmitate and stea-
rate has been also reported to be catalyzed by N435 (conver-
sion was higher than 98.5%).293 The same groups reported
that a cetyl ester mixture was obtained via esterification of
myristic acid, palmitic acid or stearic acid (95%) and cetyl al-
cohol.294 The reaction was catalyzed by different enzyme
preparations, with N435 being the reference, and not over-
taken by any of the new biocatalysts (with a product cost of
56.5 € per kg versus 58 € per kg for the best new catalyst).287

In other cases, a transesterification reaction has been used
to get the target product. For example, eugenyl acetate has been
synthesized in supercritical carbon dioxide by transesterification
of eugenol and acetic anhydride catalyzed by N435.295 More
than 55% of ferulyl oleins were produced using N435 in toluene
with ethyl ferulate and triolein as substrates.296 Methyl gallate
was produced using N435 as a catalyst and propyl gallate and
methanol as substrates, in a deep eutectic solvent.297 N435 was
found to be the most efficient among the analyzed enzymes in
the production via transesterification of the sorbitol ester of
norbixin (50% total reaction yield).298 N435 was used to catalyze
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the synthesis of L-ascorbyl phenolates via a transesterification
reaction using the corresponding vinyl phenolates.299 The trans-
esterification of butyl acetate with hexanol was studied with
N435 to analyze the causes of catalyst activity loss in enzymatic
catalyzed reactive distillation.300 The transesterification of epoxi-
dized soybean oil catalyzed by N435 permitted the production of
epoxidized soybean oil methyl esters with a 95.7% yield.301 The
biocatalyst was reutilized in 10 cycles maintaining the activity.
Vinyl acetate and 2-phenethyl alcohol have been used to
produce 2-phenylethyl acetate in hexane employing N435 as a
catalyst.302 Aromatic aldehyde oximes were acetylated by reac-
tion with vinyl and isopropenyl acetates catalyzed by N435 (the
best one among the assayed ones) to produce aromatic aldehyde
oxime esters, with the conversion being almost quantitative.303

N435 was used in the production of wax esters using microbial
oils via transesterification with behenyl or cetyl esters, with con-
version yields up to 87.3% and 69.1%, respectively.304

Methacrylated trimethylolpropane cyclic carbonates were
produced by two-step transesterifications catalyzed by N435
followed by thermal cyclization.305 Six-membered cyclic car-
bonates with methoxycarbonyloxy and hydroxyl functionali-
ties were obtained via transesterification of trimethyl-
olpropane or dimethyl carbonate in a solvent-free medium
flow reaction using N435, followed by thermal cyclization
(yields over 80%).306 Octyl ethanoate has been produced via
ultrasound-assisted transesterification catalyzed by N435 and
using vinyl acetate as an activated acyl donor in a solvent-free
medium (yield over 97%).307

Other papers compared both esterification and trans-
esterification routes. The synthesis of phenethyl acetate was
studied using a free acid and different activated acyl donors,
utilizing N435 as a catalyst.308 The authors obtained yields of
99.12% and 98.44% employing acetic anhydride and vinyl ac-
etate as the activated acyl donors, respectively (results were
only slightly lower after 20 cycles). L-Ascorbyl flurbiprofenate
was produced by both esterification and transesterification
catalyzed by N435.309 Using flurbiprofen as an acyl donor,
61.0% of L-ascorbic acid was converted, while only 46.4% was
obtained by employing a flurbiprofen methyl ester (very likely
due to the competition of methanol with L-ascorbic acid).

In some cases, two lipases have been combined to reach
the desired result. An isosorbide diester was synthesized
using a mixture of N435 and Ylip2 (77.4% of the diester).310

In another case, N435 is coupled to other kinds of enzymes.
For example, chiral diols and siloxane were coupled (66%
yield) using dioxygenase and N435 (Lipozyme RM-IM and
Lipozyme TL-IM were not active in this reaction).311

3.1.2. Production of optically pure products. The use of en-
zyme enantioselectivity (capacity of producing just one
enantioisomer) or enantiospecificity is among the most rele-
vant uses of enzymes, and N435 is not an exception. This can
be produced by hydrolysis, synthesis or transesterification, or
a combination of some of them.

Ethyl 2-((4R,6S)-2,2-dimethyl-6-((E)-styryl)-1,3-dioxan-4-yl)-
acetate and the hydrolyzed (4S,6R)-acid have been produced
by enantiospecific hydrolysis of racemic syn-ethyl (E)-2-(2,2-

dimethyl-6-styryl-1,3-dioxan-4-yl)acetate catalyzed by Novozym-
435.312 Enantiomerically pure β-halohydrin (1S)-2-chloro-1-
(2,4-dichlorophenyl)-1-ethanol was produced via kinetic reso-
lution of the corresponding racemic acetate catalyzed by
Lipozyme TL-IM or N435.313 N435 was more efficient in pro-
ducing (S)-β-halohydrin (ee of 99%). The kinetic resolution of
flurbiprofen (R,S)-[2-(3-fluro-4-phenyl)phenyl] propionic acid
using N435 as a catalyst and microwave irradiation has been
reported.314 The reaction permitted the conversion of the
R-enantiomer into an ester with high enantioselectivity (eeP
was 98.9%).

Benzoxazole derivatives were synthesized using chiral alco-
hols and esters which were previously resolved by N435 cata-
lyzed transesterification or hydrolysis.315 N435 was used in
the resolution of trans-2-phenylcyclopropyl azolides via hydro-
lysis or alcoholysis in methyl, giving trans-2-phenylcyclopropyl
1,2,4-azolide (trans-2-PCPT) of high optical purity.316

N435 sequential acetylation/hydrolysis has permitted the
production of (S)-C5- lipidic dialkynylcarbinols in 97% ee
and (R)-C5- lipidic dialkynylcarbinols in 99% ee from racemic
mixtures.317

2-Phenylpropionic acid was esterified by N435 in bio-based
solvents (e.g., p-cymene) in a continuous flow reactor, en-
abling its kinetic resolution.318 Racemic octahydroindolizine
(indolizidine) was resolved using N435 to produce (7R, 8aS)-
octahydro-5,5-dimethylindolizin-7-amine and (7S, 8aS)-
octahydro-5,5-dimethylindolizin-7-ol 9, amine.319 The resolu-
tion of (R,S)-1-(4-chlorophenyl)ethylamine was achieved
employing N435.320 The target unreacted product (S)-1-(4-
chlorophenyl)ethylamine was obtained with an ee of 99% af-
ter a conversion of 52%. N435 was used as an example of the
use of CO2-expanded bio-based liquids.321 The model reac-
tion was the resolution of rac-1-adamantylethanol via esterifi-
cation, which failed using standard solvents but gave very
good results using CO2-expanded methyltetrahydrofuran
(enantiospecificity was 200).

Transesterification is perhaps the most popular strategy.
N435 was the optimal catalyst in the resolution of (±)-1-methyl-
3-phenylpropylamine (almost absolute specificity) using methyl
benzoate as an activated acyl donor.322 N435 was used in the
enantioselective resolution of (R,S)-α-methyl-4-
pyridinemethanol via transesterification.323 The kinetic resolu-
tion of racemic-2-pentanol using vinyl butyrate as a co-
substrate was investigated, comparing several enzymes.324

N435 gave 50% conversion and 99% enantiomeric excess of (S)-
2-pentanol after only 30 min. The kinetic resolution of (R,S)-α-
tetralol via transesterification with vinyl acetate catalyzed by
N435 was carried out in a packed-bed and a stirred-tank batch
bioreactor.325 While the continuous-flow packed-bed reactor
needed a residence time of only 3 minutes to reach a 50% con-
version for (R)-α-tetralol, after 8 h the conversion obtained
using the stirred-tank batch reactor was 43.6%, although in
both cases eep ≥ 99.99% was achieved. Enantioresolution of
1-phenylethanol in reaction with corn germ oil (E > 1000) has
been performed using N435 in supercritical carbon dioxide
with a conversion near 90%.326 3-(RS)-Hydroxy-2-
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methylenebutanenitrile was resolved using several lipases via
transesterification, and N435 offered the best results.327

In some instances, two lipases allowed access to both
enantiomers. The opposite enantioselectivities of N435 lipase
and lipase AK in the acetylation reaction of (2,6,6-
trimethyltetrahydro-2H-pyran-2-yl)methanol have permitted
the production of the two enantiomeric forms of the alco-
hol.328 In other cases, a metal-enzymatic combocatalysis was
proposed. Pd/C and N435 were used in the dynamic kinetic
resolution of 1,1,1-trifluoroisopropylamine, optimized via the
response surface methodology to give a conversion higher
than 95% under optimum conditions.329

In other instances, the enantioselectivity of the enzyme
was exploited using prochiral substrates. For example,
cryptocaryalactones were chemically produced after Novozym-
435 enantioselective hydrolysis of the prochiral anti-ethyl-(E)-
2-(2,2-dimethyl-6-styryl-1,3-dioxan-4-yl)acetate.330

3.1.3. Regioselective modifications of multifunctional sub-
strates. The regioselectivity of N435, that is, the capacity of
modifying just one group of a multifunctional substrate, is a
very interesting feature of lipases, mainly explored in sugar
chemistry. However, it is not possible to forget that simpler
polyols, like glycerin, are also multifunctional compounds.
These modifications may also involve hydrolysis, esterifica-
tion or transesterification reactions.

N435 was used in the regioselective hydrolysis 2,3,4,6-
tetra-O-acetyl-α-D-glucopyranosyl hydroxybenzoate or 2,3,4-tri-
O-acetyl-α-D-xylopyranosyl hydroxybenzoate.331 Using β-D-
glucopyranosyl hydroxybenzoates, the hydrolysis involves C-4
and C-6 positions; if β-D-xylopyranosyl hydroxybenzoate is the
substrate, the deacetylation takes place at the C-4 position. In
another paper, 92% yield of isosorbide-2-acetate was obtained
via N435 catalyzed hydrolysis of isosorbide-2,5-diacetate,
thanks to the high regioselectivity of the biocatalyst.332 N435
was the best among the studied lipases for the hydrolysis of
the C-6′ acetoxy group of macrolactonic sophorolipid.333 This
product was later acetylated.

Glucose was modified with palmitic acid via esterification
catalyzed by N435 in different ionic liquids with a 77% yield
in the best case.334 Xylose caproate has been produced by es-
terification catalyzed by N435 (yield 64%).335 Direct esterifica-
tion of methyl glucoside with fatty acids has been studied
using N435 with ionic liquids or deep eutectic solvents as re-
action media.336 1,6-Di-O-octanomannitol was produced with
a purity of 90% using N435 as a catalyst of the esterification
reaction between mannitol and octanoic acid in a reaction
medium composed of acetone and n-hexane.337 N435 cata-
lyzed the acylation of flavonoid glycosides from bamboo
leaves with oleic acid, giving isoorientin-6″-oleate and iso-
vitexin-6″-oleate.338 N435 catalyzed the selective production
of 5-O-acetyl-4-C-hydroxymethyl-1,2-O-isopropylidene-α-D-ribo-
and xylofuranose which can be utilized for the convergent
synthesis of two different types of bicyclic nucleosides.339

Moreover, N435 has been utilized to produce glucosyl mono-
ester surfactants using N-fatty acyl amino acid and
D-glucose.340 N435 has been used to produce 2′,3′,5′-tri-O-ace-

tyl-4′-C-p-toluenesulfonyloxymethyl-β-D-xylofuranosylthymine
and 2′,3′,5′-tri-O-acetyl-4′-C-p-toluenesulfonyloxymethyl-β-D-
xylofuranosyluracil was used to produce C-4′-spiro-oxetano-α-L-
ribonucleosides.341 Three citrus fruit-derived flavonoids
(grapefruit extract, naringin, and neohesperidin
dihydrochalcone) have been esterified with different fatty
acids (e.g., omega-3 polyunsaturated fatty acids obtained
from fish oil) in a reaction catalyzed by N435.342 The conver-
sions were over 85%, and the modification was in the pri-
mary alcohol of the glucose moiety of the flavonoids. Differ-
ent chain length saturated fatty acids were used to acylate
cyanidin-3-O-galactoside using N435, with the best results
obtained using lauric acid.343 The product was identified as
cyanidin-3-O-(6″-dodecanoyl)galactoside. Quercetin-3-O-β-D-
glucopyranoside was acylated using phenyl propanoate, phe-
nyl acetate, benzoate and cinnamate vinyl esters with N435,
which failed when using hydroxyaromatic acids, but with
good results in the other cases.344,345 In another research
effort, quercetin-3-O-glucoside and phloretin-2′-glucoside were
regioselectively esterified with several fatty acids under soni-
cation employing N435.346 12-Vinyl dodecanedioate-23-O-
silybin was regioselectively produced using N435.347 6-O-
Acylglucose esters have been produced by N435 catalyzed es-
terifications between D-glucose and seven different fatty acid
vinyl esters which were used as emulsifiers.348 N435 was one
of the few biocatalysts with activity in the production of
(3R,6R)-6-acetoxy-7-hydroxylinalool or (3R,6S)-6-acetoxy-7-
hydroxylinalool via esterification of 6,7-dihydroxy-linalool
stereoisomers.349

Transesterification has also been used for this purpose.
D-Xylose and L-arabinose lauryl mono- and diesters have been
produced using N435 and the transesterification reaction was
performed in an organic medium. The reaction used vinyl
laurate and L-arabinose or D-xylose.350 Using L-arabinose, a
57% overall yield of one monoester and one diester was
achieved. Using D-xylose, a 74.9% global yield of modified
products was achieved, but the reaction regioselectivity was
lower and two monoesters and two diesters were synthe-
sized.350 Modification of lactulose with vinyl laurate was stud-
ied with 10 lipases.351 N435 modified mainly the 1-O-
position, while Lipozyme TL-IM and Lipozyme RM-IM mainly
modified the 6-O-position. The regioselective synthesis of 3-O-
acyl monoester lutein using N435 and vinyl propionate or vi-
nyl stearate as activated acyl donors has been also success-
fully reported.352 N435 was found to be the most efficient li-
pase to catalyze the production of Agave fructans mono- and
diacylated with lauric acid via a transesterification reac-
tion.353 1,3-Di-O-benzyl-myo-inositol was selectively acetylated
using vinyl acetate.354 When Lipozyme RM-IM and Lipozyme
TL-IM were utilized, l-(+)-6-O-acetyl-1,3-di-O-benzyl-myo-
inositol was obtained. However, N435 produced the non-
chiral 5-O-acetylated product.354 Fluorescent glycolipids were
produced using vinyl esters and functionalized sugars
employing N435 as a catalyst.355

Modification of glycerol is also performed, usually via
glycerolysis of esters of the target acid. Glycerolysis of
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phenolic acid ethyl esters under ultrasound irradiation and in
a solvent-free system was used to get monoglyceryl phenolic
acids using N435 (yields over 97%).356 Glyceryl monocaffeate
has been produced by glycerolysis of ethyl caffeate catalyzed
by N435, and after optimization, the yields were over 95%.357

3.1.4. Polymer production and modification. Another pop-
ular application of lipases and N435 is in the production or
modification of polymers. Polymer production is one of the
most studied areas, as it can use very different materials and
give biodegradable products. For example, the synthesis of
polymers based on lactone derivatives is quite successful.
Thus, a polyester derived from ω-pentadecalactone was pro-
duced employing N435 in a closed variable volume reactor
and different organic solvents, with yields of around 90 wt%
and molecular weights of the polymer over 50 000.358 This
group later studied the use of supercritical fluids in this reac-
tion, with lower yields and molecular size (around 60 wt%
and 33 000 g mol−1).359 Another paper shows the polymeriza-
tion of ε-caprolactone using lipase N435 as a catalyst.360 The
successful enzymatic copolymerizations via ring opening of
ε-thiocaprolactone and ε-caprolactone catalyzed by N435 have
been reported.361 The polyester polyĲω-pentadecalactone) was
synthesized using N435 and a bifunctional initiator/chain
transfer agent, with ω-pentadecalactone as the substrate.362

Polycaprolactone was produced via enzymatic ring-opening
polymerization. Irgacure-2959 was utilized as the nucleophilic
initiator and N435 as the catalyst.363 N435 exhibited better
activity than NS 88011 (a commercial product also from
CALB) in the production of aliphatic polyesters using
globalide and ω-pentadecalactone as substrates, although the
length of the polymer was smaller.364 PolyĲε-caprolactone) has
been synthesized via ring-opening polymerization of
ε-caprolactone catalyzed by N435 in ionic liquids.365

Other polymers are based on 2,5-furandicarboxylic acid. For
example, 2,5-furandicarboxylic acid-based semi-aromatic poly-
amides have been produced by polycondensation of dimethyl
2,5-furandicarboxylate and aliphatic diamines of diverse
lengths, catalyzed by N435.366 The best results were obtained
using 1,8-octanodiamine. 2,5-Furandicarboxylic acid-based
semi-aromatic polyamides have been produced via polymeriza-
tion of dimethyl 2,5-furandicarboxylate catalyzed by N435.367

In other instances, glycerol based polymers are produced.
For example, N435 was used to produce polyglycerol fatty
acid esters of different-chain-length fatty acids in a solvent-
free system.368 In another instance, poly-(glycerol adipate)
was produced from divinyl adipate and glycerol by N435 cata-
lyzed condensation, controlling the branching of the polymer
with the temperature.369

Sugar-based polymers may also be found. Sugar-poly-
ethylene glycol amphiphilic copolymers were synthesized
using N435 as a catalyst for the transesterification, introduc-
ing decanoic and myristic acids.370 D-Fructose (99%) and
D-glucose (34%) were modified with 2,2,2-trifluoroethyl meth-
acrylate in tert-butanol using N435, and methacryloyl-D-fruc-
tose was polymerized using as the crosslinker ethylene glycol
dimethacrylate.371

Glycerolysis of certain oils are also important to get mono-
mers useful in polymer production. For instance, andiroba oil
was subject to glycerolysis catalyzed by N435 to produce a
polyol in a tubular fixed bed reactor using t-butanol as the reac-
tion medium (monoacylglycerol yield was over 65%).372 This
was used later for polyurethane foam production. In another
study, enzymatic glycerolysis of castor oil catalyzed by N435 in
a solvent-free system gave a mixture of mono and diglycerides
that were used in the stabilization and synthesis of polyĲurea-
urethane) nanoparticles via miniemulsion polymerization.373

Later, a polyurethane foam was produced by this research
group using mono- and diacylglycerols obtained by the
glycerolysis of castor oil (64% yield).374 A polymer was prepared
from glycerol and oleic di-acid using N435 or classical thermo-
chemical methods.375 The enzyme polymerized product was
found to be more biodegradable than the chemical one.

However, the range of materials used to produce polymers
using N435 is very wide. Trimethylolpropane, 1,8-octanediol,
and adipic acid were first pre-polymerized via the automatic
catalytic effect of the reactants themselves to obtain an appro-
priate reaction substrate mixture.376 Dimer acid cyclocarbonate
was produced by the N435 catalyzed esterification of glycerol
carbonate and dimer acid from Sapium sebiferum oil.377 This
compound could be used in the synthesis of bio-based non-iso-
cyanate polyurethane ions. Chiral polyĲester amide) polymers
were produced using N435, and the polymer successively
presented hydroxyhexanoic and aspartate acids.378 The reac-
tions started using L or D N-(6-hydroxyhexanoyl) aspartate dies-
ters, and methyl or benzyl ester groups at the α or β-carbonyl
positions of the aspartic acid.

N435 has been used also to modify some polymers, mainly
starch. For example, N435 was used to modify starch with
myristic acid to alter its physicochemical properties.379 In an-
other paper from the same group, N435 was utilized in the pro-
duction of myristic acid starch ester in a solvent-free system.380

The modified starch exhibited good hydrophobicity and emul-
sion stability, and the gel strength was reduced. In another pa-
per, lauric acid was esterified with starch using ionic liquids as
reaction media and N435 as a catalyst, in order to improve the
starch hydrophobicity.381 Octenyl succinic anhydride starch pro-
duction in ionic liquids using N435 has been also reported.382

Novozym 4435 does not always afford the best results. For
example, CALB immobilized on polypropylene beads was
compared to N435 in the polymerization of dimethyl adipate
and 1,4-butanediol (BDO) using an optimized preparation.383

In this case, higher molecular weight polyesters (4 kDa versus
3.1 kDa) were obtained using the home-made catalyst.

In other cases, N435 was combined with a chemo-catalyst.
For example, this biocatalyst, the 1,5,7-triazabicyclo [4.4.0]
dec-5-ene biocatalyst and an organocatalyst were employed in
the polymerizations of ε-caprolactone, δ-valerolactone,
L-lactide and trimethylene carbonate.384 N435 did not work
using L-lactide while the organocatalyst had low activity using
caprolactone. The enzyme and organocatalyst were combined
in an assembled tandem microreactor system, producing dif-
ferent well-defined triblock copolymers.384
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Finally, N435 can be used to degrade some polymers. As
an example, N435 was used in the successfully degradation
of poly (butylene succinate-co-diethylene glycol succinate) and
poly (butylene succinate-co-butylene diglycolic acid).385

3.1.5. Biolubricant production. The production of bio-
lubricants is nowadays an important topic in lipase use, as
the use of mineral oils may be dangerous for the environ-
ment. However, there are few examples using N435, as the
features of the free fatty acids and alcohols useful for this ob-
jective may not be adequate for the specificity of CALB. Nev-
ertheless, since 2016 there have been some examples. Thus,
monoricinolein and diricinolein have been obtained by the
glycerolysis of castor oil in a solvent-free system using N435,
Lipozyme RM-IM and Lipozyme TL-IM.386 N435 was found to
have the best performance in this reaction, giving a bio-
lubricant yield of almost 55%. However, in other cases N435
was not so adequate. The esterification of free fatty acids
(obtained from soybean-oil hydrolysis) with neopentyl glycol,
trimethylolpropane or pentaerythritol) was used to produce
biolubricants, comparing the performance of Lipomod
34MDP, Lipozyme RM-IM and N435.387 N435 gave the worst
results using all alcohols.

3.1.6. Amidation reactions. Although lipases are esterases,
they have been described to catalyze some amidation reac-
tions, via direct amidation or a kinetically controlled process.
For example, the ammonolysis catalyzed by N435 in a packed
bed reactor permitted the conversion of (5-S)-N-(tert-
butoxycarbonyl)-5-(methoxycarbonyl)-2-pyrroline to its corre-
sponding amide.388 Another paper shows that elastin-like
recombinamers containing carboxylic groups may be modi-
fied by introducing different aminated compounds (amino-
phenylazobenzene, amino phenylboronic acid or amino-
polyethylene glycol), using N435 as a catalyst, to produce
photoresponsive, glucose-responsive or PEGylated elastin-like
recombinamers.389 N435 was also used as a catalyst for the
transesterification/amidation of ethyl dihydroferulate.390

Arachidonoyl ethanolamide was produced by amidation of ar-
achidonic acid with ethanolamine catalyzed by N435 (95.6%
yield), showing that the enzyme has an excellent
chemoselectivity, even being an esterase.391

3.1.7. Promiscuous reactions. Enzyme promiscuity is now-
adays confused with enzyme broad specificity, but at the be-
ginning it was the capacity of some enzymes to catalyze reac-
tions far from their natural function, in many instances not
involving the lipase active center.92

Novozym has been shown in the last few years to exhibit
some of these promiscuous activities. For example, the
Morita–Baylis–Hillman reaction between 2, 4-dinitrobenz-
aldehyde and cyclohexenone was catalyzed by N435 with iso-
nicotinamide as a necessary co-catalyst and β-cyclodextrin as
an additive to improve the enzyme activity with a yield of
43.4% in 2 days.392 In another example, the amidation of ani-
lines with 1,3-diketones via C–C bond cleavage has been
reported using also N435 as a catalyst.393 The yields ranged
from 64.3% to 96.2%, retaining more than 80% of the initial
yield after seven reuses.

Lipase-mediated Dakin reactions have been reported. A
broad variety of hydroxylated benzaldehydes were oxidized
with high yields (from 90% to 97%) using N435, which could
be reutilized in 10 cycles while maintaining its activity
intact.394

Epoxidation of unsaturated oils is one of the most popular
promiscuous reactions catalyzed by lipases249,395 and this re-
action has been also studied using N435. In this reaction, the
lipase is responsible for the perhydrolysis of the oil using as
the nucleophile hydrogen peroxide, forming a peracid that is
actually responsible for the epoxidation reaction. For exam-
ple, a research study shows how different lipases were
assayed in the chemoenzymatic epoxidation of Karanja oil
and N435 was found to be the most efficient one (epoxide
conversion of 80%,) but hydrogen peroxide compromises the
biocatalyst reuse due to enzyme inactivation.396 In a similar
way, monoepoxidated linoleic acid was produced by
employing N435 with a reaction yield of 82.14%.397 N435 ep-
oxidation of acid sunflower oil was improved by introducing
butyric acid as an active oxygen carrier (reaching an oxirane
conversion of 96.4 ± 3.0%).398,399 Finally, ultrasonic irradia-
tion was used for enhancing N435 activity in the epoxidation
of soybean oil.400 A relative percentage conversion to oxirane
oxygen of 91.22% was achieved within 5 h. The lipase was
reused six times to produce epoxidized soybean oil. The
functionalization of lignin from Organosolv and Kraft
pulping processes to obtain oxirane rings was analyzed using
N435 as a catalyst for the peroxidation of caprylic acid to
peroxycaprylic acid (90% yield).138 This peracid reacted with
the unsaturated C–C bonds to form the oxirane ring, with a
yield of 55% after optimization.

3.2. Food technology: glyceride modifications and production

3.2.1. Hydrolysis of glycerides. This reaction is the physio-
logical function of lipases. However, the in vitro oil hydrolysis
capability of lipases has some applications such as in the
production of free fatty acids.42,49–54

Thus, the hydrolysis of waste cooking oil under solvent-
free conditions was performed using N435 under ultrasound
irradiation to produce free fatty acids.401 After 2 h, a yield of
75.19% was obtained. Novozym-435 and Lipozyme TL-IM li-
pases were used to hydrolyze anhydrous milk fat and anhy-
drous buffalo milk fat and to enhance the flavor of milk, with
N435 giving the higher production of butanoic and hexanoic
acids.402

In another paper, virgin coconut oil (very rich in lauric
acid and myristic acid) was subjected to glycerolysis catalyzed
by N435 to produce mono- and diacylglycerols (MAGs and
DAGs) to reinforce its antibacterial functionality.403 Another
example is the hydrolysis of triacylglycerols from anhydrous
milk catalyzed by Novozym-435 to decrease the percentage of
two short or medium chain fatty acids while the percentage
of triglycerides with at least two long-chain fatty acids (CN
44–54) enhanced the melting and crystallization profiles of
the product.404 In another instance, hydrolysis of oils by
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using some organic co-solvents produced a monophasic sys-
tem that reached 88% using N435, while using Lipozyme TL-
IM or Lipozyme RM-IM the reaction reached only 66%.405

N435 and Thermomyces lanuginosus lipase were compared
in the hydrolysis of anhydrous milk cow fat or anhydrous
buffalo milk fat using ultrasonic microwave-assisted extrac-
tion to eliminate short chain fatty acids.406 N435 produced a
significant decrease of triglycerides with short-chain fatty
acids, altering the melting point of the products.

3.2.2. Alcoholysis of glycerides. The alcoholysis of glycerides
is a kinetically controlled synthesis, where the activated acyl do-
nor is the glyceride and the nucleophile is an alcohol. The yields
depend on the enzyme kinetic properties, and this is the base of
biodiesel production.407 Here, we will focus on oil modification
via alcoholysis, in many instances using glycerin as an alcohol.

N435 was also used in the glycerolysis of ratfish liver oil to
produce bioactive lipid carriers with potential self-
emulsifying properties.408 The same group reported later that
the N435 catalyzed glycerolysis of ratfish liver oil allowed the
process to be studied in a pilot plant, showing a catalyst half-
life of 145 h (enzyme activity cannot be fully restored by hex-
ane washings), and that glycerolysis of triacylglycerol was 1.5
times faster than that of diacylglycerol.409 N435 was used for
the glycerolysis of n-3 polyunsaturated fatty acid-rich ethyl oil
as the first step in a new two-step process designed for the
production of pure triacylglycerols enriched in n-3 polyunsat-
urated fatty acids.410 Diacylglycerol-enriched soybean oil was
produced via glycerolysis of soybean oil catalyzed by N435 in
a solvent-free system using a modified bubble column reac-
tor.411 Almost 50% diacylglycerol content was obtained and
the enzyme can be reused in 10 cycles. Sardine oil was
subjected to glycerolysis to produce mono and diglycerides
rich in unsaturated fatty acids using supercritical CO2 and or-
ganic solvents.412 47.6% of monolaurin was produced by
glycerolysis of methyl laurate, with N435 being more efficient
for this reaction than the lipase from Aspergillus oryzae.413

Polyunsaturated fatty acids in the form of
2-monoacylglycerols were prepared by ethanolysis catalyzed
by N435 (yield of 27% of 2-monoacylglycerols).414 Low temper-
ature crystallization allowed 90% of 2-monoacylglycerol to be
obtained, while molecular distillation gave a polyunsaturated
fatty acid concentration of 72% while decreasing the content
of 2-monoacylglycerols to 69.81%.

Soybean oil and ethanol were used in a reaction catalyzed
by N435 to produce 2-monoacylglycerols and then, after ester-
ification again catalyzed by N435 (yield around 65%) with
acetic acid, a low energy lipid was produced having 55% of
the energy of the initial oil.415 The molecular distillation gave
94.3% purity of the desired low energy oil. The synthesis of
2-docosahexaenoylglycerol was performed via ethanolysis of
algal oil using several lipases, with N435 being the most effi-
cient biocatalyst and giving 27–31% of monoglycerides. In
this case the catalyst could be reused for 7 cycles without any
significant inactivation.416

Monoacylglycerols rich in ω-3 polyunsaturated fatty acids
were obtained by glycerolysis of sardine oil catalyzed by N435

(67% MAGs) and further purified via short path distilla-
tion.417 In another example, the performances of N435,
Lipozyme TL-IM, and Lipozyme RM-IM in producing
2-monoacylglycerols rich in ω-3 polyunsaturated fatty acids
(PUFAs) via ethanolysis of supercritical carbon dioxide
extracted Pacific oyster oil were compared.418 N435 gave a
yield of 43.03%, very similar to that obtained using Lipozyme
TL-IM (45.95%).

In another case, short- and medium-chain 1,3-
diacylglycerols were synthesized as products with very low-
calorie features via transesterification reactions between
short- and medium-chain fatty acid ethyl esters and glyc-
erol.419 Different enzymes were assayed and N435 did not
need the previous adsorption of glycerol on silica gel to form
acylglycerols and gave a yield just behind that of Lipozyme
RM-IM (52 versus 60.7%). Using N435, the reaction rate can
be increased by adding 1% (w/w) of lecithin.

In some cases, N435 is combined with other lipases to
achieve the objective. Ethanolysis of low-grade fish oil was sub-
sequently performed using Novozyme NS 81006 and N435, to
flexibly produce fatty acid ethyl esters or concentrated polyun-
saturated fatty acids.420 First, most of the fatty acid glycerides
were transformed into ethyl esters (yield of 70–80%), while less
than 20% of docosahexaenoic fatty acids were modified using
Novozyme NS 81006. Using molecular distillation to eliminate
the esters, the amount of glycerides containing polyunsaturated
fatty acids increased from ∼18% of crude fish oil to 34%. A sec-
ond ethanolysis step catalyzed by N435 converted these glycer-
ides to ethyl esters with 80–100% yield.420

In other reactions, N435 was not the best catalyst. For ex-
ample, N435, Lipozyme TL-IM, Lipozyme RM-IM, and Lipase
DF were evaluated in the synthesis of 2-monoacylglycerol
enriched in omega-3 polyunsaturated fatty acids in supercriti-
cal carbon dioxide using salmon frame bone via
ethanolysis.421 In this instance, Lipozyme TL-IM showed the
highest activity. Also, in the glycerolysis of lard, Lipozyme
RM-IM worked better than N435.422

Eicosapentaenoic and docosahexaenoic acid enriched fish
oil triacylglycerols were prepared by a two-step process.423

Using AY “Amano” 400SD, fish oil was partially hydrolyzed,
increasing the content of the target acids in the acylglycerols
from 19.30% and 13.09 wt% to 25.95 wt% and 22.06 wt%, re-
spectively. Subsequently, N435 was used in a trans-
esterification reaction of the product with a stock enriched in
eicosapentaenoic and docosahexaenoic ethyl esters. The final
products prepared presented more than 95% of triacyl-
glycerols, with high content of eicosapentaenoic and
docosahexaenoic acids (28.20% and 25.61%, respectively).423

3.2.3. Esterification of glycerol. This is the opposite of the
hydrolysis reaction, and it is defined as a thermodynamically
controlled synthesis using unmodified substrates. The yields
are determined by the thermodynamics of the process.407

However, as glycerol is a pro-chiral and multifunctional sub-
strate, enzyme selectivity or specificity may affect the final re-
sults, as some products may not be obtained if the enzyme is
unable to produce them.
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Caprylic acid and glycerol were esterified via ultrasound-
assisted intensification, comparing Lipozyme RM-IM and
N435; both enzymes showed their (yields just under 95%) ap-
plicability and were reused for 10 cycles.424 Caprylic acid/
polyunsaturated fatty acids/caprylic acid structured lipids
were synthesized via esterification of omega-3 concentrate
fatty acids with dicaprylic glycerol catalyzed by N435.425 N435
was used to improve the camellia seed oil quality by esterifi-
cation of the free fatty acids of the oil with epicatechin (the
main products were epicatechin oleate and epicatechin
palmitate).426

In another paper, medium chain fatty acids from different
sources and glycerol were used to produce structured mono-
and diacylglycerols using N435, Lipozyme RM-IM and
Lipozyme TL-IM as catalysts.427 N435 gave the highest incor-
poration of free fatty acids into glycerol (90% conversion of
medium chain fatty acids into glycerol was obtained in 30
min). Diacylglycerols were rapidly synthesized in a solvent-
free system via esterification of glycerol with a palm oil de-
odorizer distillate and 40 wt% oleic acid using N435 in a bub-
ble column reactor.428 The content of diacylglycerols was
near 60%, while around 25% of monoglycerols and less than
3% of free fatty acids were found in the products.

N435 has been described as the most efficient catalyst in
the esterification of glycerophosphorylcholine and conjugated
linoleic acid.429 However, an immobilized mutant lipase
(MAS1-H108A) improved the results from 70 mol% to 89.10
mol%. In another paper, the esterification of glycerol and
caprylic acid in supercritical carbon dioxide catalyzed by
N435 and Lipozyme RM-IM has been studied.430 N435
exhibited better performance, with a conversion of free fatty
acids to tricaprylin of 97.3% in 6 h reaction time at 50 °C; 15
reuses had a small effect on the enzyme activity.

In some cases, several lipases are sequentially used to
get the desired product. For example, a stearidonic acid rich
triacylglycerol was produced via hydrolysis, followed by a
two-step lipase-catalyzed esterification under vacuum, each
catalyzed by a lipase.431 A stearidonic acid rich stock was
obtained by the hydrolysis of echium oil by using Candida
rugosa lipase. For the esterification, N435 was used to ester-
ify the stearidonic acid rich stock with glycerin and later,
Lipozyme TL-IM continued this esterification. This gave an
86.4% yield. In another example, triglycerides enriched in
n-3 polyunsaturated fatty acids were prepared using a multi-
step process. N435 was used to esterify n-3 polyunsaturated
fatty acids and glycerol and these partial glycerides were
subjected to hydrolysis using an immobilized lipase from
Malassezia globosa.432

Linoleic, conjugated linoleic and pinolenic acids were es-
terified, using N435 as a catalyst, with a solvent-free system
to prepare triacylglycerols with anti-obesity effects. A triglycer-
ide content of 98.9% was obtained.433 N435 showed pro-
nounced selectivity to pinolenic acid > conjugated linoleic
acid > linoleic acid.

In some cases, other components of the oils are used in
the esterification to get the target products. For example, es-

terification of tyrosol and hydroxytyrosol extracted from olive
mill wastewater with various fatty acids (caprate, laurate, and
palmitate) catalyzed by N435 was successfully performed and
shown to be efficient to avoid lipid oxidation.434

3.2.4. Interesterification of glycerides. This is a quite com-
plex reaction, using two esterified substrates (such as glycer-
ides or simple esters). The reaction proceeds via hydrolysis
of the triglyceride to release a free hydroxyl group, and re-
lease a free fatty acid to the medium. The hydrolysis step is
followed by the formation of a new ester bond by the reac-
tion of the newly created hydroxyl group with a free fatty
acid released from the other substrate, or by the use of this
hydroxyl group in the alcoholysis of a free fatty acid re-
leased from the other ester.435 Obviously, the whole process
is strongly dependent on the enzyme features, including the
immobilization strategy.32

For example, different oil blends have been inter-
esterified. Thus, different lipases (Lipozyme RM-IM and
N435) were used in the interesterification of mixtures of
lard and rapeseed oil containing 35 and 25% of lard.436 The
reaction was performed faster and at higher temperature
using N435 but the Sn-2 and Sn-1,3 distributions of the
product were nearly random when N435 was used, while
Lipozyme RM-IM did not modify the Sn-2 position. In an-
other research study, the increase in omega-3 content at the
Sn-2 position of high oleic sunflower and sardine oil via en-
zymatic interesterification was studied using Lipozyme TL-
IM and N435, with Lipozyme TL-IM being more adequate.437

N435 stood out from other catalysts (solid acid, sodium hy-
droxide and methoxide) in the production of low trans mar-
garine fat analogs by interesterification of soybean oil and
fully hydrogenated palm oil.438 Medium-chain triacylglycerol
rich structured lipids were synthesized by lipase-catalyzed
interesterification of ARASCO with medium-chain triacyl-
glycerols, comparing four commercial immobilized lipases,
with N435 being the most efficient one.439 Glycolipids were
produced using α-chloralose and various vinyl esters as sub-
strates and N435 as a catalyst.440

In other cases, oils and simple free fatty acid esters
have been used. For instance, medium and long chain tri-
acylglycerols were synthesized in a solvent-free system by
interesterification of soybean oil with medium chain esters
using N435 as a catalyst.441 In another case, menhaden
oil and ethyl caprate were used to produce structured
lipids using two different lipases as catalysts. Results were
better than those using a free acid.442 N435 (almost 31%)
gave better results than Lipozyme RM-IM (almost 20%).
Feruloylated shea butter and feruloylated coconut oil were
produced by interesterification of vegetable oil/fat with
ethyl ferulate employing N435 as a catalyst in a packed-
bed bioreactor.443

As in all other reactions, N435 did not always present the
best properties. A blend of palm stearin and vegetable oil was
interesterified to enhance the plastic range, comparing N435
and Lipozyme TL-IM.444 In this case, the Lipozyme TL-IM
product favored more the formation of β′ crystals.
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In some cases, combi-lipases have been used (see the bio-
diesel section for the concept of combi-lipases). High Sn-2
docosahexaenoic and arachidonic acid oils were produced in-
dependently via enzymatic interesterification of Sn-2
docosahexaenoic and arachidonic acid oil rich single cell oils
using a mixture of immobilized lipases, Lipozyme TL-IM and
N435.445

3.2.5. Acidolysis of glycerides. In this case, an oil and the
desired free fatty acid are mixed. The mechanism involves hy-
drolysis of an ester bond in the glyceride, followed by esterifi-
cation using the substrate fatty acid.435 Again, the results are
very dependent on the enzyme specificity and selectivity.32

Thus, moringa oil (formed mainly long chains) was
subjected to acidolysis with different medium chain fatty
acids in supercritical CO2, comparing the performance of
N435 and Lipozyme RM-IM.446 N435 gave the highest yield
(63.2%). The biocatalyst could be reused for 15 cycles.

Acidolysis of camellia oil by lauric acid revealed that N435
was nearly non-selective due to its susceptibility to solvent
systems (the enzyme was more selective in hydrolysis in
aqueous medium).447

Human milk fat substitutes with four types of n-3 fatty
acids for infant formula were produced via acidolysis of
Nannochloropsis oculata rich oil by free fatty acids from Iso-
chrysis galbana in a solvent-free SYSTEM using N435, TL-IM
and RM-IM as biocatalysts.448 A product containing a total of
n-3 PUFAs of 13.92–17.12 wt% in the Sn-2 position under opti-
mal conditions could be obtained using N435 and Lipozyme
TL-IM.

In another research effort, castor oil was reacted with
caffeic acid to produce castor oil-based caffeoyl structured
lipids with a conversion and yield of monoglycerides bearing
caffeic acid of near 95%.449

Menhaden oil and capric acid were used to produce struc-
tured lipids using two different lipases as catalysts.442 N435
gave a yield of 28.63 mol%, while Lipozyme RM-IM gave a
yield of only 9.81 mol% of incorporation of capric acid.

In another case, oleic acid and corn oil were reacted in a
bubble column reactor system using N435 as a catalyst, to
produce highly unsaturated glycerides; the final product
contained 46.67 wt% of monoglycerides and 35.56 wt% of di-
glycerides.450 This treatment decreased the oil crystallization
rate significantly.

The synthesis of conjugated linoleic acid partial glycerides
was performed using different lipase commercial prepara-
tions. N435 offered much better results than Lipozyme RM-
IM or Lipozyme TL-IM.451 Results could be improved by
using other immobilization techniques, and the lipase from
R. miehei immobilized on another hydrophobic support be-
came more active and selective than N435.

Citronellic acid was used in an acidolysis process of egg-
yolk phosphatidylcholine using five commercially available
immobilized lipases as biocatalysts.67 The best results were
achieved using N435, with 33% yield of a phospholipid frac-
tion enriched with citronellic acid in the Sn-1 position (39%
incorporation in this fraction).

As in other cases, N435 is not always the recommended cat-
alyst. For example, Lipozyme TL-IM, Lipozyme RM-IM and
N435 were compared in the synthesis of caprylic or capric
acids/long chain fatty acids/caprylic or capric acid triglycerides
via batch acidolysis in solvent-free medium.452 As an oil sub-
strate, grapeseed oil (rich in linoleic acid) was utilized. The best
results were obtained using capric acid and Lipozyme RM-IM.

3.3. Energy: biodiesel production

Similar to all lipases, N435 has been intensively used in bio-
diesel production.12,72–74,145–147 Here, we have collected some
of the most representative examples since 2016.

For example, biodiesel production from Ceiba pentandra
oil using N435 was optimized to reach a 78.0% yield via step-
wise addition of 9-fold methanol excess, although a decrease
to less than 70% was observed after only 3 cycles.453 In an-
other research study, ethanolysis of triglycerides in a solvent-
free reaction medium catalyzed by N435 as a biocatalyst was
studied, trying to understand the acyl migration that results
in 100% yield.454 The paper shows that long-chain fatty acids
with unsaturation have limitations in their access to the ac-
tive site of the lipase. Triolein ethanolysis was performed in a
fixed-bed reactor operated in circulating batch mode using
N435.455 Triolein was also methanolyzed by N435 using di-
methyl ether (DME) as the reaction medium in a batch reac-
tor and a continuous pipe reactor.456 In another example, oil
obtained from the seeds of Manilkara zapota (L.) was trans-
esterified with methanol, comparing different lipases as bio-
catalysts, with the best results achieved using N435.457

Novozym-435 gave 96% biodiesel yield after 12 h, but the ac-
tivity decreased progressively (after 6 cycles, the yield was
only 72%). However, the activity can be recovered by incubat-
ing it in soybean oil, 2-butanol or tert-butanol. In another re-
search effort, N435 was also employed to analyze the advan-
tages of a micro packed-bed reactor based on a two-parallel-
plate configuration to produce biodiesel.458

In another investigation, Eruca sativa oil was used as a
substrate in a comparison between N435 and Aspergillus niger
lipase, obtaining a much higher yield using N435 (98.3% ver-
sus 56.4%).459 N435 was also used to produce biodiesel from
degummed crude palm oil and optimized by the response
surface methodology.460 Ethanolysis of babassu oil catalyzed
by N435 gave yields over 98% in a fluidized bed reactor.461

N435 gave promising values of 85 and 76% of biodiesel from
waste cooking oil and M. circinelloides oil, respectively.462

Fish oil was transformed into biodiesel and enriched in poly-
unsaturated fatty acids by methanolysis catalyzed by NS
81006 followed by hydrolysis by N435.463

Different lipases were compared in biodiesel production
using sunflower oil and methanol.464 Although N435,
Lipozyme TL-IM and Lipozyme 62350 showed similar reac-
tion rates, N435 was more stable and gave the highest
yields. Biodiesel from crude Citrullus colocynthis oil and
methanol was produced in tert-butanol with a yield of
97.8% using N435.465
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No standard oils have been used for biodiesel production
using N435. For example, black soldier fly larvae fat and
methanol were used to produce biodiesel, comparing differ-
ent lipases, and N435 showed the highest activity.466 Using
the response surface methodology, the process was opti-
mized, giving a biodiesel yield of over 96%. N435 could be
reused 20 times, decreasing the biodiesel yield to 92.5%.
Using this oil, methyl acetate was proposed to obtain bio-
diesel via interesterification catalyzed by N435 with a yield
of almost 97%.467 This avoided methanol enzyme inactiva-
tion and the biocatalyst could be used 20 cycles while
maintaining the activity. In order to avoid methanol lipase
inactivation, in another study N435 was utilized as a suc-
cessful model to produce biodiesel from soybean oil by
drip-feeding of methanol, obtaining a yield as high as
98.75%.468 Spent coffee oil was also used to produce biodie-
sel, comparing many different biodiesels, with Novozym-435
offering better results (around 96%).469

In another case, microalgal oil extracted from
Nannochloropsis gaditana was used, comparing N435 and Rhi-
zopus oryzae in tert-butanol medium.470 The highest reaction
rate was obtained using the least polar lipid content. The
same group using the same algae and N435 showed direct
transesterification (in the presence of the biomass) in
tert-butanol.471 A biodiesel yield of more than 99% was
achieved and the product was recovered by hexane extraction.
However, the enzyme activity rapidly decreased. Another
microalgae oil, extracted from Aurantiochytrium sp., KRS101,
was also used in biodiesel production catalyzed by N435, tak-
ing advantage of the high concentration of free fatty acids to
produce a biodiesel free of glycerol with 89.5% conversion
under optimal conditions.472 Glycerol was undetectable in
the biodiesel.

In a very interesting work, waste cooking oil and dimethyl
carbonate (DMC) were used as reactants and N435 as a cata-
lyst to simultaneously produce biodiesel and glycerol carbon-
ate as a very interesting by-product.473,474 The enzyme
maintained 88% of its activity after six reaction cycles.

Not only has a suitable biodiesel been produced using
N435, but also some biodiesel additives. For example, an
n-butyl oleate ester using N435 in a stirred basket reactor was
produced with a yield of 98%, as a biodiesel additive.475

As N435 is regarded as a highly effective biocatalyst in bio-
diesel production, N435 is used to show the advantages of
new preparations. Sometimes the new preparations seem to
offer better possibilities. For example, a polyacrylonitrile
(PAN) hollow membrane was activated with nitrile-click
chemistry and treated with sodium alginate and CaCl2. The
immobilized enzyme was 2.5 fold more active than N435.476

3.3.1. Synthesis of biodiesel in non-conventional systems.
This biocatalyst has been used to assay different heating or
stirring systems. Biodiesel was produced in a solvent-free sys-
tem under ultrasonication using ethanol, soybean oil or
macauba fruit oil as a substrate, reaching a yield of 88% for
soybean oil and 75.2% for macauba oil.477 Biodiesel was pro-
duced in continuous mode using an ultrasound bath, com-

paring N435 and Lipozyme TL-IM, and it was shown that
Novozym-425 gave higher yields.478 In another case, trans-
esterification of Jatropha oil ( Jatropha curcas L.) with ethanol
in a solvent-free system under microwave irradiation and
comparing 7 lipases was reported.479 Biodiesel yields of over
93% were obtained and reaction rates were similar to that
obtained using N435.

Ionic liquids have been also used to produce biodiesel
using N435.480 The paper established some rules on the ef-
fect of ionic liquids on enzyme activity. In another case, N435
was used with zwitter-type ionic liquids as a cocatalyst to im-
prove the reaction rate using sunflower oil, obtaining a 64%
biodiesel yield.481 Using the same system with a slurry of
whole-cell Chlorella zofingiensis in water as a substrate, the
biodiesel yield reached up to 16%. The causes of this de-
crease are discussed in the paper.

3.3.2. Oil deacidification. In many cases, N435 has been
used as a first step in biodiesel chemical production by re-
ducing the amount of free fatty acids, which is not compati-
ble with traditional alkaline catalysis. Rapeseed oil rich in
free fatty acids was treated with N435 reduced the acid con-
tent from the initial 15% to only 0.5% F. F.A in 1 h.482 The
authors developed a system where 15 m3 of oil could be de-
acidified by just 1 kg of biocatalyst. The same effort to re-
duce acidity was performed on poultry fat, showing that
N435 permitted a higher deacidification than 3 other li-
pases.483 At least a 57% decrease of free fatty acid content
was achieved. In another instance, macauba (Acrocomia
aculeata) oil has 35–43% acidity that was decreased using
N435 in a esterification reaction to almost 1%, and at the
same time some transesterification is performed (55% of es-
ters may be found in the final product).484 The biocatalyst
was used up to 150 times. In another research study, de-
acidification of high-acid rice bran oil was achieved by enzy-
matic amidation between the free fatty acids and ethanol-
amine. The acid value was decreased from 21.5 to
1.6 mg g−1 after 4 h of reaction, more rapid than that using
glycerin and esterification.485 The final oil product was rich
in fatty acid ethanolamides (11.9 wt%) which are bioactive
lipids and can be separated from biodiesel.

3.3.3. N435 in the combi-lipase concept. The concept of
combi-lipases has received increasing interest, and it is based
on the fact that oils are really very heterogeneous substrates;
therefore the use of an individual lipase may hardly be “opti-
mal” for all likely components of oils. The idea has been
shown in biodiesel and oil hydrolysis.43,47,48 During the time
that we focused on the revisions, some examples of combi-
lipases including N435 may be found. Waste oil and fresh
soybean oil were transformed into biodiesel using an ultra-
sound system with a combi-lipase as a biocatalyst (including
N435 and Lipozyme TL IM, and Lipozyme RM IM).44 The op-
timal mixture of lipases depended on the oil; for soybean oil
the combi-lipase composition was 50% CALB, 22.5% TLL,
and 27.5% RML, while for used frying oil, it was 40% TLL,
35% CALB, and 25% RML. The paper showed that ultrasound
provided a soybean oil biodiesel yield of 90% and 70% when
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employing waste oil. Simultaneously the continuous synthe-
sis of biodiesel from waste oil using combi-lipases in a
packed-bed continuous reactor was also performed using the
same lipases.45 Biodiesel was also produced from a palm oil
free fatty acid distillate and methanol in a packed bed reactor
via direct esterification using t-butanol, mixing Lipozyme TL-
IM and N435.486 The optimum combi-lipase was 5% N435
and 95% Lipozyme TL-IM, and this achieved a 96% biodiesel
yield. In another paper, soybean oils with different acid
values (8.5, 50, and 90) were used to produce biodiesel using
ethanol, comparing different lipases (Lipozyme TL-IM,
Lipozyme RM-IM and N435).487 The ester content could be
doubled by mixing Lipozyme TL-IM and N435.

In another example, but where the enzymes are not
mixed, a very acidic and heterogeneous (having monoglycer-
ides, diglycerides and triglycerides) oil from rice bran oil
soapstock in a solvent-free system has been transformed
into biodiesel, showing that the successive use of N435,
Lipozyme TL-IM or Lipozyme RM-IM and Lipozyme TL-IM
resulted in similar or higher levels of yield of the individual
lipases (around 92%).488

4. Problems of N435

Thus far, N435 has a strong history of success in diverse ap-
plications, and after many years it has remained among the
most used biocatalysts at least by academic
researchers.132–152 However, this seemingly “golden” biocata-
lyst has some serious problems that in many instances are
ignored.

First, there is a general problem that is common to all bio-
catalysts prepared using interfacial activation of lipases ver-

sus supports bearing a hydrophobic surface: the enzyme may
be released from the support at high temperature, in the
presence of organic co-solvents, detergents, etc.210 And in
many instances, the substrates/products of the lipases are
detergent-like molecules (e.g., fatty acids, partial glycerides,
and phospholipids)211 (Fig. 8).

The other problems are a direct consequence of some neg-
ative specific features of the utilized support, the Lewatit sup-
port. And some of them are so serious that there should be
thoughtful consideration before selecting N435 as an indus-
trial catalyst.

The first problem is that even though the surface of
Lewatit is hydrophobic enough to permit the immobiliza-
tion of CALB via interfacial activation, it is relatively hydro-
philic. As such, it can retain hydrophilic by-products (e.g.,
water in esterifications and glycerin in biodiesel produc-
tion), producing an apparent enzyme inactivation due to the
formation of glycerin or water layers inside the
biocatalyst.236

The second problem is related to the fragility of the parti-
cles of the support under stirring. This may produce prob-
lems with the filters of the system.

However, the most important problem is something
reported many years ago but did not have the relevance that
this issue deserves: the support may be dissolved in some
media (that is, the crosslinking may not be efficient
enough).489,490 This implies that not only may the enzyme be
released from the support, but also the polymeric compo-
nents of the support could be incorporated to the reaction
media, contaminating the product.

Now, we will go in more detail into each of these prob-
lems, suggesting some solutions for each of them.

Fig. 8 Lipase release from the support is favored in the presence of detergent-like substrates or products.
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4.1. Enzyme leaching

Since 2002, there have been some papers alerting us to the risks
of enzyme “leaching”.131,249,491,492 This obviously affects the
studies on the operational stability and reuses of N435, as well
as the implementation of N435 on a large scale. The reasons for
this enzyme leakage are general to all lipases immobilized using
interfacial activation versus hydrophobic surfaces, not specific
to N435 (Fig. 8). Although the enzyme–support interaction is
very strong122 due to the very large size of the hydrophobic
pocket of the lipase, a high temperature may weaken this inter-
action and result in the release of the enzyme to the medium.210

Usually, the enzyme immobilized by this strategy is much more
stable than the free enzyme and even multipoint covalently
immobilized lipases,193,493 and it is not clear if the released en-
zyme molecules are previously inactivated or become
inactivated after the enzyme release, but the fact is that it is pos-
sible to observe the decrease of the enzyme on the support and
the appearance of the enzyme in the supernatant (Fig. 8).210

In a similar way, organic co-solvents may weaken the en-
zyme–support hydrophobic interactions and facilitate enzyme
release. As such, while in thermal inactivation the lipases
immobilized via interfacial activation tend to be more stable
than the covalently immobilized enzymes, in the presence of
organic co-solvents the situation is reversed and the cova-
lently immobilized enzyme becomes more stable.193,493 The
problem is accentuated if the reaction involves detergent-like
compounds.211 These compounds need not necessarily be as
long as free fatty acids or di- or monoglycerides. It has been
shown that even dibutyrin or diacetin may greatly facilitate
the lipase release from hydrophobic supports.212,213

N435 has all these problems. However, the U. K. Food
Standards Agency did not find any detectable contamination
from N435 on simulated food (containing isooctane and 95%
(v/v) ethanol) and diverse acrylic materials.494

However, this enzyme release under certain conditions
can be considered a proved fact. The incubation of N435 in
dimethyl sulfoxide resulted in the quantitative release of the
enzyme.495 Using N435, Chen et al.249 have reported that en-
zyme leaching from N435 can become a serious problem for
the application of this biocatalyst in the production of phar-
maceutical compounds, and that enzyme leaching becomes a
serious problem for enzyme reuse.253 Using N435 in the pro-
duction of polymers, the enzyme leakage was again reported
to be a real problem.496 Enzyme release from N435 was also
reported in the solvent-free esterification of polyglycerol-3
and related compounds, due to their surfactant features.491

Enzyme release even in its first use has been reported in oil
chemistry497 and polymer production.383

Enzyme release from N435 in organic solvents and ionic
liquids has been also reported to be a real problem, as “ac-
tive” traces of the active material were released from the cata-
lyst and hindered the control of the reaction (because some
reactions continued after eliminating N435)498,499 Thus, this
enzyme release has been in fact considered as one of the
main problems for the industrial implementation of N435.500

4.2. Support solubility in organic media

The solubility of a support in any reaction media may be-
come a serious problem. The pioneering investigations re-
garding the possibility of solubility of Lewatit from N435 in
some media started from some of the coauthors of this re-
view, who observed that the operational stability of the bio-
catalyst in the enantiospecific esterification of ibuprofen in
ethanol was much lower than expected.501 The research
pointed that the support became solubilized in the presence
of some solvents such as ethanol.489,490 They detected that
the mass of the polymer in the biocatalyst decreased and that
polymethacrylate and divinylbenzene, components of Lewatit,
could be found dissolved in the medium. The problems
persisted even in aqueous/ethanol mixtures. Later, this effect
was also found using other alcohols.502,503

Table 1 shows the main conclusions of these studies. In
fact, it is not possible to fully discard that part of the protein
decrease may be due to the dissolution of the support in the
reaction medium.

This is a very serious problem, as the polymer can go to
the medium, be incorporated to the product, and produce se-
rious problems in all the reactor operation and the recovery
of the products. However, this serious problem has scarce im-
pact in the literature.

The adsorption of alcohols on Novozym-435 was analyzed
in some detail by programed thermic desorption.503 The
study revealed a very strong physical adsorption, but the exis-
tence of dimethyl ether and propylene suggested the possibil-
ity of chemisorption, which can produce methoxy and
propoxy species that may be dehydrated on acid active sites,
inactivating the enzyme.

The modification of the support was also studied using envi-
ronmental scanning electron microscopy; the exposure of N435
to alcohols decreased the fractal value and increased the mini-
mal cell size, showing the internal modification of the biocata-
lyst porous structure.503,504 Later, the same methodologies were
used to explain the operational stability of N435 in biodiesel
production, showing that at 65 °C some polymers from the sup-
port could be found in the product (mainly if water was continu-
ously eliminated from the medium). In fact, the size of the par-
ticles of the biocatalyst increased when incubated in biodiesel
for 2 minutes (from an average diameter of 539 μm to 626 μm).

4.3. Support mechanical fragility

Another problem of Lewatit is its mechanical fragility under
stirring.33,505 This fragility does not seem to be very relevant

Table 1 Alterations of Novozym® 435 by incubation in methanol, etha-
nol or 1-/2-propanol

Alcohol
Global mass loss
(%)

Protein loss
(%)

% alcohol
adsorbed

Methanol 11.6 1.93 2.12
Ethanol 16.6 1.27 3.81
1-propanol 5.9 0.57 4.04
2-propanol 1.2 0.79 3.68
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at the laboratory scale, where the immobilized enzyme may
be recovered in operational stability studies using centrifuga-
tion and the reaction may be performed in a beaker, but be-
comes a great problem at the industrial level.

At the academic level, this fragility may have confusing re-
sults, for example if the reaction has reduced activity due to a
very high activity that results in diffusion limitations of the
substrate. When the catalyst starts to break down, the size of
the particles will decrease and the diffusion limitation prob-
lems will decrease. As such, apparent “hyperactivation” or a
higher stability of the biocatalyst may be found by this
artifact.32

At the industrial level, this may be a critical point, as the
production of fine powders can block the filters of the reactor
and result in the necessity to discard the biocatalyst even if it
is fully active. Fig. 9 shows the fine powder production under
stirring using N435.

Therefore, this may be a very important negative feature
when considering the use of N435 in mechanically stirred
batch reactors, although it may be solved using other stirred
reactor configurations which are less aggressive with the me-
chanical structure of the beads (e.g., vortex reactors).506–508

4.4. Retention of hydrophilic compounds

Many uses of lipases are in anhydrous media (e.g., hydrophobic
solvents) and during reaction some hydrophilic compounds
may be released. This can lead to the accumulation of these
compounds in the biocatalyst,509 which will be more hydrophilic
than the reaction medium in many instances, mainly after being
coated with the very hydrophilic molecules of lipase.510

For example, in esterification, water is a side-product of
the reaction.511 In many instances, water is adsorbed on mo-
lecular sieves to shift the equilibrium to the direction of the
synthesis (this is a thermodynamically controlled
synthesis).512,513

However, if the water formation is more rapid than the
diffusion, and the support pores or matrix is more hydro-

philic than the reaction medium (imagine that the medium
is octane), water can be accumulated inside the biocatalyst
forming an aqueous phase.152 This way, acids can also be ac-
cumulated in this environment, exposing the enzyme to very
low pH values and promoting enzyme inactivation by these
drastic conditions.151 Moreover, water accumulation may
make the thermodynamics of the process unfavorable in the
enzyme proximity, reducing the enzyme activity.

In a transesterification reaction to produce biodiesel, glyc-
erin may be the problematic side-product that can form a
glycerin phase.514,515 If this occurs, this will hinder the access
of the hydrophobic substrate to the enzyme, and it can also
capture water as it is a hygroscopic material. Moreover, glyc-
erin, as a likely nucleophile in the deacylation of the acyl en-
zyme, may compete with methanol, or ethanol.

As such, Lewatit, even having a moderate hydrophilicity,
causes some problems on the use of N435 in esterification/bio-
diesel production, studied in detail only in some specific
cases.236 Some solutions to this problem will be presented later.

In other cases, a perhydrolysis is desired,83,516 and hydro-
gen peroxide is able to impair the enzyme activity by diverse
reasons.517–519 Although N435 is very stable even in 1 M hy-
drogen peroxide,520 the use of a more hydrophobic support
was found to be favorable to force a partition of this deleteri-
ous compound.521

5. Some solutions to N435 problems
5.1. Enzyme leakage prevention

The leakage of enzymes adsorbed by interfacial activation is a
general problem of immobilized lipases (Fig. 9).211–213 The
most obvious solution is to cross-link the enzymes to prevent
enzyme desorption. This has been tried in a covalent way
using glutaraldehyde495,522 or aldehyde dextran (Fig. 10).218,523

A simpler solution is by physically cross-linking the proteins
using ionic polymers like polyethylenimine or dextran sulfate
(Fig. 10).214,215,524,525 A combination of polyethylenimine coat-
ing and glutaraldehyde cross-linking has also proved to be ef-
ficient.216 Now, to release the enzyme from the support, the
cross-linked proteins must be simultaneously released from
the support, which is much more difficult.

These strategies have been also utilized in the case of
N435. In fact, the treatment of the biocatalyst with poly-
ethylenimine or glutaraldehyde has an unexpected effect: in
biodiesel production using N435 with camelina oil, a deposit
can be found in the N435 preparation which cannot be found
after modification.526–528 Intermolecular glutaraldehyde
cross-linking is not efficient enough to fully prevent enzyme
release from the support.491,529

The use of heterofunctional supports, adding some ions
or chemically reactive groups, is another strategy that proved
to be efficient with some hydrophobic
supports.210,219–222,225–227,241,530 However, this has not been
tried using N435, as the enzyme is already in the support and
modifying the support may be problematic.

Fig. 9 Images of N435 (a) before and (b) after 6 h under magnetic
stirring at 30 °C and 700 rpm in an esterification reaction in hexane.
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5.2. Biocatalyst mechanical fragility

The biocatalyst fragility (Fig. 9) is mainly relevant on the in-
dustrial scale. To avoid the support breakage, together with
using stirring methods which are less aggressive towards the
support physical integrity, one of the strategies is the coating
of the biocatalyst with some rigid cover that may avoid the
Lewatit breakage. For example, N435 was covered with sili-
cone and this allowed support destruction to be almost fully
avoided under vigorous stirring (Fig. 11).531 Furthermore, this
treatment also reduces enzyme leaching from the support, if
the biocatalyst is fully closed in a silicone matrix.531 The bio-

catalyst maintained more than 90% of its activity after sili-
cone coating.532 In another instance, the silicone-coated bio-
catalyst was used in a complex chemo-enzymatic epoxidation
reaction in a three-phase system.533 The biocatalyst kept 50%
of the activity after 5 days in 5 mM hydrogen peroxide. In an-
other research study, the syntheses of polyĲethylene glycol)
400-coconut fatty acid monoester, myristyl myristate and
propylene oxide copolymer-oleic acid, and ethylene oxide di-
ester were studied with N435 and N435 treated with sili-
cone.534 The turnover numbers increased by a factor of up to
50.534 The treatment did not alter the specificity of the en-
zyme; this way the enantiospecific acylation of racemic

Fig. 10 Prevention of enzyme leakage via chemical or physical crosslinking.

Fig. 11 Coating of N435 with silicone to prevent support breakage.

Catalysis Science & TechnologyMini review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
A

pr
il 

20
19

. D
ow

nl
oa

de
d 

on
 1

1/
12

/2
02

5 
3:

17
:2

6 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9cy00415g


Catal. Sci. Technol., 2019, 9, 2380–2420 | 2399This journal is © The Royal Society of Chemistry 2019

1-phenylethanol with vinyl butyrate retains the excellent reso-
lution.534 Later the coating was performed in a fluidized reac-
tor and the Pd catalyst necessary for silicone polymerization
was removed.535

It should be expected that similar protection effects may
be found using other materials used to trap some weak bio-
catalysts, like the crosslinked enzyme aggregates trapped in
silicates,536–538 in sol–gel539 or in LentiKats (polymers of poly-
vinyl alcohol).540

5.3. Hydrophilic compound adsorption and support
dissolution

These points can have a more complex solution. Water or
glycerin accumulation on Lewatit may be partially reduced
using ultrasound and molecular sieves.44,152,541–550 However,
the moderate hydrophilicity of the support may complicate
the understanding of the results and reuses of the
biocatalyst.

The dissolution in organic solvents should be related to
an inadequate crosslinking in the polymerization step. This
could be (at least partially) solved after some modification of
the biocatalyst which can prevent the release of polymer frag-
ments, perhaps in a similar way to the prevention of the en-
zyme release. However, there are no studies in this regard.

Thus, the solution to these problems may be quite com-
plex when keeping Lewatit as a support. The alternative is to
change the immobilization matrix, using some hydrophobic
ones that can be more resistant to solvent dissolution and
that may be more hydrophobic to prevent water
accumulation.150,236,551,552

However, N435 has some special features,252 perhaps due
to the existence of some acid groups in the matrix that make
this a peculiar biocatalyst. It must also be considered that
even if the immobilization follows an interfacial adsorption
mechanism, CALB properties may be altered by changing the
support hydrophobicity, internal morphology, etc.185,191,259,553

We can assume the idea that a hydrophobic support may be
convenient for CALB immobilization, purification and stabili-
zation209 A hydrophobic support that is intended to be an al-
ternative for Lewatit should show some critical features. First,
the support must not be dissolved in any media (that is, a
suitable crosslinking must be performed) and it must be hy-
drophobic enough to reduce the adsorption of hydrophilic
compounds (and perhaps allow a stronger enzyme adsorp-
tion), without affecting CALB stability. Exhibiting a high me-
chanical resistance will also be a desirable feature. Finally, it
should keep or improve the high enzyme loading, stability
and versatility that N435 has shown even with these signifi-
cant problems. Moreover, it should have an adequate particle
size and particle size distribution, a competitive price and
also, offer some solutions towards disposal (even if immobili-
zation is reversible, support breakage may be promoted that
the reuse may no longer be convenient, mainly if the enzyme
is very stable and can be used for months). If the support is
compatible with some heterofunctionality that permits reduc-

tion in enzyme leaching, this will be an advantage to be
considered.

Although there are many hydrophobic supports in the
market,191,234,247 a systematic study of all these properties
has not been performed (perhaps because academically it is
not very interesting). Until that moment, the successful his-
tory of N435 will very likely continue.

6. Conclusions

This review shows that N435, despite being a very successful
biocatalyst with applications in many different areas, has
some very relevant problems that in some cases may be
avoided using relatively simple techniques (e.g., enzyme
leaching and mechanical fragility may be solved by encapsu-
lation of the biocatalyst in silicone), while others may be
much more intricate to work around, like the dissolution of
the support in certain media. As N435 is mainly used in
chemistry, and in these cases the final product is usually fully
purified and/or crystalized, perhaps this is not a key problem
at the industrial level, except that it may interfere in product
purification. However this may be a critical problem in food
modification, where the contaminant will be incorporated to
the food. Whatever the reason, even with this problem, which
was already described many years ago, N435 remains as one
of the most used biocatalysts. The best solution may be to
change the current support to another one with fewer prob-
lems, or to improve the crosslinking step of Lewatit (this may
both reduce support dissolution and increase its mechanical
resistance). However, it seems that for some reason, Lewatit
VP OC 1600 and CALB are a dynamic duo that may be diffi-
cult to alter, even when nowadays there are many new alter-
native hydrophobic supports that have been reported to im-
prove CALB loading, activity and stability. Price and
simplicity may be among the points that make replacing
Lewatit VP OC 1600 by some more suitable supports difficult.
Whatever the case, it seems evident that the success of N435
will carry on at least into the near future.
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