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Nanozymes are nanomaterials with enzyme-like characteristics (Chem. Soc. Rev., 2013, 42, 6060-6093).
They have been developed to address the limitations of natural enzymes and conventional artificial enzymes.
Along with the significant advances in nanotechnology, biotechnology, catalysis science, and computational
design, great progress has been achieved in the field of nanozymes since the publication of the above-
mentioned comprehensive review in 2013. To highlight these achievements, this review first discusses the
types of nanozymes and their representative nanomaterials, together with the corresponding catalytic
mechanisms whenever available. Then, it summarizes various strategies for modulating the activity and
Received 30th August 2018 selectivity of nanozymes. After that, the broad applications from biomedical analysis and imaging to
DOI: 10.1039/c8cs00457a theranostics and environmental protection are covered. Finally, the current challenges faced by nanozymes
are outlined and the future directions for advancing nanozyme research are suggested. The current review

rsc.li/chem-soc-rev can help researchers know well the current status of nanozymes and may catalyze breakthroughs in this field.
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1. Introduction

The intrinsic limitations (such as high cost, low stability, and
difficulty in storage) of natural enzymes have stimulated the
emergence and development of various enzyme mimics (also
called ‘“artificial enzymes”). Among them, nanozymes have
emerged as the next generation of enzyme mimics since the
unexpected discovery of magnetic Fe;0, nanoparticles (NPs) with
peroxidase-like activities in 2007." “Nanozymes” were defined as
“nanomaterials with enzyme-like characteristics” in the first
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comprehensive review on nanozymes published in 2013.> Inspired
by nature but advantageous over natural enzymes, nanozymes
are generally low-cost, stable, and mass-produced. Moreover, the
unique physicochemical properties of nanomaterials not only
endow nanozymes with multiple functionalities but also provide
more possibilities for rational design and future applications.
During the past five years, benefitting from the quick develop-
ment of nanotechnology, biotechnology, catalysis science, and
computational design, significant advances have been achieved in
imitating new enzymatic activities with high-performance nano-
materials, regulating the nanozyme activities, elucidating the
catalytic mechanisms, and broadening potential applications
(Fig. 1). Up to now, there are more than 200 research laboratories
around the world working on nanozymes actively, evidencing the
importance and impact of the field. Though numerous excellent
reviews have been published by other researchers and us since
2013, most of those reviews were mainly focused on certain
specific topics of nanozymes while the rest were short ones (such
as minireviews or topical reviews).>"®* Therefore, a comprehensive
review is needed to summarize and analyze all the progress,
especially the achievements from more than 1100 research papers
published in the past five years (Fig. 2). Such an analysis is
necessary to help researchers understand nanozymes better and
in turn to advance this field. In this review, we intend to cover
various types of nanozymes, activity and selectivity regulation of
nanozymes, and the applications of nanozymes such as in bio-
medical sensing, therapeutics, and environmental remediation.

This journal is © The Royal Society of Chemistry 2019
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Finally, the challenges and future perspectives of nanozymes are
also discussed for future investigation in the field. Note: as this
review is an update of our first comprehensive review published in
2013, some detailed discussions illustrated before are not covered
here, which could refer to the review in 2013.

2. Types of nhanozymes

As mentioned in the review in 2013, four types of redox enzymes
had been mimicked by nanomaterials, including peroxidase,
oxidase, catalase, and superoxide dismutase (SOD). And exploration

Jiangjiexing Wu received her
bachelor’s degree (2009) and
PhD degree (2014) from Tianjin
University under the supervision
of Professors Wei Li and Yi Lu.
She then joined Professor Hui
Wei’s lab as a research scientist.
Her research focuses on the design
and synthesis of functional nano-
materials (such as nanozymes)
and their biomedical applications.

Jiangjiexing Wu

From left to right: Yunyao Zhu, Li Qin and Zhangping Lou

This journal is © The Royal Society of Chemistry 2019

View Article Online

Chem Soc Rev

of new types of nanozymes was brought up as an important topic in
the field. Since then, great efforts have been devoted to not only
redox reactions but also others such as hydrolysis. Hundreds of
nanomaterials have been discovered with enzyme-like activities,
and here we only discuss a few representative nanomaterials for
each type of enzymatic reactions. Other nanomaterials and their
enzyme-like activities are summarized in Tables S1-S5 (ESIT).

2.1 Peroxidase mimics

2.1.1 Iron based. In 2007, the Yan group firstly discovered
the intrinsic peroxidase-mimicking properties of Fe;O, magnetic
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Fig. 1 A brief timeline for the development of nanozymes (natural enzymes and artificial enzymes are listed for comparison). Adapted with permission
from ref. 2. Copyright (2013) Royal Society of Chemistry. Note: a more detailed timeline is available online: http://weilab.nju.edu.cn/research/

nanozymetimeline.html.

NPs (MNPs), which could oxidize three colorless peroxidase
substrates (i.e., TMB (TMB for 3,3’,5,5'-tetramethylbenzidine),
diazoaminobenzene, and o-phenylenediamine) to their corres-
ponding colored products with the help of H,0,. The kinetics
studies suggested a ping-pong catalytic mechanism of the MNP
nanozymes, and the measured Michaelis-Menten constants
indicated higher affinities of the nanozymes to TMB but lower
affinities to H,0, than those of horseradish peroxidase (HRP)."
Later, Wei and Wang applied the Fe;0, MNP-based peroxidase
mimics for the detection of both H,0, and glucose.?* Inspired by
the pioneering work, iron oxide-based peroxidase mimics were
widely explored and studied, such as Fe;O, (magnetite),3 %!
Fe,0; (hematite),"®*™" and doped ferrites."*>"'” Possible
Fenton and/or Haber-Weiss reaction mechanism(s) were proposed
for the peroxidase-like iron oxides, where *OH/HO,* could be
involved.'™® By combining the free radicals with the unique
magnetic properties of iron oxides, the nanozymes could be
used for the degradation of organic pollutants, magnetic
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Fig. 2 Number of published papers on nanozymes by the end of May
2018. Data are from the web of science.

resonance imaging, anti-biofouling, and cancer therapy. Thus,
during the past five years, the applications of iron oxide
nanozymes have been extended from biomedical sensing to
environmental remediation and therapeutics, which will be
discussed in the Applications section.

Besides the iron oxide nanomaterials, iron chalcogenides
(e.g., FeS, Fe;S,, FeSe, and FeTe),"*>'*° iron phosphates,'*'~***
and Prussian blue (PB)'>*7'?® and its cyanometalate structural
analogues (e.g., Cuy33[Fe(CN)slo.c67, Fe[COgFeqs(CN)s], and
FeCo, ¢,(CN),)"*° also exhibited excellent peroxidase-like acti-
vities. PB ([Fe(m)Fe(u)(CN)¢] ) was an interesting example. In an
early study, Karyakin et al. compared the catalytic activities of
PB and HRP for constructing electrochemical glucose bio-
sensors.*® Later, they suggested PB as “an artificial peroxidase”
in 1998."3! Recently, the Gu group reported that PB could improve
the catalytic activities of Fe,O3-based peroxidase mimics through
coating."” In their further studies, they found that PBNPs them-
selves also possessed peroxidase-like activities under acidic con-
ditions. The negatively charged PBNPs (zeta potential, —26.1 mV)

This journal is © The Royal Society of Chemistry 2019
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Fig. 3 Proposed mechanisms of the multiple enzyme-like activities of PBNPs based on standard redox potentials of different compounds in the
reaction systems and reactions involved in peroxidase-mimicking activities. Adapted with permission from ref. 133. Copyright (2016) American

Chemical Society.

showed a higher affinity towards TMB than towards ABTS
(2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)). And with
TMB as the substrate, the k., of PBNPs was 4 times larger than
that of Fe;O, NPs. According to the different redox potentials
(Fig. 3), the peroxidase-mimicking catalytic mechanisms were
illustrated as follows: due to the strong oxidation properties of
H,0, under acidic conditions, PY/BG would be first produced
through the oxidation of PB by H,0,, and then transfer electrons
from TMB to H,0, to complete the whole catalytic reaction, as
shown in eqn (1)~(3) (PY for Prussian yellow, [Fe(ur)Fe(ur)(CN)e];
BG for Berlin green, {Fe(ur);[Fe(ur)(CN)g |,[Fe(1)(CN)g]} 7). An inter-
esting phenomenon was that PB as a peroxidase mimic would
scavenge *OH rather than generate *OH via the Fenton reaction
(eqn (4)). Besides peroxidase-like activities, PB also showed
catalase- and SOD-like activities. The multiple enzyme-like
activities were mainly dependent on the pH and helpful for
therapeutics, and a good case will be provided later in the
Applications section.*?

2.1.2 Vanadium based. In 2011, V,0; nanowire-based
peroxidase mimics were first demonstrated by the Tremel
group.”® Later, the particular vanadium haloperoxidase-
mimicking activities of V,05 nanowires and their applications
in marine anti-biofouling gained a lot of attention."*® Since then,
many studies on peroxidase-like vanadium oxides and vanadium
disulfides have been reported."*®*® And these mimics were
used for bioanalysis and therapy. Recently, the glutathione
peroxidase (GPx)-like activities of V,05 were discovered by the
Mugesh group.’*’ They found that monocrystalline V,Oj

This journal is © The Royal Society of Chemistry 2019

nanowires could eliminate H,O, with the assistance of gluta-
thione (GSH), protecting cells from oxidative damage. More-
over, the GPx-mimicking activities of V,05 nanozymes were not
affected by some vanadium haloperoxidase substrates, attribu-
table to the stronger binding affinity and nucleophilic ability of
GSH than halides towards the nanozymes. The catalytic acti-
vities followed the typical Michaelis—-Menten kinetics, with K,
calculated as ~0.11 and ~2.22mM, and V., of ~0.43 and
0.83mM min " for H,0, and GSH, respectively. Further syste-
matic experimental studies speculated the following molecular
mechanisms (Fig. 4A): first, the exposed {010} facet of V,O5
nanowires may act as the active sites to adsorb and reduce H,0,
for generating vanadium peroxido intermediate 1; then, a second
sulfenate-bound intermediate 2 was formed by the nucleophilic
attack of GS™ on complex 1, followed by a quick hydrolytic
reaction to convert 2 into glutathione sulfenic acid (3, GSOH)
and the dihydroxo intermediate 4; finally, the complex 4 would
be oxidized back to intermediate 1 by H,O,. If focusing on the
GSH participation part, after the aforementioned GS™ attack and
GSOH formation, glutathione disulfide (GSSG) would be pro-
duced with the help of another GSH. With the addition of
glutathione reductase (GR) and nicotinamide adenine dinucleo-
tide phosphate (NADPH), GSSG could be reduced back to GSH.
Note, the cleavage of intermediate 2 was similar to the vanadium
haloperoxidase-like reaction for removing HOBr from the
V-OBr complex, consistent with the previous report by Tremel
and co-workers."*> Moreover, the V,05 nanozymes exhibited
a general thiol peroxidase-mimicking activity, catalyzing the

Chem. Soc. Rev., 2019, 48, 1004-1076 | 1007
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Fig. 4 (A) Proposed molecular mechanism for V,Os nanowires’ GPx-mimicking activity. (B) Scheme for GPx-like reaction of four V,Os nanozymes.
(C) Michaelis—Menten plot with different concentrations of H,O, for four V,Os nanozymes. (A) Reprinted with permission from ref. 141. Copyright (2014)
Nature Publishing Group. (B and C) Adapted with permission from ref. 142. Copyright (2018) John Wiley and Sons.

reduction of H,0, by other thiols such as cysteine, cysteamine,
and mercaptoethanol.*!

In a subsequent study, they identified the catalytic facets
on the surface of V,05 nanozymes through a combination of
experimental studies and computational simulations. Four
different morphologies with different facets of V,05 nanozymes
were synthesized, and their GPx-like activities followed the
order: only {001} facet bound nanowires < large {001} and
minor {010} facets bounded nanosheets < major {010} and
minor {001} facets bounded nanoflowers < two major {100},
{010} facets bounded nanospheres (Fig. 4B and C). As men-
tioned above, interaction with H,0, to form the vanadium
peroxido intermediate 1 was the first and crucial step in the
whole process, and thus the formation rate of 1 was monitored
and compared via in situ Raman spectroscopy and theo-
retical calculations. The results showed that {010} and {100}
facets possessed higher catalytic activity than the {001} surface
because of the unsaturated coordination of the surface
vanadium atoms.*?

2.1.3 Noble metal based. Many noble metal nanomaterials,
such as Au,' 7% Ag, 1257160 pt, 1617174 pq 1757177 and their multi-
metallic NPs,"”®%* have been reported as peroxidase mimics
and widely used for biosensors, antibiosis, and therapy. For
example, Xia, Nie, and co-workers synthesized Pd-Ir NPs with
excellent peroxidase-like activities, and the catalytic efficiency
was nearly 28 times higher than that of HRP. They further
developed an enzyme-linked immunosorbent assay (ELISA) for
the detection of disease biomarkers using Pd-Ir nanozymes.
A sensitivity at femtogram per mL level for human prostate
surface antigen was achieved.'*

1008 | Chem. Soc. Rev., 2019, 48, 1004-1076

Similar to PBNPs, metal nanomaterials also possess multi-
ple enzyme-like activities under different conditions, such as
a peroxidase-like activity under acidic conditions while a
catalase-like activity under basic conditions. Detailed computa-
tional studies were performed to gain a better understanding of
the related mechanisms."®® Taking Au{111} as an example, the
adsorption and decomposition of H,0, under different pH
conditions are shown in Fig. 5. In a neutral environment,
H,0, could easily adsorb onto the surface without any preven-
tion from H,O0, and then favored a base-like decomposition to
H,0* and O* on the surface of metal NPs because of the lowest
calculated energies (Fig. 5A). Notably, the high energy barrier of
1.42 eV made O, generation from the adsorbed O* impossible
in this condition. For the acidic condition with H pre-adsorbed
onto the surface of metal nanomaterials, H,O, could still be
adsorbed and take the base-like decomposition pathway to
produce adsorbed H,O* and OH*, followed by conversion of
OH* into H,O* and O* on the surface of metal NPs. When the
O* attacked the substrates to abstract H atoms, a peroxidase-
mimicking process was completed (Fig. 5B). On the other hand,
for the basic condition with OH pre-adsorbed, H,0, would
firstly transfer one H to pre-adsorbed OH forming HO,* and
H,0%; subsequently, HO,* would give one H to another H,0,
and produce H,0* and O,* at last (Fig. 5C). Therefore, the
catalase-like activity could be observed under alkaline condi-
tions. More calculations with other facets of Au (e.g., Au{110}
and Au{211}) and other metals (i.e., Ag, Pt, and Pd) demon-
strated very similar reaction pathways and pH-dependent enzy-
matic activities. Both the calculated adsorption energies and
activation energies of these noble metals for peroxidase- and

This journal is © The Royal Society of Chemistry 2019
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Fig. 5 pH-Switchable enzyme-mimicking activities of noble metals. Calculated reaction energy profiles for H,O, decomposition on the Au{111} surface
in neutral (A), acidic (B) and basic (C) conditions are shown as an example (unit: eV). Adapted with permission from ref. 195. Copyright (2015) Elsevier.

catalase-like reactions followed the order Au{111} < Ag{111} <
Pt{111} < Pd{111}. Further, they synthesized four nanorods
including Au@Ag, Au, Au@Pd, and Au@Pt. They then checked
their catalytic activities. The pH-dependent activities of nano-
rods and the order of Au{111}, Ag{111} < Pt{111}, Pd{111}
accorded well with the calculations. Notably, due to the easy
oxidation of Ag and the large surface of Pt, the peroxidase-like
activities of the nanorods followed the order Au@Ag < Au <
Au@Pd < Au@Pt in the experiments.'®’

2.1.4 Carbon based. Another typical nanomaterial as a
peroxidase mimic was carbon. Both single-walled carbon nano-
tubes and graphene oxides were shown to possess peroxidase-like
functions in 2010, with pH-, temperature-, and H,O, concentration-
dependent activities similar to HRP."**'®” Inspired by these find-
ings, other carbon-based peroxidase mimics were also explored,
such as carbon dots,"”*° Fe/N-doped carbon,>*®™'" carbon
nitride,?**"* and so on.>"*">*! For example, graphene quantum
dots (GQDs) (i.e., small pieces of graphene) possessed better
peroxidase-like activities than large-sized graphene oxides. The
GQDs were further used for biological detection. Owing to the
generation of *OH during the peroxidase-mimicking catalytic
reaction, wound disinfection was carried out with the assistance
of GQDs.?*?

As oxygenated functional moieties were needed to help solve
the solubility of graphene and derivatives, such as carboxyl
groups in nanocarbon oxide, it was necessary to investigate the
effect of those functional groups on the peroxidase-mimicking
activities.”**?** Gao, Zhao, and co-workers performed density
functional theory calculations and disclosed that the carboxyl
groups of nanocarbon oxides were the active sites for decom-
posing H,0, into *OH, followed by oxidation of peroxidase
substrates by *OH.>** In another study, selective deactivation
of functional groups (such as hydroxyl, ketonic carbonyl, and
carboxylic groups) was proposed to reveal the roles of the three
different groups on GQDs (Fig. 6). Phenylhydrazine (PH),
benzoic anhydride (BA), and 2-bromo-1-phenylethanone (BrPE)
were used to selectively deactivate the ketonic carbonyl, hydro-
xyl, and carboxylic groups on GQDs, forming GQD derivatives
GQDs-PH, GQDs-BA, and GQDs-BrPE, respectively. According to

This journal is © The Royal Society of Chemistry 2019
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Fig. 6 Deciphering peroxidase-mimicking activities of GQDs. (A) Reactions
involved in selectively deactivating functional moieties on GQDs. (B) Relative
catalytic activities of GQDs treated with different reagents. Adapted with
permission from ref. 226. Copyright (2015) John Wiley and Sons.

the kinetics studies and theoretical calculations of the three
GQD derivatives, ketonic carbonyl, carboxylic, and hydroxyl
groups were suggested as the catalytic active centers, substrate
binding sites, and inhibitors, respectively. Though carboxylic
groups could dissociate H,O, to form *OH, the lower catalytic
activity for H,O, decomposition but a higher binding affinity to

Chem. Soc. Rev., 2019, 48, 1004-1076 | 1009
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H,0, than ketonic carbonyl groups made the carboxylic groups
as the binding centers.>*® Guided by this principle, in their
further studies, the GQDs with abundant carboxyl and carbonyl
groups but negligible hydroxyl groups were synthesized from
multiwalled carbon nanotubes. As expected, the C—0/COOH-
enriched GQDs exhibited five times lower K, for H,O, and
three times higher Vi,.x values than those of pristine GQDs.
Compared with HRP, the K, value of the GQDs was one order
of magnitude lower, and the V;,,, was comparable.?”” Similar
investigations of the three functional groups on carbon nano-
tubes were also performed, where ketonic carbonyl groups
served as active centers, while hydroxyl and carboxylic groups
were competitive inhibitors with higher binding affinities to
H,0,. Owing to the higher binding affinities of carboxylic than
hydroxyl groups, the selective deactivation of carboxylic groups
with BrPE resulted in the highest peroxidase-like activities of
carbon nanotubes.**®

What’s more, numerous studies of carbon-based composites
as peroxidase mimics have been reported, such as those invol-
ving hemin-graphene, Au nanocluster (NC)-graphene oxide,
Au-carbon nitride and so on.'®*??*?7?% Due to the high stability,
large surface area for substrate diffusion and adsorption, and
synergistic catalytic activities, these composite nanozymes were
widely applied in bioanalysis and therapy (see the Applications
section).

2.1.5 Metal-organic framework (MOF) based. Recently,
metal-organic frameworks (MOFs) have been widely used as
nanozymes for biomedical applications because of their diverse
porous structures. By coordinating metal ions/clusters (e.g., Fe
and Cu) with organic ligands (e.g., terephthalic acid (H,BDC)
and 1,3,5-benzenetricarboxylic acid (H;BTC)), MOFs with
peroxidase-like catalytic activities could be constructed. Up to
now, Material Institute of Lavoisier (MIL) MOFs (e.g., MIL-53,
MIL-88, and MIL-101),>**"2°® Hong Kong University of Science
and Technology (HKUST) MOFs (e.g., HKUST-1),®” and other
MOFs (e.g., Cu-MOFs, Co-MOFs, and Co/2Fe-MOFs)*** 7 have
been reported. And the peroxidase-like catalytic process was
verified to adopt a Fenton-like mechanism with *OH produced.
If the organic linker was replaced by a metalloligand, such
as Fe-TCPP (TCPP = tetrakis(4-carboxyphenyl)porphyrin) and
hemin, peroxidase-mimicking 3D PCN-222(Fe) (PCN = porous
coordination network) MOFs, PCN-600, 2D M-TCPP(Fe) nano-
sheet MOFs (M = Co, Zn, and Cu) and Cu-hemin MOFs could
be fabricated.?*®**”'”> For 2D M-TCPP(Fe) MOFs, control
experiments using TCPP with other metal ions (such as Zn, Co,
Mn, Ni, and Cu) illustrated the important role of Fe in TCPP(Fe)
for ensuring the high peroxidase-like activities (Fig. 7A and B).
Benefitting from the larger surface area, more exposed active
sites, and smaller diffusion barrier, 2D MOFs exhibited higher
catalytic activities than the 3D bulk analogues, providing better
sensitivity for biomolecule sensing (Fig. 7C).>”*

Another interesting example reported Cu®>-NMOFs (UiO-
type MOF NPs, UiO = University of Oslo) as peroxidase mimics.
The 2,2'-bipyridine-5,5'-dicarboxylic acid ligand was chosen to
bridge Zr** to form the MOFs. Then bipyridine on the ligand
was post-functionalized with Cu** to provide the catalytic
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center (Fig. 7D). As shown in Fig. 7E, the dopamine oxidation
catalyzed by Cu®* alone or the mixture of Cu®>" and bipyridine
was much less efficient than that by Cu®>*-NMOFs, which evi-
denced that the catalytic activity was from the synergistic effect
of the Cu*>*-bipyridine complex. Another possible reason for the
elevated activity was the porous structure of the MOF, making
dopamine concentrated in the catalytic site.>’® Besides organic
ligands, the modifications could also be achieved through the
metal nodes. Binding aliphatic diamines onto the unsaturated
Fe nodes of MIL-100(Fe) made the surface of MOFs negatively
charged, resulting in a higher affinity to positively charged TMB,
and thus improved the peroxidase-like activity of the MIL-100(Fe)
MOF.*”” Some studies also reported composites of nanoparticles
and MOFs as MOF-based nanozymes. On the one hand, the MOF
would just serve as a matrix to support nanoparticles, such as
PtNPs@UiO-66-NH, and AUNPS@MIL-101(Cr),>”*>%! and on the
other hand, the MOF would not only serve as a support but also
catalyze the peroxidase substrate together with nanoparticles,
such as Fe;0,/MIL-101(Fe) and PANPs@MIL-88-NH,(Fe).>%>28
Compared with the individual MOF or the nanoparticles, both
cases were demonstrated to enhance the activities of the
composites because of the improved stability, stronger adsorp-
tion of substrates, and the synergistic effect between the MOF
and nanoparticles.

2.1.6 Other nanomaterial based. Besides the representative
nanomaterials mentioned above, a large number of other nano-
materials have also been reported to exhibit peroxidase-like
activities.***** For example, Cu(OH), supercages were reported
to mimic peroxidase by the Tan group.*** With amorphous
Cu(OH), nanoparticles as the precursors, they added ammonia
to transform Cu?* from NPs to 1D nanoribbons, and then
assembled nanoribbons into 3D nanocages (Fig. 8A). The high
surface area of such a nanocage structure (172 m”> g~ ') made more
catalytic sites available for H,0,, and thus led to a better affinity to
H,0, and a higher V., of the peroxidase-mimicking reaction
compared to HRP (Fig. 8C). Further, the pH- and temperature-
dependent catalytic activities were measured. The results showed
that the catalytic activities of Cu(OH), could reach 90% between
PH 3 and 5 and temperature 20 and 50 °C, with an optimum condi-
tion at pH 4.5 and 25 °C. Moreover, such nanocages could be
recycled and retained 75% of the catalytic efficiency after 3 cycles.***

In addition, graphene-like 2D layered transition-metal
dichalcogenides (such as MoS, and WS, nanosheets) were also
demonstrated as peroxidase mimics.>*>*" Further modifica-
tion with hemin or some metal nanoparticles (e.g., PtAg, PtCu,
and PtAu) would help to improve their catalytic activities and
expand the biomedical applications.***~3°

2.2  Oxidase mimics

Natural oxidases can catalyze the oxidation of a substrate with
the assistance of molecular oxygen (or other oxidizing reagents)
into oxidized products and H,0/H,0,/0,°* . Up to now, several
nanomaterials have been reported to act as oxidases.**' % The
recent progress in oxidase mimics, especially the exploration
of other specific oxidase substrates besides model substrates
(i.e., TMB and ABTS), is highlighted below.

This journal is © The Royal Society of Chemistry 2019
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2.2.1 Gold based. Though metal nanomaterials were
widely used for catalyzing reactions, still the discovery of either
carbon-supported gold or unsupported citrate-coated AuNPs
(with an average diameter of 3.5 nm) with glucose oxidase
(GOx)-mimicking activities was surprising and unexpected.’***%
Further kinetics measurements suggested an Eley-Rideal mecha-
nism for the AuNP-based oxidase mimics.**® As shown in Fig. 94,
the hydrated glucose anion first adsorbed onto the surface of
gold, forming negative gold species. Then the negative gold
species would activate dissolved oxygen through nucleophilic
attack, and generate a dioxogold intermediate. Finally, gluconic
acids and H,0, were produced. The rate determining step was
the oxidation of glucose by oxygen from the liquid phase, and
two electron-transfer from glucose to oxygen was supposed to
participate.®®® Since the discovery of AuNPs as GOx mimics,
other supported gold (e.g., Au/Al, O3, Au/TiO,, and Au/ZrO,)**°3%*
and gold-containing bimetallic/trimetallic nanoparticles®*>*%°
have also been demonstrated as GOx mimics. For instance,

This journal is © The Royal Society of Chemistry 2019

erican Chemical Society. (D and E) Adapted with permission from ref. 276.

crown-jewel-structured Au/Pd NCs with active Au atoms deco-
rated on PANCs could catalyze the oxidation of glucose. Such a
unique structure endowed Au with a highly negative charge
density, facilitating the electron transfer from Au to O, with
hydroperoxo-like active species generated. The active species
were important in glucose oxidation, thus ensuring a greater
catalytic activity of crown-jewel-structured Au/Pd NCs than
monometallic Au, Pd, and even AuPd alloy.>*”

Recently, the GOx-mimicking catalytic process was moni-
tored through plasmonic imaging of single-particle catalysis
(Fig. 9B). A halo-like structure consisting of both 50 nm large
AuNPs and 13 nm small AuNPs was fabricated through DNA-
directed assembly. Such a structure would not only provide a
high catalytic activity but also ensure a strong electromagnetic
field at the interface of two adjacent AuNPs, benefiting the
monitoring of small AuNPs’ change during the catalysis. An
initial red-shift of 2.52 nm, a fast blue-shift of 6.88 nm and then
a slow red-shift of 3.53 nm were observed corresponding to the
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first adsorption of glucose, quick charging of small AuNPs, and
then retarded discharging of small AuNPs with electrons trans-
ferred to O,. After the dissolved O, was dissipated, O, in air
would redissolve again and diffuse to the surface of small
AuNPs, therefore leading to a slow discharging process.*?®
2.2.2 Copper based. Copper containing nanoparticles were
also widely explored as oxidase mimics. For instance, GOx-
mimicking Cu,O/polypyrrole composites were reported to
catalyze the oxidation of glucose to generate H,0, in basic condi-
tions (0.5 M NaOH). Though high glucose oxidation activities of
Cu,O/polypyrrole composites ensured glucose detection, still
the condition for this reaction should be further optimized to a
physiological condition for wider applications.**

1012 | Chem. Soc. Rev., 2019, 48, 1004-1076

Laccase can oxidize several substrates (e.g., polyphenols,
polyamines, and aryl diamines) with oxygen to the oxidized
products and H,O. Since copper ions are the active centers in
natural laccase, a few copper-based nanomaterials were
designed and synthesized to mimic a laccase. In 2015, Meng,
Tang, and co-workers reported one-pot synthesis of copper-
containing carbon dots as a laccase mimic. To prepare
Cu-carbon dots, the poly(methacrylic acid) sodium salt was
chosen to generate carbon dots and to retain copper through a
hydrothermal synthesis strategy. The synthesized Cu-carbon
dot was around 10 nm, emitted blue fluorescence at 460 nm,
and could oxidize the laccase substrate p-phenylenediamine
(PPD) with oxygen, as shown in Fig. 10A. Comparison of the

This journal is © The Royal Society of Chemistry 2019
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catalytic activities between Cu-carbon dots and carbon dots
demonstrated the important role of copper in such a catalytic
reaction (Fig. 10B). Further applications for PPD removal and
hydroquinone detection were performed with the fluorescent
Cu-carbon dot nanozymes, which made such a laccase mimic
promising in environmental remediation and biological
detection.”®®

Another multicopper laccase-mimicking nanozyme was
constructed by coordinating nucleotides with copper to form
amorphous MOFs, which could catalyze several laccase sub-
strates such as phenol, hydroquinone, naphthol, catechol, and
epinephrine (Fig. 10C).**" Control experiments revealed that
three nucleotides including guanosine 5’-monophosphate
(GMP), adenosine 5’-monophosphate (AMP), and cytidine
5’-monophosphate (CMP) could be used as the ligands, while
only copper ions as metal centers possessed such catalytic
activity rather than other metal ions. Among these, Cu/GMP
with the best performance was chosen for further mechanism
studies and applications. By measuring the catalytic activities of
Cu/guanosine and Cu/phosphate, it was suggested that the
coordination between Cu and guanosine contributed to the
catalytic reaction. Later, thorough kinetics studies of Cu/GMP
and laccase with the same mass concentration showed a com-
parable affinity to the substrate, but a higher catalytic activity of
Cu/GMP than that of laccase. And Cu/GMP also showed a better
stability over pH 3-9 and temperature 30-90 °C, a high ionic
strength of 500 mM NaCl, and long-term storage for 9 days.

This journal is © The Royal Society of Chemistry 2019

Finally, the analysis of epinephrine with Cu/GMP was nearly
16 times more sensitive and 2400 times more cost-effective
(taking the price of GMP into account) than with laccase. Though
some indirect evidence (such as no H,0, generated during the
catalysis) was provided, still, more detailed characterization
about the four-electron reduction of O, to H,O should be
performed to prove laccase-like activity in the future.’®" Notably,
non-copper-containing nanomaterials could also possess laccase-
mimicking activity. For example, cerium oxide nanoparticles
(nanoceria) could catalyze the oxidation of TMB to oXTMB and
H,0 without H,0, generation, suggesting the laccase-like activity
of nanoceria (Fig. 11).

Besides laccase, cytochrome ¢ oxidase (CcO) is another
interesting enzyme where copper is involved. During the oxida-
tion process, cytochrome ¢ (Cyt ¢) would donate electrons to
CcO and form a complex with CcO, accompanied by reduction

0, + Ce*(Ce0)— > O, + Ce* (CeO,) (1)

0, + TMB,, H,0 + TMB,, (2
CeO, + TMB,, Ce,0, + TMB,, (3)
Ce,0, + O, + 2H* CeO, + H,0 (4)

Fig. 11 Proposed mechanism for the laccase-like activity of nanoceria.
Reprinted with permission from ref. 402. Copyright (2016) American
Chemical Society.
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of oxygen to water at the heme-copper center. Lin, Wang, and
co-workers found that cuprous oxide nanoparticles (Cu,O NPs)
exhibited CcO-mimicking activities, which could catalyze Cyt ¢
from the ferrous state to ferric state with the assistance of
oxygen (Fig. 12A). Detailed UV-visible spectroscopy, X-ray diffrac-
tion, and other experimental studies disclosed the CcO-like
catalytic mechanisms as follows: first, it was the Cu,O NPs rather
than the leached copper ions that oxidized Cyt c¢; second, neither
shape nor valence change was observed for Cu,O NPs during the
oxidation of Cyt ¢; third, oxygen was required and was converted
into water at last.**

2.2.3 Molybdenum based. Tremel and co-workers reported
that molybdenum trioxide nanoparticles (MoO; NPs) could
mimic sulfite oxidase (SuOx) to convert sulfite to sulfate under
physiological conditions.*** Ultra-small MoO; NPs (with an
average diameter of 2 nm) were synthesized with high stability
in water and serum. Given the fact that SuOx is usually located
in the mitochondrial membrane and participates in detoxifica-
tion processes, the surface of MoO; NPs was functionalized
through dopamine to link the triphenylphosphonium (TPP)
ligand for membrane crossing and mitochondrial targeting
(Fig. 12B). The kinetics studies of MoO;-TPP NPs with SuOx-like
activity showed that the K, value for SO;>~ was 0.59 + 0.02 mM,
which was comparable to those of goat SuOx and human SuOx
mutant R160Q, but 1-2 orders of magnitude higher than that
of native human SuOx. And the turnover frequency (kca =
2.78 + 0.09 s~ ) of MoO;-TPP NPs was similar to that of human
SuOx mutant R160Q (ke = 2.4 s~ '), but lower than that of
native human SuOx (ke = 16 s '). A possible molecular
mechanism is proposed in Fig. 12C, where the active Mo(vi)
was first reduced to Mo(wv) as a result of sulfite oxidation, and
then oxidized back to Mo(vi) via two one-electron reduction
reactions of ferricyanide. Further studies demonstrated that

1014 | Chem. Soc. Rev., 2019, 48, 1004-1076

such low-toxic MoO;-TPP NPs could selectively accumulate
at mitochondria and recover the SuOx activity of SuOx knock-
down liver cells, making the MoO3;-TPP NPs promising for
therapeutics.***

2.2.4 Platinum based. Ferroxidases play a crucial role in
transferring and storing iron in cellular environments. Lately,
a few studies about PtNPs as ferroxidase mimics to oxidize
ferrous ions to ferric ions have been reported. For example,
Knez, Zhang, and co-workers utilized light-chain apoferritin as
a scaffold to prepare PtNPs. Such a structured nanozyme could
regulate the cellular iron homeostasis, which benefited from
the ferroxidase-like activities of PtNPs and the ferric ion miner-
alization ability remaining from the apoferritin.**® Similarly,
instead of using apoferritin as a support, Au nanorods were chosen
and Au@Pt nanostructures with PtNPs dispersed on the surface of
Au nanorods were synthesized by Wu, Chen, and co-workers.
Detailed kinetics studies of Au@Pt-based ferroxidase mimics
revealed a slightly lower affinity to Fe*" (K, = 69.1 & 3.5 uM) than
natural ferroxidase ceruloplasmin (K, = 22.6 + 2.6 uM), but a
significantly higher catalytic efficiency (ke = 2.10 x 10° s ) than
the natural one (ke = 1.33 s~ ). Further cellular experiments
demonstrated that the biocompatible Au@Pt nanozymes could
protect cells from oxidative stress.**®

PtNPs synthesized with oligonucleotides also exhibited
laccase-mimicking activities, oxidizing a lot of laccase sub-
strates such as dopamine, catechol, and hydroquinone.**’
Another interesting finding was the oxidation of polyphenols
(e.g., quercetin, r-dopa, r(—)-epicatechin, and caffeic acid) to
their corresponding o-quinones through catechol oxidase-
mimicking activities of Pt.*°®*°° Compared with mushroom
tyrosinase, though the affinity of quercetin to PtNPs was lower,
the catalytic efficiency of PtNPs was 20 times higher.*® These
results indicated that the possible effect of PtNPs on the

This journal is © The Royal Society of Chemistry 2019
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antioxidation activities of polyphenols should be considered in
PtNPs’ future applications.

Recently, Willner and co-workers reported that in the
presence of ascorbic acid and H,0,, certain nanomaterials
(e.g., CuFe-PB-like NPs, Fe;0, NPs, and AuNPs) could also act
as tyrosinase mimics to oxidize r-tyrosine to r-dopa, and sub-
sequently oxidize r-dopa to dopachrome. And the mixture of
ascorbic acid and H,0, was evidenced to be essential in the
oxidation reaction.*'°

2.3 Catalase mimics

Catalase could efficiently decompose H,0, into water and
oxygen. Many nanomaterials such as metals, metal oxides,
and PB exhibited catalase-like activities.***™*'® Usually, these
reported nanomaterials possessed catalase-like activities along
with other enzyme-mimicking activities, and pH or temperature
would make certain enzyme-mimicking activity dominant. As
discussed in Section 2.1.3, under basic conditions, H,O, would
favor the acid-like decomposition into H,O* and O,* on the
surface of metal nanomaterials (i.e., the metal nanomaterials
acted as catalase mimics). Moreover, Pt and Pd were demon-
strated to possess better catalase-mimicking activities than Au
and Ag.'”® Taking advantage of such highly efficient oxygen
generation by Pt, biological sensing and photodynamic therapy
(PDT) were developed, which will be discussed more in the
Applications section.

Similarly, metal oxide nanomaterials (e.g., Co;0, and ZrO,)
and PB also showed catalase-mimicking activities at high
pH.*****° Wang and co-workers found the weak catalase-like
activities of Co;0, NPs when studying the peroxidase-like
activities.**' Further, they demonstrated that the catalase-
mimicking properties would be enhanced by changing the pH
from acid to neutral and even basic condition. And the in-depth
mechanism studies suggested the whole process as the follow-
ing: on the one hand, Co(u) would activate the adsorbed H,0,
to decompose into *OH; and on the other hand, OOH™ would
be formed via the reaction of H,0, and OH ™, and then it would
interact with Co(ui) to generate *O,H; with the reaction of the
two radicals, H,O and O, would be finally produced.*'* Owing
to the multiple redox forms of PB and the low redox potential of
H,0,/0, at high pH, H,0, could easily oxidize PB to BG/PY and
subsequently reduce PY/BG to PB, accompanied by production
of 0,."* Inspired by these examples mentioned above, other
nanomaterials with peroxidase-like activities could also be
investigated to check their catalase-like activities. And the
involved molecular mechanisms should be elucidated to further
broaden their applications.

2.4 Superoxide dismutase (SOD) mimics

The dysregulated reactive oxygen species (ROS) would cause
oxidative damage to living systems. In nature, SOD would
eliminate superoxide anion O,*”, one of the ROS, through
the dismutation reaction of O,*~ to H,O, and O,. To overcome
the limitations of natural SOD and better combat the oxidative
stress, a variety of nanomaterials have been used to mimic
SOD.**>*3% some of them could remove not only O,*~ but also

This journal is © The Royal Society of Chemistry 2019
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other free radicals, which strengthened the protection from
ROS associated injury and inflammation. Several representative
nanomaterials are discussed below.

2.4.1 Carbon based. Since the discovery of fullerene as a
radical sponge, fullerene and its derivatives have been utilized
to scavenge free radicals and protect neurons from oxidative
injury.**'"*** In particular, Cgo[C(COOH),]; with C; symmetry
(Ce0-C3) was proved to possess a better antioxidation activity
and provide more effective protection than Cego.*** Such an
antioxidation activity was due to the catalytic elimination of
superoxide anion O,° . Further detailed mechanism studies
confirmed the non-change of Cg»-C; and the production of
oxygen and hydrogen peroxide from O,*", just like an SOD-
catalyzed reaction.*** The whole process was carried out in two
sequential steps: first, the unpaired electron was transferred
from O,°” to Cgo-C3, accompanied by oxygen generation; then,
another O,°” came and attracted the electron back, followed
by oxidation of Cgo-C3*~ to its initial state and production of
hydrogen peroxide. During the process, the first step where
fullerene derivatives accepted the electrons was the rate-
determining step. Another study using dendritic C4, derivatives
also presented the two-step dismutation mechanism as men-
tioned above. Moreover, engineering the structures of dendritic
Ceo derivatives with higher reduction potentials improved the
SOD-like activities. The highest activity from one of the den-
dritic C¢p monoadduct derivatives was enhanced by one order
of magnitude than that of Cgy-C;.**°

Besides fullerene and its derivatives, the hydrophilic carbon
cluster (HCC) has also been demonstrated as an SOD mimic
(Fig. 13).*” The HCC was fabricated by treating single-walled
carbon nanotubes with sulfuric acid and nitric acid. Further
modification of HCC with poly(ethylene glycol) (PEG) would
help to increase the water solubility of HCC. The as-synthesized
PEG-HCC could convert O,*" into oxygen and hydrogen per-
oxide, but was inert to reactive nitrogen species like nitric oxide
(*NO) as well as peroxynitrite (ONOO™). Due to many unpaired
electrons and the planar structure of PEG-HCC, accepting
electrons from O,°” for PEG-HCC was easier, which made
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Fig. 13 (A) Effect of PBS (potassium phosphate buffer), PEG, and PEG-
HCCs on O,*~ radicals. (B) Comparison of the O,*~ quenching activity of
SOD and PEG-HCCs at physiological pH (pH = 7.7); 20 nM each of SOD
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PEG-HCC more efficient. For nanomolar concentration of
PEG-HCC, the activity was several orders higher than micro-
molar concentration of Cg-C3, and was even comparable to
CuZn SOD. Such high-performance PEG-HCC would be pro-
mising in therapeutics.**”"**° Recently, PEGylated perylene
diimides as molecular analogues of PEG-HCC, carbon nitride
nanosheets, and nitrogen doped porous carbon nanospheres
were reported to possess SOD-like activities as well.**"**? For
some other forms of carbon such as carbon nanotubes and
nitrogen doped carbon dots, still, more mechanism studies are
needed to check whether their ROS scavenging ability is solely
due to the SOD-like activities.**?

Unlike HCC’s inactiveness to ONOO™, hemin functionalized
reduced graphene oxide (H-rGO) was capable of scavenging
ONOO™.*** And the mechanisms were proposed to be the
synergistic effect of H-rGO on the isomerization and reduction
of ONOO™ (Fig. 14). First, ONOO™~ would interact with the Fe™
center of H-rGO, leading to the formation of Fe™-0-ONO
species; second, the Fe™"=0°NO, intermediate was generated
through the homolytic cleavage of the O-O bond in the Fe™-0O-
ONO species; then, owing to the presence of rGO, an acceler-
ated recombination of the caged radical intermediate formed
the Fe'"-nitrato complex, which would be hydrolyzed back to
the Fe™ center, accompanied by the isomerization of ONOO™ to
NO; . It was worth noting that the synergistic effect of hemin
and rGO could catalyze the reduction of ONOO™ to NO,™ as
well. And the addition of ascorbic acid would enhance the
activity by 12%, as the promoted regeneration of the Fe'" center
from the caged radical intermediate would help in reducing
ONOO™ to NO, .***

2.4.2 Cerium based. Nanoceria were among the first
reported nanomaterials with SOD-mimicking activities, which
were attributed to the electron shuttle between their mixed
oxidation states (Ce** and Ce*").**>**® Though the detailed
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mechanism of the superoxide scavenging ability of cerium oxide
still needs to be verified, several studies have shown that a
higher ratio of Ce**/Ce** would result in higher SOD-mimicking
activities.**”™**° Considering the association between Ce*" and
oxygen vacancies, a reduction in the size of cerium oxide with the
formation of more surface oxygen vacancies was utilized to
guarantee high Ce®".****>* Therefore, small sized cerium oxides,
usually less than 5 nm, were extensively explored as SOD mimics.
Further enhancement in the SOD-like activities could be
achieved through doping cerium oxide with Zr/La atoms to
generate more oxygen vacancies.*>"*>

It is worth mentioning that, different from fullerene-based
SOD mimics, the antioxidation properties of cerium oxide were
from not only SOD- but also catalase-like activities.*>* **>® More-
over, cerium oxide could eliminate *NO and *OH as well.*39762
The multiple enzyme-mimicking activities of cerium oxide
showed promising application in therapeutics, which will be
described in the Applications section. For the biological appli-
cation of cerium oxide, several strategies such as surface coat-
ing and hydrogel formation were introduced to improve the
stability, dispersity, and location of cerium oxide in a cellular
4637465 The effect of these coating and intracellular
molecules on the catalytic activities was also investigated. Most
of them had no effect, except the inhibition of activities from
phosphate, which was attributed to the specific interaction
between Ce** and phosphate to block the Ce**/Ce*" shuttling.*®®
Another interesting finding was that the larger cerium oxide
(larger than 5 nm) could be endowed with SOD-like activities
when exposed to native CuZn-SOD or other electron donors
(Fig. 15). The electrons transferred from CuZn-SOD/other donors
to cerium oxide would help to reduce Ce*" to Ce*’, thereby
improving the dismutation of superoxide anions. This

environment.

unexpected finding was universal to cerium oxides of other sizes
and morphologies, which made the regulation and regeneration

Fig. 14 Proposed mechanism for the isomerization and reduction of peroxynitrite and scavenging of *NO, by H-RGO hybrid nanosheets. Asc = ascorbic
acid. Reprinted with permission from ref. 444. Copyright (2012) John Wiley and Sons.
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of Ce®" easier and thus more promising for practical biomedical
applications.*®”

2.4.3 Melanin based. Different from the aforementioned
SOD mimics, most specific for O,°~, the melanin nanoparticles
(MeNPs) with multiple free radical (e.g., O,*, *OH, *NO, and
ONOO™) scavenging abilities were recently developed by Shi,
Lu, and co-workers.**® The MeNPs were synthesized by mixing
dopamine hydrochloride with ammonia in ethanol-water, and
then functionalized with amine-terminated PEG to improve
their stability. Such PEG-MeNPs (~120 nm in diameter) pos-
sessed SOD-like activities for O, scavenging. The scavenging
process was suggested to comprise two sequential reactions
similar to Ce(-C; (Fig. 16A). As the secondary *OH and ONOO™
converted from O,*~ could also lead to an oxidative injury, an
effective antioxidative therapy should benefit from the elimina-
tion of these reactive oxygen and nitrogen species as well. As
shown in Fig. 16B, PEG-MeNPs could eliminate the *OH
produced through Fenton-type reaction between H,O, and
Cu". Notably, ascribed to the chelating capability of melanin
towards Cu’, the pre-added PEG-MeNPs before H,0, would
block *OH from generating (i.e., no signal of *OH generated in
reaction (4)). Thanks to the residual functional groups such as
catechol of melanin, the PEG-MeNPs could also effectively
detoxify *NO and ONOO™ through nitration and nitrosation
(Fig. 16C and D). Though the exact molecular mechanisms still
need to be verified, the robust multi-antioxidative properties
made PEG-MeNPs promising for treating a series of free radical-
associated diseases.**®

2.5 Hydrolase mimics

A hydrolase catalyzes the hydrolysis of a chemical bond. For
example, a nucleosidase hydrolyzes the bonds of nucleotides. A
phosphatase catalyzes the cleavage of phosphate groups from
molecules. Due to the degradative effect on larger molecules,
hydrolases play an important role in biological systems and in

This journal is © The Royal Society of Chemistry 2019

environmental protection. Up to now, several nanomaterials
have been explored to imitate hydrolases,***™*°° and the typical
ones are shown in this section.

2.5.1 Carbon based. Besides the aforementioned peroxidase-
and SOD-mimicking properties, actually, carbon based nano-
zymes were firstly discovered to mimic natural nucleases in the
1990s.*°" A water-soluble fullerene functionalized with carboxylic
acid moieties, called Cgo-1, was demonstrated to catalyze the
cleavage of the phosphodiester bond of DNA when irradiated by
light. Further, by conjugating fullerenes with complementary
DNA or DNA intercalators, the cleavage efficiency at a specific
site of DNA could be enhanced.****%

In addition to fullerenes, graphene oxides were also used as
hydrolase mimics.***™*%® For instance, graphene oxide integrated
with peptide nanofibers could hydrolyze cellulose. Systematic
studies uncovered that such high polysaccharide hydrolase-
mimicking activities of this hybrid were from the fibril structure
of peptides, less steric hindrance to the substrate, and the
synergistic effect from graphene oxide and peptide nano-
fibers.*”” Similarly, carbon nanotubes assembled with short
peptides could also cleave 4-nitrophenyl acetate.**®

2.5.2 Monolayer functionalized AuNP based. Among the
first nanomaterials as hydrolase mimics, one that deserves to
be mentioned is the AuNPs functionalized with catalytic mono-
layers through Au-S bonds. In 2004, Scrimin, Pasquato, and
co-workers assembled alkanethiol ligands bearing a catalytic
complex of 1,4,7-triazacyclononane (TACN) and zinc ion onto
the surface of AuNPs. Such functionalized AuNPs exhibited
RNase-mimicking activities to cleave 2-hydroxypropyl p-nitro-
phenyl phosphate (HPNPP) (Fig. 17A).*°*°%° Compared with no
catalyst and the unassembled catalytic complex TACN-Zn**, the
reactions with functionalized AuNPs were enhanced by four
orders and two orders of magnitude, respectively. Further
detailed studies showed that such excellent performance was
attributed to the enhanced local concentration of HPNPP,
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the cooperativity between two or more metal centers, and high
stability from the strong Au-S bond.**°°' More substrates
such as RNA dinucleotides ApA, UpU and CpC were also cleaved
by the functionalized AuNPs (Fig. 17B).*>° Not surprisingly,
such functionalized AuNPs had a high affinity to negatively
charged molecules such as peptides, which would thus compete
with the binding of HPNPP and decrease the catalytic activities
of the RNase mimics. With this in mind, several strategies for
activity modulation and subsequently colorimetric sensing of
important biological molecules have been reported.’*>>**
What’s more, the polarity of the alkanethiol ligands could also
affect the interaction between the nanozymes and HPNPP,
where a lower polarity would enhance the interaction and thus
improve the cleavage efficiency (Fig. 17C and D).>*

Such monolayer functionalized AuNPs were not restricted to
the TACN-Zn>" catalytic complex, and others including pep-
tides, lanthanide complex, and guanidine were also reported to
assemble onto AuNPs as hydrolase mimics.”**"* For example,
using the complex of bis-(2-amino-pyridinyl-6-methyl)amine
and zinc ion as the catalytic moiety, the functionalized AuNPs
could catalyze the cleavage of a DNA model substrate bis-p-
nitrophenyl phosphate and also plasmid DNA.>'* Coating of
lanthanides, such as Ce(v), onto the surface of AuNPs led to a
2.5 million-fold enhanced rate of HPNPP cleavage relative to
background hydrolysis. Such a remarkable acceleration was attri-
buted to the same cooperative mechanism as the Zn-based
complex. However, there was a difference between free Ce and

1018 | Chem. Soc. Rev., 2019, 48, 1004-1076

Zn ions in catalyzing the hydrolytic cleavage, as Ce(iv) rather than
Zn(u) could form active oligomeric clusters and thus hydrolyze
the substrate efficiently.”®® Moreover, on changing the mono-
layer to a chiral Zn(u)-based complex (Fig. 17E), enantioselective
hydrolysis of RNA model substrates and natural RNA dinucleo-
tides could also be observed with this chiral AuNP nanozyme. In
particular, owing to the special preference for uracil, the enantio-
selective reactivity of UpU was the best among all the RNA
dinucleotides.>*®

Unlike the covalent binding mentioned above, some non-
covalent assemblies of catalytic moieties onto the surface of
alkanethiol protected AuNPs exhibited similar phosphatase-like
activities as well (Fig. 17F).>®” Based on such non-covalent
assembly, specific activation of pro-drugs could be achieved for
therapeutics with minimized toxic side effects of drugs.>"> For
more details and applications one could refer to the Applications
section.

2.5.3 MOF based. A large number of Zr-based MOFs
have been used as phosphotriesterase mimics for cleaving the
phosphate ester bond of chemical warfare agents (CWAs)
(Fig. 18A).>'*** The reason was the similarities between the
structures of phosphotriesterase catalytic sites (Zn-OH-Zn) and
the structures of MOFs where hydroxyl bonds bridge Lewis
acidic Zr(wv) centers. The UiO family of MOFs, a representative of
Zr-based MOFs, was fabricated by mixing Zr ions with benzene-
1,4-dicarboxylate (BDC) and widely explored to mimic phospho-
triesterase. For instance, in 2014, Hupp, Farha, and co-workers

This journal is © The Royal Society of Chemistry 2019
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showed that 400 nm UiO-66 could catalyze the hydrolysis of

dimethyl-4-nitrophenyl phosphate (DMNP) at room tempe-
rature, with a half-life of 45 min. Considering the larger size
of the DMNP substrate (11 x 4.5 A) than the aperture (6 A), the
reaction was suggested to mainly happen on the MOF surface

with around 0.75% nodes accessible and a local turnover

number (TOF) of 0.4 s~*.>?® Further, they modified the UiO-66
with -NH, groups, supplying the Zr(v) centers with proton
donor-acceptor centers. Compared with UiO-66, UiO-66-NH,
shortened the half-life of DMNP (1 min) by 1 order of magnitude,

This journal is © The Royal Society of Chemistry 2019

and exhibited a surface TOF with approximately 20-fold
enhancement.”*® Besides UiO-66 MOFs, other MOFs (such as
NU-1000 and MOF-808) with similar bridging motifs were also
synthesized and reported for CWA degradation. Both of them
possessed better catalytic activities than UiO-66, which resulted
from the less coordination of Zr centers and larger accessible
active sites. Instead of 12 and 8 coordinations in UiO-66 and
NU-1000, MOF-808 with only 6 coordinations offered the high-
est hydrolysis efficiency for DMNP, with a half-life of less than
0.5 min and a TOF of larger than 1.4 s~ *.>'”**” Later, PCN-777,
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sharing the same connection but a larger pore size than
MOF-808, showed a comparable catalytic activity as MOF-808,
verifying that MOFs with less coordination gave better hydro-
lytic performance. On the other hand, for the effect of the pore
size, it was not that significant as the pore size of MOF-808 was
already large enough for efficient diffusion.’*® Though some
systematic investigations and simulations have been carried
out for certain nerve agent simulants, different model systems
exhibited different hydrolytic pathways.*>**° A shared mecha-
nism for this process was that the substrate would bind to the
metal center, and then the nucleophilic hydroxyl group would
attack the electrophilic phosphorus and complete the cleavage
reaction with the release of the leaving group (Fig. 18B).>*" still,
more exact molecular mechanisms for different systems need
to be verified through both experiments and calculations in
the future.

Besides, MOFs were also studied for degradation of other
organophosphate-based CWAs (Fig. 18C), which have been sum-
marized in previous reviews.**”3?73% For example, Cu-BTC/g-
C;N, nanocomposites dispersed on cotton textiles possessed a
superior cleavage ability of dimethyl chlorophosphate, due to the
high dispersion of composite, large accessible active sites and

1020 | Chem. Soc. Rev., 2019, 48, 1004-1076

synergistic promotion from g-C;N,.>** Ce-BDC, similar to the
structure of UiO-66, exhibited higher hydrolysis rates for detoxi-
fication of DMNP and O-pinacolyl methylphosphonofluoridate
than UiO-66. Further mixing Ce-BDC with polyethylenimine,
consisting of amine groups, could also improve the hydrolysis
rate as UiO-66-NH, did. They speculated that the underlying
cause was an easily attacked intermediate formed from the
mixture of Ce(iv) 4f orbitals and P—=O orbitals.**’

In addition to CWAs’ cleavage, MOFs have also been utilized
for other hydrolytic reactions. For instance, a Cu-MOF with
protease-mimicking activity, catalyzing the hydrolysis of pep-
tide bonds in bovine serum albumin (BSA) and casein, was des-
cribed by Li, Wang, and co-workers. Owing to the large surface
and porous structure of the MOF, such Cu-MOFs showed a
significantly higher affinity to proteins than natural trypsin and
homogeneous artificial metalloprotease Cu(i) complexes. Thus,
the obtained Cu-MOF exhibited good hydrolytic activity, stabi-
lity, and reusability.”*!

2.6 Other enzyme mimics

So far, not only redox and hydrolysis reactions but also other
enzymatic reactions have gained a lot of attention.>**>*3

This journal is © The Royal Society of Chemistry 2019
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For instance, besides peroxidase and hydrolase mimics men-
tioned earlier, hydrogenase-like activity could also be realized
with MOFs, as long as providing MOFs with photon absorption
agents (e.g., porphyrin) and proton reducing agents (e.g,
PtNPs).>****! Moreover, MOFs synthesized with a carbonic
anhydrase analogous moiety could mimic carbonic anhydrase
to minimize the global warming issues.’>®> Great progress has
been made in this field of MOF-based enzyme mimics and
summarized.”®" Though some issues about MOF-based nano-
zymes like the large size and dispersity still need to be solved,
some good strategies (such as anchoring the catalytic moiety
onto MOFs) for designing and expanding the types of enzymatic
reactions should be utilized in the future.

In addition, Chmielewski, Rotello, and co-workers reported
that the electrostatic assembly of two peptide fragments onto
the trimethylammonium functionalized AuNPs would promote
ligation of the two peptides, which made the inorganic func-
tionalized nanoparticles promising in the polymerization of
biopolymers (Fig. 19A).>>* Morse and co-workers demonstrated
that monolayer-functionalized AuNPs could mimic silicatein.
When the distance between one hydroxyl functionalized AuNP
and another imidazole functionalized AuNP was close enough
to form hydrogen bonds, the silica precursor would be hydro-
lyzed and then condensed to form silica at the interface of two
AuNPs,>>®

Moreover, a Fe(u) zeolite-based methane monooxygenase
mimic converting methane with nitrous oxide into methanol
was studied. The nature of the exact active site was recently
disclosed by Solomon and co-workers (Fig. 19B). The extra-
lattice active site was determined as a mononuclear, high-spin,
square planar Fe(u) site through a site-selective spectroscopic
method and magnetic circular dichroism.>* Not only Fe(m)
zeolites but also Cu-exchanged mordenite could convert methane
to methanol via the pre-oxidized copper-oxo active center.>>®

2.7 Multi-enzyme-mimicking nanozymes

Notably, certain nanomaterials (e.g., Pt and CeO,) could mimic
two or more types of enzymes, and such multiple enzyme-
mimicking activities made them more efficient in their further
applications."'*'*®>”71 For instance, SOD-, catalase-, peroxidase-
and oxidase-like activities of CeO, were found. As mentioned in
Section 2.4.2, at neutral or high pH, CeO, NPs with an excellent

This journal is © The Royal Society of Chemistry 2019
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antioxidation function were reported due to both SOD- and
catalase-like activities. On the other hand, for acidic pH, the
catalase-mimicking activities would decrease a lot. Though
the SOD-like activity was retained under acidic conditions, the
generated excess H,0, without timely elimination would still
cause oxidative damage. Moreover, oxidase-like activities of CeO,
NPs would be enhanced under acidic conditions, and promote
the oxidation of those intracellular and extracellular species to
kill cells. Therefore, according to different microenvironments,
the pH-dependent multi-enzyme-mimicking activities of CeO,
NPs could be utilized to provide different functions such as a cell
protector and a cancer cell killer.>”> Another Mn;0O, nanozyme
imitating not only SOD and catalase but also GPx was reported to
effectively combat cellular oxidative stress.>”®> The combination
of protease- and SOD-mimicking activities as well as copper-
chelating capability made the polyoxometalate-based nanozyme
an effective therapeutic agent for the treatment of Alzheimer’s
disease.””*

2.8 Multi-functional nanozymes

Besides, the intrinsic magnetic and optical properties of nano-
materials (e.g., Fe30, and Au) endowed nanozymes with multiple
functionalities, ensuring an easy separation process, ultra-sensitive
sensing, and in-depth mechanism study.'®®*"*°7573%% For
example, the Wei group developed versatile bioassays based
on AuNPs with both peroxidase-like activities and surface
enhanced Raman scattering properties. An additional growth
of suitable Pt shells (2.5%) would enhance the activities of
nanozymes while retaining the Raman properties of AuNPs,
leading to 1-2 orders of magnitude enhancement of sensitivity
and shortening of the detection time.”®> Moreover, the optical
properties of Au and the magnetic properties of iron could also be
used for imaging, which will be discussed in the Applications
section. To highlight such categories, nanomaterials with multiple
enzyme activities and multiple functionalities are summarized in
Tables S6 and S7 (ESIT), respectively.

3. Engineering nanozyme activity and
selectivity

To make nanozymes better alternatives to natural enzymes,
engineering their activity and selectivity should be prioritized.
So far, most studies focused on the activity regulation and only
a few on selectivity. Several important factors inspired by the
intrinsic properties of nanomaterials or natural enzymes are
summarized as below.

3.1 Size

Since nanomaterials with a smaller size would expose more
active sites due to the higher surface to volume ratio, most
studies have demonstrated that a better catalytic activity came
along with smaller sized nanomaterials.*'*>%*9¢%° Moreover,
some specific properties could appear only when the size was
shrunk to a certain extent. For example, Ce*", helpful for SOD-
mimicking activities of nanoceria, would become stable in the
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nanoparticles with size less than 5 nm.**®**° Similarly, the
high-energy facet {211}, which was responsible for the oxidase-
like activity of AuNPs, became abundant only when the size
decreased to 3-5 nm."

However, it is notable that a larger size would sometimes
behave better than a smaller one. For instance, guanine-rich
oligonucleotide capped 1.8 nm Pt nanozymes showed a lower
peroxidase-like activity than cytosine-rich oligonucleotide
capped 2.9 nm Pt. The underlying reason was that 2.9 nm Pt
contained more metallic Pt° for enzyme-like catalysis, while
1.8 nm Pt had more Pt** but less Pt®.°*

3.2 Shape and morphology

It is well known that the shape and morphology of nanomaterials
play a critical role in their catalytic properties.’*®®°*~%'% For
instance, Mugesh, D’Silva, and co-workers compared the catalase-,
GPx- and SOD-like activities of different shaped Mn;O, NPs
(e.g., nanoflowers, flakes, cubes, polyhedra, and hexagonal
plates). They found that the flower-shaped Mn;O, exhibited
the highest catalytic activities for the three types of reactions,
whereas other morphologies only showed SOD-like activities.
Thus, the flower-shaped Mn;0, NPs were chosen for further
neuroprotection application.’”> The morphology-dependent
oxidase-like activity of MnFe,O, was investigated by changing
the synthetic conditions. Owing to different morphologies with
different facets, the nanooctahedra bound by {111} planes
exhibited a better oxidase-like activity than nanosheets and
nanowires.®* Yin, Chen, Gao, and co-workers reported that
{111}-faceted Pd octahedra possessed both better catalase- and
SOD-like activities to scavenge ROS than {100}-faceted Pd cubes.
The scavenging reactions of ROS like H,0, and O,*~ on these two
facets and the reaction energy (E,) of the rate-determining step
were calculated, where more negative E, evidenced higher activity.
As shown in Fig. 20, the scavenging abilities of H,0, and O,*~ on
the {111} facet (E; equaled —2.81 and —0.60 eV, respectively) were
stronger than those on the {100} facet (E, equaled —2.64 and
—0.13 eV, respectively).°*> On the other hand, for their abilities
of generating ROS, a recent study observed that {100}-faceted Pd

H202 ar H02 — 02 HOEIEE Hzo

View Article Online
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cubes exhibited higher oxidase-like and peroxidase-like activities
than those of {111}-faceted Pd octahedra. Similarly, theoretical
simulations of O, and H,0, dissociation in their corresponding
oxidase- and peroxidase-mimicking reactions were carried out.
The lower energy barriers of O, and H,0, dissociation on the
{100} facet indicated that these processes were energetically
more favorable than on {111}, thus agreeing with the aforemen-
tioned observation.®'®

3.3 Composition

An economic and efficient method to regulate the activity was
growing with a (more) active nanomaterial or doping another
element. A widely explored strategy was growing less active
nanomaterials (e.g., Au and Ag) with another higher active one
(e.g., Pt and Ir), which would not only improve the enzymatic
activities but also make effective utilization of these noble
metals.*"*®7"%*! For example, as shown in Fig. 214, the coating
of a few atomic Ir layers on Pd cubes would enhance the
catalytic efficiency by at least 20- and 400-fold than Pd cubes
and HRP.®”> The Wei group synthesized high-performance
Au@Pt multi-functional nanozymes via a seed-mediated method
for H,0, detection. Compared with previous reports, such a
structure possessed simultaneous plasmonic properties from the
Au core and enzymatic activity from the Pt shell, shortening the
detection time and improving the sensitivity by 1-2 orders of
magnitude (Fig. 21B).”®> To further improve the activity, some-
times, the less active core would be selectively etched after
growing the higher active one. For example, after etching the Pd
core, Pd-Pt core-frame nanodendrites were transferred to Pt
hollow nanodendrites, accompanied by more active sites and
high-index facets exposed for enhancing the peroxidase-like
activity.®>?

Doping was another effective strategy to regulate the acti-
vities of nanozymes benefited from the change of the electronic
structure.**>%**"%3 For example, considering the requirement
for excellent SOD-like activity of ceria nanoparticles, Zr** with
smaller ionic radius (0.084 nm) was chosen to promote high
Ce**/Ce*" and fast regeneration of Ce’", as the lattice strain of

Fig. 20 Lowest-energy adsorption structures and reaction energies (in eV) for the reactions on structures having either Pd{111} or {100} facets.
Reprinted with permission from ref. 615. Copyright (2016) American Chemical Society.

1022 | Chem. Soc. Rev., 2019, 48, 1004-1076

This journal is © The Royal Society of Chemistry 2019


https://doi.org/10.1039/c8cs00457a

Published on 11 December 2018. Downloaded on 10/31/2025 12:21:19 PM.

Review Article

Less Pt

Low Catalytic Activity

Strong SERS Effect

View Article Online

Chem Soc Rev

Il Horseradish peroxidase
Il Pd cubes

10°
I Pd-Ir cubes ]

Catalyst idi
TMB+H,0,—2> °’$ﬂ§ed 10

10%4

LI
Catalytic constant, Kea / 51

More Pt

High Catalytic Activity

Weak SERS Effect

@y Mo Produc DT ¢ DD THEax
After 2 min = - \_}@ @
] ]

Fig. 21 (A) Pd-Ir core—shell nanocubes as efficient peroxidase mimics.

L L

) Rational design of high-performance Au@Pt NP bifunctional nanozymes by
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Ce*" (0.097 nm) to Ce** (0.114 nm) could be released from the
smaller Zr**.*>* Besides, Qu, Ren, and co-workers reported that
Fe*" doped mesoporous carbon nanospheres could improve the
peroxidase-like activities as a result of containing both cata-
Iytic sites (e.g., Fe**) and binding sites (e.g., carboxyl groups in

carbon).®*?

3.4 Forming complexes or hybrids

Numerous studies have shown that conjugating several nano-
materials to form hybrids would improve the catalytic activity
as a result of the synergistic effect,'0®3%0:321,034-665 por example,
assembling Pt@CuMOFs with hemin/G-quadruplex showed an
elevated peroxidase-like activity from the two catalysts.®®® An
interesting Pt,gPds,-Fe;O, dumbbell structure as a peroxidase
mimic exhibited the highest V;,.x among the Pt;sPds, and
Fe;04 mixture (4.44 x 10~% M s™'), individual Pt,sPds, (2.56 x
10" %M s7"), individual Fe;0, (3.46 x 10" ®* M s~ "), and Pt,sPd;,~
Fe;0, dumbbell structure (9.36 x 10~% M s71).°” Moreover, a
series of studies using the hybrid of certain nanozymes (e.g.,
MoS,, CuO, and Pt) with graphene demonstrated a higher cata-
lytic activity than that of the individual catalysts due to the high
conductivity, good dispersity, and synergistic interaction."**°°%8
For example, AuNCs on graphene oxide possessed high

This journal is © The Royal Society of Chemistry 2019

peroxidase-like activity over a broad pH range, especially a
comparable catalytic efficiency to HRP at neutral pH.>**
Recently, integrating two or more nanozymes together to
enhance the cascade reaction catalytic efficiency has been
widely explored.>”®®®7%%° sych an integration would have con-
finement effects (or nanoscale proximity effects) to provide a
high local concentration of the substrate, enable efficient
transfer, and minimize the decomposition of intermediates.
For instance, as shown in Fig. 22, the Wei group synthesized
the GOx/hemin@ZIF-8 integrate by adding GOx and hemin
during the assembly of Zn>* and 2-methylimidazole. They
confirmed this integration through the element mapping of
Zn in ZIF-8, Fe in hemin and fluorescence labelling of GOx.
Compared with the mixture of GOXx@ZIF-8 and hemin@ZIF-8,
nearly 600% improvement of the overall catalytic efficiency was
achieved with GOx/hemin@ZIF-8.°°° And it was worth noting
that such a strategy was applicable to other systems (e.g., GOx/
NiPd@ZIF-8).”8"%°! Even for three biocatalysts, invertase/GOx/
hemin@ZIF-8, a stable integrate could also be constructed and
improved the efficiency by 700% compared to the mixture of
invertase@ZIF-8, GOXx@ZIF-8, and hemin@ZIF-8.°°° Instead of
using MOFs as a host, porous carbon or silica could serve for
integrating several nanozymes as well.**>*** Besides, an additional
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Fig. 22 (A) Schematic illustration of GOx/hemin@ZIF-8. (B) TEM images and the corresponding element mapping of ZIF-8 and hemin@ZIF-8, as well as
bright field and the corresponding fluorescence images of GOx-FITC/hemin@ZIF-8 (lex = 436 nm; FITC, fluorescein isothiocyanate isomer I).
(C) Schematic illustration of reactions catalyzed by GOx/hemin@ZIF-8. (D) Kinetic plots of the time-dependent fluorescence intensity of GOx/hemin@ZIF-8
or the mixture of hemin@ZIF-8 and GOx@ZIF-8. Adapted with permission from ref. 690. Copyright (2016) American Chemical Society.

host became unnecessary when fabricating integrates through
layer-by-layer deposition, such as directly depositing AuNPs
onto the surface of V,05 nanorods or 2D MOFs.*?>°°® Notably,
the 2D MOFs used here provided peroxidase-like activities,
which were different from those of the inactive ZIF-8 host.

Meanwhile, it was noteworthy that when coupling with
natural enzymes, not only the catalytic activity but also the
selectivity of the integrate was improved. As a result, the
detection of glucose or lactase with the assistance of GOx or
lactate oxidase could be achieved, which will be discussed in
Section 4.1.2.>81:6%°

3.5 Surface coating and modification

Most reactions take place on the surface of nanozymes. An
additional surface coating or modification of nanozymes would
affect their activities through the change of surface charge
and microenvironment, as well as the exposure of active sites.
Normally, the extra coating or modification would shield the
active sites and thus decrease the catalytic activities. For
instance, the coating of DNA or other biomolecules has been
reported for inhibiting the activities of nanozymes.'*816%69%697-701
And then the corresponding sensing of these molecules was
developed on the basis of activity modulation. However, in
some cases, a coating or modification would form a favorable
environment to improve the total catalytic activities.””>”"® For
example, coating with an active surface would help to enhance
the entire activity, such as with Fe,O;@PB."** Due to the negative
charge of DNA, many researchers have reported enhanced affi-
nities and improved activities to positively charged TMB with the
assistance of DNA."77%712 Ljkewise, Fu, Hu, and co-workers
found that coating AuNCs with heparin could endow AuNCs with
negative charges and thus enhance the peroxidase-like activity

1024 | Chem. Soc. Rev., 2019, 48, 1004-1076

towards TMB by 25-fold at neutral pH.”"> Another interesting
finding was that coating ferric oxide nanoparticles with the cetyl
trimethyl ammonium bromide surfactant changed their struc-
tures and catalytic activities. Different from pristine spherical
ones, rod-shaped nanoparticles with a more porous structure and
higher peroxidase-like activities were formed after surfactant
coating.”**

Notably, when charged monomers are combined with mole-
cular imprinting, certain substrate binding pockets would be
created on the surface of nanozymes, leading to significant
enhancements of both activity and selectivity.”>”*>"*® As shown
in Fig. 23, a specific binding pocket to TMB was formed on
the surface of Fe;O, NPs. As a result, around 15-fold catalytic
efficiency and 98-fold specificity were achieved with the imprinted
substrate TMB over ABTS. Such a strategy was applicable to other
nanozymes (e.g., AuNPs and CeO, NPs).”*® Additionally, taking
advantage of the chiral structures of amino acids or others

Free nanozyme

Imprintec/j//:—;) o

o x
TME ABTS
Cr
!/ 1 4
Fe;O, THeN [+ 0,

NPs AN AN

Fig. 23 Fez04 peroxidase-mimicking nanozyme has a similar activity for
TMB and ABTS. After imprinting with TMB, its selectivity for TMB is drastically
improved. Reprinted with permission from ref. 719. Copyright (2017) American
Chemical Society.
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(e.g., secondary structures of DNA and zinc-finger-protein like
chiral supramolecular complex) as surface coating, the chirality
of surface coating could also help to improve selectivity and
realize enantioselective discriminations.”**”">?

Inspired by natural peroxidases, Yan, Gao, and co-workers
modified Fe;O, NPs with histidine to form a similar micro-
environment to natural enzymes (Fig. 24). Compared with
naked Fe;O, NPs, such modification improved the affinity
towards H,0, by at least 10-fold, as a hydrogen bond would
form between the side-chain imidazole group of histidine and
H,0,. Therefore, more than 20-fold increase of the peroxidase-
like catalytic efficiency was obtained with histidine-modified
Fe;0, NPs. Benefitting from the significantly improved affinity
to H,0,, the catalase-like activity could also be enhanced.”**

Another interesting example of surface modification was that
amine-terminated dendrimer-encapsulated AuNCs (AuNCs-NH,)
could selectively decrease the peroxidase-like activities while
maintaining their catalase-like activities. When blocking most
amines (1°- and 3°-amines) of AuNCs-NH, via methylation,
significantly recovered peroxidase-mimicking activities could be
observed, indicating the importance of amines in inhibiting the
peroxidase-like activities. A similar suppression of peroxidase-
mimicking activities was also found in AuNCs-OH (hydroxyl-
terminated, containing 3°-amines inside the backbone), which
further evidenced the role of 3°-amines. And the possible mecha-
nism was speculated to be the competitive consumption of *OH
through easy oxidation of 3°-amines.””> In their following study,
catalase-mimicking AuNCs-NH, with O, self-supplied was used
for cancer PDT to overcome hypoxia.”*®

3.6 Promoters and inhibitors

Inspired by coenzymes, Qu and co-workers reported that
with the addition of nucleoside triphosphates, the oxidase-
mimicking activities of CeO, would be enhanced in the following
order: guanosine triphosphate > adenosine triphosphate >
uridine triphosphate > cytidine triphosphate. Unlike natural
coenzymes, they suggested that this increase was due to the
energies released from the hydrolytic reaction of nucleoside
triphosphates catalyzed by CeO,.””” In another study, the Wei
group found that adenosine triphosphate exhibited a positive

This journal is © The Royal Society of Chemistry 2019

effect to enhance the oxidase-like activity of CeO, at first, but an
inhibitory role under longer reaction time. The formation of the
Ce-PO, complex was speculated for shielding the active sites of
Ce0,.*** More in-depth mechanisms for the complicated roles
of adenosine triphosphate in the catalytic activities of CeO,
should be further investigated. Several ions or molecules were
also reported to improve the enzymatic activities of nano-
materials.'>32%%7287737 gor example, Lu et al. found that Hg*"
could significantly enhance the peroxidase-like activity of
rGO/PEI/Pd nanohybrids and Liu et al. demonstrated that the
oxidase-like activity of nanoceria could be enhanced by over two
orders of magnitude in the presence of fluoride.”*®”*° However,
in some cases, certain ions (e.g., Ag" and Hg>*) and other mole-
cules could react with the nanozymes to inhibit their catalytic
activities,'4160,163,164,187,371,373,740-749 pccordingly, owing to the
specific inhibition, the sensing of these inhibitors with good
selectivity and sensitivity was developed.

Another interesting phenomenon was that certain inhibitors
could selectively inhibit certain enzymatic activities. For instance,
NaNj; only decreased the catalase-like activity of ferritin-PtNPs
while 3-amino-1,2,4-triazole inhibited both SOD- and catalase-
like activities of ferritin-PtNPs. The reason was that singlet oxygen
generated from superoxide was involved in the SOD-like reaction
but not in the catalase-like reaction. And as a strong quencher of
singlet oxygen, NaNj3, rather than 3-amino-1,2,4-triazole, would
be removed from the PtNP surface via the reaction with singlet
oxygen. Therefore, NaN; only selectively suppressed the catalase-
like activity.”*°

3.7 pH and temperature

Similar to natural enzymes, the activities of nanozymes are
normally pH and temperature dependent,30%:319:353,606,751-756 ¢
we elucidated above, an acidic condition would be suitable for
a peroxidase-mimicking activity, whereas neutral and alkaline
pH promote SOD- and catalase-like properties.®®9%3%9757 Most
studies provided a systematic investigation of the effects of pH
and temperature on the nanozyme activity, and then optimal
pH and temperature would be found, such as pH 4.5 at 55 °C
for LaNiO; perovskite nanocubes as peroxidase mimics.”>®
As a result of the stabilization effect on the final products,
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Fig. 25 (A) Photothermal effect of graphene and light-induced pH changes by MGCB. (B) The illustrations of reaction equations used to determine the
activity and light-controlled AuNP activity maps obtained by varying the light irradiation time. (C) The illustrations of reaction equations used to determine
the activity and light-controlled FezO4 NP activity maps obtained by varying the light irradiation time. (D) The illustrations of reaction equations used to
determine the activity and light-controlled PtNP activity maps obtained by varying the light irradiation time. Adapted with permission from ref. 761.

Copyright (2017) American Chemical Society.

ionic liquids and adenosine triphosphate were reported to help
peroxidase-mimicking nanozymes realize high-temperature
reactions.”””® Besides, some interesting research studies based
on pH and temperature modulation were performed.?°*72%76!
An in situ modulation of pH was demonstrated by the Wei group
through proton-producing or consuming bioreactions.*®*
Another photoregulation of pH and temperature was carried
out with the hybrids of photobase reagent malachite green
carbinol base (MGCB) and graphene oxide. Upon irradiation
of ultraviolet and near-infrared light, OH™ from MGCB and
high temperature from graphene oxide would be generated,
respectively. Therefore, a wide range of both pH and tempera-
ture could be adjusted upon irradiation, and the catalytic
activities would be tuned accordingly (Fig. 25A). For instance,
for GOx-mimicking AuNPs, the optimal pH 6 at 65 °C could be
achieved with ultraviolet and near-infrared light irradiation
for ~1 min and ~10 min, respectively (Fig. 25B). Likewise,
as shown in Fig. 25C and D, the optimal pH and temperature
for peroxidase-mimicking Fe;O, NPs and catalase-mimicking
PtNPs could be regulated as well.”®

3.8 Light

Due to non-pollution to the environment and efficient control
with spatial and temporal precision, light has been widely used
as an ideal external stimulus for reactions.”®>”7%” Besides the
pH/temperature dual photoresponsive example mentioned

1026 | Chem. Soc. Rev., 2019, 48, 1004-1076

above, light-induced ¢rans—cis and cis-trans isomerization was
reported by Prins and co-workers to reversibly regulate the AuNP-
catalyzed hydrolysis of HPNPP (Fig. 26A). A higher affinity of trans
isomerization to the monolayer functionalized AuNPs would
inhibit the adsorption of substrate HPNPP, therefore reducing
the hydrolysis activity. Upon irradiation at 365 nm, trans—cis
isomerization would happen. Meanwhile, the cis isomer with a
lower affinity to the NP surface would help up-regulate the
transphosphorylation rate of HPNPP. Further irradiation at
465 nm and 365 nm would repeat the cis-trans and trans—cis
isomerization cycle and the down- and up-regulation.”®® Like-
wise, the catalytic activity of the azobenzene modified Pd nano-
zyme could be controlled by light induced isomerization, where
cyclodextrin was present in the system. ¢rans-Azobenzene binding
to cyclodextrin via a host-guest interaction could prevent the
substrates from active sites and thus inhibit the catalytic activity
of Pd nanozymes. However, upon UV light irradiation, trans-
formation from trans to cis would cause the dissociation of
cyclodextrin and recover the activity with the exposed catalytic
sites. Further application of such light-gated nanozymes will be
demonstrated in the Applications section.”®’

Moreover, under a visible light (1 > 400 nm) trigger, the
intrinsic enzyme-mimicking activities of 2 nm AuNCs tem-
plated by BSA could be enhanced. Careful mechanism studies
disclosed that light stimulated BSA-AuNCs to generate electron—
hole pairs, which would then activate oxygen or water to

This journal is © The Royal Society of Chemistry 2019
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Fig. 26 (A) Light-induced cis—trans isomerization changes the affinity for
AuNPs, which affects the transphosphorylation rate of HPNPP. (B) Light-
induced crossover between anti- and pro-oxidant activities of graphene
quantum dots. (A) Reprinted with permission from ref. 768. Copyright
(2017) American Chemical Society. (B) Reprinted with permission from
ref. 770. Copyright (2016) American Chemical Society.

produce *OH and 0,*~ for TMB oxidation.””* Likewise, the Xia
group found that elevated peroxidase-like activities of 15 nm
AuNPs could be obtained under visible light (532 nm)
irradiation.””” In addition to AuNPs, GQDs were also reported
to accelerate the oxidation of ascorbate and glutathione, as well
as to promote the lipid peroxidation in liposomes upon expo-
sure to blue-violet light at 405 nm. The underlying reason was
the light-induced regulation of anti- and pro-oxidant activities
of GQDs (Fig. 26B).””° In a common condition without any
light, the as-synthesized 3-6 nm GQDs were capable of elimi-
nating several free radicals like °*OH, O,*" and DPPH*®
(nitrogen-centered free radical), ascribed to the presence of
surface unpaired electrons of GQDs and the intrinsic proper-
ties of m-conjugated GQDs for charge transfer and electron
storage. However, upon light irradiation, instead of protecting
cells from anti-oxidative damage, GQDs would generate more
free radicals and thus cause cellular toxicity. The photo-induced
free radicals were experimentally verified to be '0,, *OH and
0,°". Further systematic mechanism studies elucidated the
origin of these free radicals: for 'O, generation, both energy-
transfer and electron-transfer pathways via GQDs were
proposed. The authors speculated that O,*~ was also involved
in producing '0,. Therefore, besides the previous report of
energy-transfer to oxygen, the electron-transfer pathway was
also followed. For *OH and O,°”, the generation process was
similar to light-stimulated BSA-AuNC systems mentioned
above.””°

This journal is © The Royal Society of Chemistry 2019
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3.9 Other strategies

Considering the oxygen vacancy-dependent catalytic activities
of nanoceria (elucidated in Section 2.4.2), some interesting
methods were reported using small molecules (e.g., H,0,) to
directly prepare vacancy-rich ceria nanozymes rather than doping.
Thanks to the unique chemical structure of vacancies as catalytic
hotspots, substrates could be selectively bound to exposed Ce**
and Ce®" and then facilitate the whole reaction process.””* For the
special porous structure of MOFs, general engineering of linkers
and nodes for topologies with more active sites accessible would
elevate the catalytic rate.*"”’* Given the Lewis acidic active site
for hydrolysis reaction, other cofactors such as NH, modification
would promote the proton transfer, just like the aspartate and
histidine residues in a natural phosphotriesterase.””> Another
strategy for speeding up the catalysis of water insoluble substrates
was developed with Pickering emulsions. AuNPs functionalized
with catalytic groups were loaded on mesoporous silica to form a
surface-active nanozyme, followed by assembling at the Pickering
emulsion droplet interface to improve the catalysis of two phase
separated substrates.””®

4. Applications

With the expanded types of nanozymes and engineered high
performance, outstanding applications have been accomplished
and discussed as follows.

4.1 In vitro sensing

4.1.1 H,0, detection. H,0, detection based on nanozymes,
especially peroxidase mimics, has been extensively studied
ever since Wang and Wei’s report of a colorimetric assay
for H,0, detection by using Fe;O, MNPs as peroxidase
mimiCS.84’93'94’146’183’209’215’220’236’311_317’347'354’580'777_829 The
general principle is monitoring the signal change of a substrate
which is oxidized by H,0, with the assistance of a peroxidase-
like nanozyme (Fig. 27). Due to the various types of substrates,
different assays based on colorimetric, fluorescence, electro-
chemical, and Raman signals could be designed (Table S8, ESIf).
In addition, the signals for sensing could also be generated
by multi-functional peroxidase mimics. For instance, Chen and

H,O, Substrate

Oxidized
substrate
Nanozyme

Fig. 27 Nanozyme as a peroxidase mimic for H,O, detection. Reprinted
with permission from ref. 29. Copyright (2016) Royal Society of Chemistry.
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DNA from the nanoceria surface. (B) A fluorescence photo of free FAM-A5
DNA, after adding CeO, and then adding H,O,. (C) A proposed mecha-
nism of H,O, induced DNA release by capping the nanoceria surface.
Adapted with permission from ref. 831. Copyright (2015) American Chemical
Society.

co-workers fabricated a peroxidase-mimicking MOF containing
catalytic Cu®" and luminescent Tb**. In the presence of H,0,,
ascorbic acid was catalyzed by the MOF to diketohexanoic acid,
which would then sensitize Tb>" to produce strong lumines-
cence. Based on this multi-functional nanozyme, a lumines-
cence sensing assay of H,0, with high selectivity and sensitivity
was built.®*°

Recently, Liu et al. found an interesting phenomenon that
instead of oxidative DNA cleavage, H,0, would prefer to dis-
place fluorophore-labeled DNA from the surface of CeO, with
over 20-fold fluorescence recovery. Therefore, a sensitive H,O,
sensor was developed with a detection limit of as low as 130 nM
(Fig. 28). And the possible sensing mechanism is proposed in
Fig. 28C. The interaction between the phosphate group of DNA
and the Ce®" resulted in the adsorption of dye-labeled DNA,
accompanied by fluorescence quenching. Due to the fast oxida-
tion of Ce*" into Ce*" by H,0,, the adsorbed DNA would be
released from the surface and return back to a fluorescent state.

H20,

0, H,0
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On the other hand, for bound H,0,, it would be finally decom-
posed into H,O and O, under the catalase-like catalysis of
CeO, NPs.®!

Another interesting H,0, detection was demonstrated by
Sotiriou et al. with rationally designed enzyme-mimicking
luminescent NPs. By doping Eu®" into CeO,, the as-prepared
catalase-like luminescent NPs could efficiently decompose
H,0, into O,, which would in turn quench the luminescence
of these NPs. Based on the change of the luminescence, a
detection limit of 150 nM H,0, was achieved.®*?

4.1.2 Detection of glucose and other oxidase substrates.
Some substrates can be oxidized by their corresponding oxidases to
generate H,0,. Therefore, taking advantage of the aforementioned
H,0, detection, a combination of these oxidases with H,O, detec-
tion assay would help a further sensing of the oxidase substrates
(E.g., glucose,150,170,184,185,209,220,233,260,3097311,598,642,702,778,779,8337883
lactate,®3*788¢  cholesterol,>**288:8877897  choline,>””#9%8%° and
xanthine>'*246:351,797,900) " A summary of all oxidase substrates
is listed in Table S9 (ESIY). For example, glucose in drinks and
biological samples (such as blood and urine) has been detected
by combining GOx and nanozymes with peroxidase-like acti-
vities. However, there were some issues with this combination
such as low diffusion efficiency and unstable intermediates,
which would result in limited catalytic efficiency of the cascade
reaction. Recently, integrated nanozyme GOx/hemin@ZIF-8
with nanoscale proximity effect was developed by Wei and co-
workers to fill this gap, as mentioned in Section 3.4 and Fig. 22.
Attributed to the significantly enhanced efficiency, high sensi-
tivity and specificity of 1.7 uM glucose were achieved.®®° Like-
wise, other nanozymes such as AuNPs as GOx mimics and NiPd/
V,05/2D MOF as an alternative to hemin were also used to
construct the integrated nanozymes, respectively.®®"%%>%% For
example, Zhang et al. developed a colorimetric method for
glucose detection by using the AuNPs/Cu-TCPP(M) (M = Fe,
Co) composite (Fig. 29A), with a detection limit of 8.5 pM. The
composite nanozyme was prepared with AuNPs directly grown
onto the 2D MOF nanosheet.®®® Further considering the multi-
ple enzymatic activities of AuNPs, a three-in-one nanoplatform
(i.e., sensing, self-assembly, and cascade catalysis) was fabri-
cated by Xia et al. and the glucose detection could be achieved
using the sole AuNP catalyst, as shown in Fig. 29B.°"*

4.1.3 Nucleic acid detection. Nucleic acid (e.g., DNA and
RNA) detection plays a vital role in the fields of human genetics,
clinical diagnosis, cytology, etc. Therefore, a variety of methods
with nanozymes for nucleic acid detection (most for DNA
detection) were developed along with the huge achievements

TMB B glucose+0O2 l
Q?\j ¢ > H202+gluconic acid
. (‘/"C, H20 i
oxTMB KN oxtv i
TMB

Fig. 29 Schematic illustration of the enzyme-mimicking cascade reaction catalyzed by (A) AuUNPs/Cu-TCPP(M) (M = Fe, Co) and (B) Au nanozymes.
(A) Reprinted with permission from ref. 696. Copyright (2017) John Wiley and Sons. (B) Reprinted with permission from ref. 901. Copyright (2016)

American Chemical Society.
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made in the nanozymes field. The present methods could be
mainly classified into two types: (1) nanozymes as tags to label
nucleic acids for signaling and (2) nucleic acid detection by
tuning nanozymes’ activities.

For the first type, various studies have demonstrated the
detection of target DNA through the conjugated nanozymes for
signaling.>”*°°>** For example, Ju and co-workers developed a
streptavidin-functionalized complex of graphene loaded ferric
porphyrin with a peroxidase-mimicking activity for specific
recognition of biotinylated molecular beacon. In the presence
of target DNA, the pre-immobilized hairpin structure could be
opened, followed by the binding of streptavidin-functionalized
nanozyme through the interaction between streptavidin and
biotin. Then, the nanozyme could catalyze the oxidation of
o-phenylenediamine into oxidized o-phenylenediamine in the
presence of H,0,, which in turn produced electrochemical
signals for quantification of DNA. With the electrochemical
detection platform, a detection limit of attomolar levels could
be achieved.’®® Likewise, global DNA methylation in colorectal
cancer cell lines was successfully detected using peroxidase-
mimicking mesoporous Fe,O; (Fig. 30A). The extracted and
denatured ssDNA (single-stranded DNA) from colorectal cancer
cell lines was adsorbed on a bare screen-printed gold electrode
surface. Fe,O; nanozymes, modified with the 5-methylcytosine
antibody, could specifically recognize the methylcytosine groups
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on target DNA. Therefore, either an electrochemical signal or a
colorimetric signal could be used for detection by catalyzing the
oxidation of TMB in the presence of H,0,. As low as 10%
difference in the global DNA methylation level was detected.”®®

Besides DNA, microRNA detection was also reported. In
their platform, Wang and co-workers used two nanozymes
(Fe30,4 and planar Cu(n) complex) and the hybridization chain
reaction protocol for signal amplification. In the presence of
microRNA, the hybridization chain reaction could be triggered
by the hairpin capture probe on Fe;O, NPs. Then the planar
Cu(n) complex intercalated into the formed DNA duplex struc-
ture. Such a complex with binanozymes (Fe;O, and planar
Cu(u) complex) could be enriched on the surface of magnetic
glassy carbon electrode. Similar to the DNA detection platform
mentioned above, both electrochemical and colorimetric signals
were generated for sensing, with a detection limit of as low as
33 aM (with the electrochemical method).”®”

The second type was mainly based on the activity regulation by
nucleic acids, as elucidated in Section 3.5.148169:284,695,727,908-910
For instance, Park et al. reported a colorimetric method for DNA
detection by coupling oxidase-mimicking CeO, NPs with poly-
merase chain reaction (PCR) technology. As shown in Fig. 30B,
without the target DNA, colorless substrates could be oxidized to
dark blue. On the other hand, in the presence of the target DNA,
amplified DNA could be quickly formed by PCR technology,

(A) Schematic representation of the colorimetric and electrochemical detection of global DNA methylation by using mesoporous Fe,Oz

nanozymes. (B) Combining oxidase-mimicking CeO, NPs with PCR technology for colorimetric detection of target DNA. (C) Catalase-mimicking Pt films
for constructing a multistage propelled volumetric bar chart chip for sensitive detection of DNA. (A) Adapted with permission from ref. 906. Copyright
(2018) Royal Society of Chemistry. (B) Reprinted with permission from ref. 911. Copyright (2014) Royal Society of Chemistry. (C) Reprinted with permission

from ref. 912. Copyright (2013) American Chemical Society.
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which then significantly inhibited the activity of the CeO,
nanozyme by shielding its surface. Moreover, the potential
clinical utility of this sensing platform was successfully demon-
strated by detecting model target nucleic acids from Chlamydia
trachomatis using a human urine sample.’**

Besides, another innovative concept for DNA detection was
reported by using catalase-mimicking Pt films with a multi-
stage propelled volumetric bar chart chip. As shown in Fig. 30C,
the presence of the target DNA formed a sandwich DNA hybrid,
which would induce the decomposition of H,0, to generate O,
by catalase (note, the catalase was conjugated onto a probe
ssDNA). Subsequently, with the assistance of the produced
oxygen, the fuel (i.e., H,0,) would be propelled to react with
catalase-like Pt films to produce additional oxygen gas for
signal amplification. After three amplified rounds, the red ink
bar charts could be pushed to a long distance, which would be
used for the quantification of DNA, with a detection limit of as
low as 20 pM.°"?

4.1.4 Protein detection. For protein detection, a widely used
technology is immunoassay, taking advantage of the unique recog-
nition between an antibody and an antigen,'6%!7",180:182,368,621,913-948
In the seminal study of nanozymes, Yan et al reported two
interesting immunoassays for protein detection using peroxidase-
mimicking Fe;0; MNPs.! Since then, numerous immunoassays
have been developed with antibody conjugated nanozymes. In their
subsequent study, Yan et al. developed a nanozyme-strip for Ebola
diagnosis using peroxidase-mimicking Fe;0, MNPs (Fig. 31B).
Compared with a standard colloidal gold strip, the nanozyme-
strip could amplify the signal by catalyzing the oxidation of
peroxidase substrates in the presence of H,0,, which signifi-
cantly enhanced its detection sensitivity by 100-fold, with a
detection limit of as low as 1 ng mL™" for the glycoprotein of
Ebola virus (EBOV) (Fig. 31C and D). If utilizing the magnetic
separation property of MNPs to enrich targets, another 10-fold
enhancement could be achieved, as shown in Fig. 31E. Further-
more, the clinical samples could be diagnosed within 30 min
and the detection accuracy was comparable to ELISA. These
results demonstrated that the nanozyme-strip could provide a
much faster and simpler platform for diagnosis of infection in
Ebola-stricken areas.’*’

Instead of Fe;O, MNPs, Xia et al. used Pd-Ir cubes with
peroxidase-like activities for immunoassays of human prostate-
specific antigen (PSA). Compared with conventional immuno-
assays, the Pd-Ir nanozyme based ELISA exhibited 110-fold
lower limit of detection.®”” To further enhance the detection
sensitivity of immunoassays, they developed gold vesicle encap-
sulated Pd-Ir NPs as peroxidase mimics in their following
study. As shown in Fig. 32, numerous Pd-Ir NPs could be
released from the gold vesicles upon heating, resulting in a
signal amplification platform for immunoassays. This method
achieved a detection limit of femtogram per mL for PSA, which
was three orders of magnitude lower than that of the conven-
tional immunoassays.**

The unique recognition could come not only from an antigen
and an antibody, but also from an aptamer and its corres-
ponding target.®**%°°% For example, Yang et al. developed a
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Fig. 31 (A) Standard AuNP-based strip. (B) Nanozyme-strip employing
FezO4 MNPs in place of AuNPs. (C) Nanozyme-strip, (D) standard colloidal
gold strip and (E) nanozyme-strip combined with magnetic enrichment for
EBOV-GP detection. The asterisk (*) indicates the limit of visual detection
of the test line in strips. Adapted with permission from ref. 949. Copyright
(2015) Elsevier.

label-free colorimetric method for thrombin detection. One anti-
thrombin aptamer was first immobilized onto the 96-well micro-
plates by biotin-streptavidin interaction. Another ssDNA con-
tained one part of anti-thrombin aptamer and another part of
template DNA for Ag/Pt NC preparation. In the presence of target
thrombin, the two aptamers would be conjugated to form a
sandwich structure. Then, the DNA-templated Ag/Pt bimetallic
nanoclusters would catalyze the oxidation of TMB to oxTMB
for colorimetric signaling. A detection limit of 2.6 nM was
obtained for thrombin."®" Besides, based on the recognition
between Zr** and phosphate, Song and co-workers synthesized
Zr**-functionalized Pt/carbon dots as peroxidase mimics to
recognize and detect phosphoproteins.®>”

In addition, colorimetric cross-reactive sensor arrays (the so-
called “chemical noses/tongues’’) were also reported for protein
discrimination. The detection principle was that the differential
interactions between proteins and the layers on nanozymes
would modulate the catalytic activities of nanozymes to varying
degrees, thus generating differential colorimetric signals for
protein discrimination. Both Fe;O, NPs functionalized with
cationic monolayers and AuNPs-ssDNA conjugates have been
utilized to construct sensor arrays for protein discrimination.
And the two arrays could differentiate ten proteins at 50 nM and
seven proteins at 10 nM, respectively. When processing with
unknown samples, 95% and 100% accuracy was achieved with
the Fe;O, NP and AuNP based arrays, respectively.””®°>°
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Fig. 32 (A) ELISA for ultrasensitive detection of disease biomarkers by using gold vesicle encapsulated Pd—Ir NPs for signal amplification. (B) Gold vesicle
encapsulated Pd—Ir NP based ELISA for detection of PSA. Reprinted with permission from ref. 194. Copyright (2017) American Chemical Society.

4.1.5 Cell (cancer markers on cell surface) detection. Over-
expressed proteins on cell surface could be used as biomarkers
for early cancer diagnosis,'”>31,239:283,290,370,960-966 herefore,
the aforementioned detection methods for proteins would give a
hint for sensing cancer cells. For example, Gao et al. developed a
sensitive and selective nanoprobe for precisely quantifying the
expression level of integrin GplIb/Illa on the human erythro-
leukemia (HEL) cell line (Fig. 33A). The peptide conjugated AuNP

A ( ) Ligand Exchange
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o NaBH4 4
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(b) T™B Ox-TMB

(c)

nanoprobe could specifically recognize the integrin through an
integrin specific peptide and generate a colorimetric signal by
catalyzing the oxidation of TMB in the presence of H,0,. About
6.4 x 10° integrin receptors could be detected on a single HEL
cell using the nanozyme detection platform.”®’

Trau, Wang, and co-workers established a circulating tumor
cell (CTCs) detection platform with Fe;O, MNPs. The MNPs
were modified by anti-melanoma-associated chondroitin sulfate
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Fig. 33 (A) Peptide—AuNP conjugates for cancer cell immunoassay. (a) Preparation of peptide conjugated AuNPs by chemical reduction and ligand

exchange. (b) Peptide—AuNP mediated cancer cell immunoassay by catalyzing the oxidation of TMB in the presence of H,O,. (c) Linear regression
plotting HEL cell number versus Au concentration (red curve) and absorbance at 652 nm (blue curve). (B) Schematic of colorimetric detection of cancer
cells by using folic acid functionalized PtNPs/GO nanocomposites. (A) Reprinted with permission from ref. 967. Copyright (2015) American Chemical
Society. (B) Reprinted with permission from ref. 971. Copyright (2014) American Chemical Society.
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proteoglycan (MCSP) antibodies for recognizing MCSP expressed
on melanoma CTCs. The MNPs exhibited bi-functionalities,
including peroxidase-like activity and magnetic property. The
peroxidase-like activity was used for signaling, while the mag-
netic property was used for CTC isolation and enrichment. On
the basis of this detection platform, 13 melanoma CTCs per mL
could be successfully detected within 50 min.’*® Similarly, over-
expressed mucin 1 proteins (MUC-1) on MCF-7 CTCs were
recognized by the anti-MUC-1 aptamer functionalized copper
oxide nanozymes or Fe;O, nanozymes. With signal amplification,
as low as 27 and 6 cells mL™~" could be successfully detected,
respectively.’*®°”°

Chen et al. developed folic acid modified platinum NPs/
graphene oxide (PtNPs/GO) nanocomposites for specific cancer
cell detection (Fig. 33B). The PtNPs/GO exhibited an enhanced
peroxidase-like activity, which could catalyze the oxidation of
TMB in the presence of H,0, for signaling. When modified by
folic acid, the nanocomposites could target cancer cells via
over-expressed folic acid receptors on the cell membrane. The
detection platform based on peroxidase-mimicking PtNPs/GO
nanocomposites showed high sensitivity for cancer cells. Even
125 cells could be detected by naked eyes.””" Besides protein
receptors, other over-expressed molecules such as glycans and
epithelial cell adhesion molecule (EpCAM) have also been utilized
for cancer cell detection by coupling with their bio-recognition
ligands like lectin and an anti-EpCAM aptamer (SYL3C).*”>°”>
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4.1.6 Ton detection. As discussed in Section 3.6, several
ions could be used for tuning nanozymes’ activities. Therefore,
on the basis of their inhibitory or enhanced effects on nano-
zymes’ activities, several metal ions, such as Cu®*", Hg*>", and
Ag*, have been detected with nanozymes.'*319%:242,366,740,973-980
For instance, as shown in Fig. 34, Xia and co-workers demon-
strated that PVP-capped Pt nanocubes as peroxidase mimics
could catalyze the oxidation of TMB to generate a colorimetric
signal. However, if Ag" existed in the system, it would adsorb on
the surface of PtNPs and block the access of catalytic active
sites, leading to the inhibition of the PVP-capped Pt cubes’
activity. Based on this principle, a biosensor was constructed for
Ag" detection. The biosensor had a linear range of 10~ >-10* nM
with a detection limit of 80 pM.?®! Likewise, Chen et al. found
that the peroxidase-like activity of 2.5 nm citrate-capped PtNPs
could be evidently inhibited because of the Hg-Pt interaction.
Therefore, they fabricated a sensitive and selective biosensor
for Hg>" based on this principle. The detection limit of this
biosensor was as low as 8.5 pM."®* In contrast to inhibition of
the activity, Lu et al. reported that Hg** could significantly
improve the peroxidase-like activity of rGO/PEI/Pd nanohybrids
because the physicochemical property of PANPs was changed
after forming a Pd-Hg thin amalgam layer. According to this
phenomenon, an assay for detecting low concentrations of Hg>*
was designed with the rGO/PEI/Pd nanozyme. As low as ~10 nM
Hg”" in wastewater or serum was detected by the naked-eye-based
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Fig. 34 PVP-capped Pt cubes with peroxidase-like activity for Ag* detection. (A) Schematic of the detection principle. (B) Calibration curve obtained by
plotting the decreased absorbance at 653 nm (Ay — A,) versus Ag* concentration. (C) Linear range of the calibration curve shown in panel B. Reprinted

with permission from ref. 981. Copyright (2017) American Chemical Society.
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colorimetric method, demonstrating its potential applications
in environmental monitoring, clinical diagnosis, etc.”*®

Several anions, such as F~, S*>7, and CN~, were detected by
using nanozymes,36>4227424,741,982°988 por example, Liu et al.
found that the oxidase-like activity of nanoceria could be
enhanced by over two orders of magnitude after capping with
fluoride. Their study suggested that surface charge modulation
and facilitated electron transfer were responsible for boosting
the oxidase-like activity of nanoceria after modified with F~.
On the basis of this principle, sensitive detection of F~ was
achieved with a detection limit of 0.64 uM (Fig. 35). Moreover,
other common anions showed no interference with this colori-
metric sensor, which allowed for selective detection of F~.”*°
Guo et al. demonstrated that S>~ detection can be achieved
based on its switching effect on the peroxidase-like activity of Pt
nanozymes.’®> Huang and co-workers’ study suggested that
CN™ can effectively inhibit the peroxidase-like activity of cobalt
hydroxide/oxide modified graphene oxide (CoO,H-GO), which
allowed for the construction of a sensing platform for detecting
CN". Moreover, by coating CoO,H-GO on the nylon membrane,
a membrane-based sensing platform was fabricated for detec-
tion of CN™ in wastewater samples.’®’

Another interesting example about a colorimetric aptasen-
sor for K' detection was demonstrated by Li et al with
peroxidase-mimicking AuNPs and K' specific binding apta-
mers. In the presence of aptamers, the peroxidase-like activity
of AuNPs was significantly improved because of the enhanced
affinity between aptamer-modified AuNPs and TMB. The presence
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of target K" would convert aptamers to form a G-quadruplex
structure, resulting in the inhibition of the peroxidase-like activity
of AuNPs. As low as 0.06 nM K’ could be detected by the
colorimetric aptasensor.”®® Recently, the Wei group demon-
strated that five phosphates could be discriminated using 2D
MOF nanozyme sensor arrays. More encouragingly, real-time
biologically related events involving the hydrolytic processes of
ATP and pyrophosphate could be probed by the as-designed
nanozyme sensor arrays.””"

4.1.7 Others. Besides the above mentioned analytes, several
other targets were also successfully detected by regulating the
catalytic activities of nanozymes,3°~8814%,136,157,175,181,186,241,257,
294,304,369,414,578,581,605,673,729,742,992-1035 For example, as we
mentioned in Section 3.7, an in situ modulation of pH was
demonstrated by the Wei group through proton-producing
or consuming bioreactions (Fig. 36A). Therefore, the proton-
producing/consuming enzyme acetylcholinesterase (AChE)/urease
could be detected based on the enhanced/decreased activity of
CeO,. Similarly, other important targets (such as nerve agents,
drugs, and ions) which could cooperatively regulate nanoceria’s
catalytic activity were also detected.*®”

Melamine was detected by a colorimetric method based on
its enhancement of AuNPs’ peroxidase-like activity.'®*® GSH
and r-cysteine were detected on the basis of their competitive
inhibition of nanozymes’ catalytic reaction.'¢*?0%-216,307,1037-1047
For example, Fu et al. found that biothiols, such as r-cysteine
and homocysteine, could effectively inhibit the oxidation of
TMB in the presence of bimetallic Au,Pt, nanozyme and H,O,.
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Fig. 35 Detection of F~ by boosting the oxidase-mimicking activity of nanoceria. (A) Schematic of boosting the oxidase-like activity of hanoceria by
capping with F~. (B) Photographs of the F~ concentration dependent sensor color change. (C) Calibration curve by plotting the relative change of
absorbance (AAbs) as a function of F~ concentration. (D) Selective detection of F~ against various common anions. Reprinted with permission from

ref. 739. Copyright (2016) Royal Society of Chemistry.
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an aptamer for the detection of exosomes. (A) Reprinted with permission
from ref. 402. Copyright (2016) American Chemical Society. (B) Reprinted
with permission from ref. 1048. Copyright (2017) American Chemical Society.

Based on this phenomenon, as low as 3.5 nM r-cysteine was
detected by the as-designed biosensor.'®” Likewise, the detec-
tion of bacteria with a detection limit of 10> c¢fu mL ™" was
achieved based on the inhibition of catalytic activity of dop-
amine coated Fe;O, nanozymes by bacteria.'*® Another inter-
esting finding was that heparin could significantly enhance the
peroxidase-like activity of Au clusters at neural pH, which
allowed for colorimetric detection of heparin and the corres-
ponding heparinase at pH 7.7

Further combination of nanozymes with aptamers, bacteria
(Salmonella typhimurium),'®* pesticides (acetamiprid),"*%%>°
antibiotics (kanamycin, sulfadimethoxine, and so on),'°**"1%
and exosomes'®*® could be tested based on highly sensitive
“turn off/turn on” biosensing platforms. For example, Zhong,
Jiang, and co-workers developed a colorimetric method for
exosome detection in human serum. Exosomes act as extra-
cellular vesicles for carrying cellular cargoes such as proteins
and nucleic acids, which play vital roles in disease diagnosis.
As shown in Fig. 36B, the peroxidase-like activity of g-C3;N,
nanosheets could be significantly improved by ssDNA (i.e., CD
63 specific aptamer), attributed to the stronger adsorption of
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TMB. However, the presence of exosomes carrying CD 63 would
promote the release of ssDNA from the surface of g-C3;N,
nanosheets, thus decreasing the catalytic activity. Quanti-
fication of exosomes could be achieved by the naked eye or
UV-visible spectroscopy. Moreover, the colorimetric method
could discriminate the expression of CD 63 on the surface of
exosomes collected from breast cancer patients and healthy
controls, demonstrating its practicability in clinical diagnosis."**®
Likewise, single-walled carbon nanotubes as peroxidase
mimics were also used to construct a platform for exosome
detection.'®>> Note: except H,0, and oxidase substrates, detec-
tion of other targets based on nanozymes is presented in
Table $10 (EST}).

4.2 In vivo sensing

Several studies of nanozymes for in vivo sensing were developed
by the Wei group. As elucidated in Section 4.1.2, the nanoscale
proximity effect of integrated nanozyme GOx/hemin@ZIF-8
enabled high sensitivity and specificity for in vitro glucose
detection. Such a low detection limit of 1.7 uM and the
obtained dynamic linear range of glucose from 0 to 250 uM
offered the possibilities for sensing cerebral glucose in living
brains. With the assistance of in vivo microdialysis, an off-line
detection platform for cerebral glucose was developed. By mixing
the microdialyzed samples with GOx/hemin@ZIF-8 and peroxi-
dase substrates, the corresponding signals of products catalyzed
by nanozymes would be generated (Fig. 37A). When choosing
ABTS and Ampliflu red as peroxidase substrates, green color
and fluorescence were produced for signaling, respectively.®®
Likewise, Wei and co-workers further developed another inte-
grative nanozyme for analyte detection by Raman signals, where
hemin@ZIF-8 was replaced by peroxidase-mimicking AuNPs@
MIL-101. Herein, the AuNPs could not only exhibit peroxidase-
like activities for catalyzing the oxidation of Raman inactive
receptors into Raman active ones but also possess plasmonic
properties to enhance the Raman reporters’ signals. They
demonstrated that after global cerebral ischemia, the blockage
of cerebral blood flow would enhance anaerobic respiration,
leading to a decreased glucose level. Further, the integrated
nanozyme with AuNPs@MIL-101 was applied for evaluating the
therapeutic efficacy of an anti-oxidation drug candidate (i.e.,
astaxanthin (ATX)) for stroke. As shown in Fig. 37B and C, the
ischemic stroke led to a decrease in the striatum glucose level
and an increase in the lactate level. With the treatment of ATX,
fluctuations in the glucose and lactate level were suppressed,
proving ATX to be a promising drug candidate for treatment of
cerebral ischemic injuries. Besides, discrimination of abnormal
metabolism in tumors from that in normal tissues could also
be realized with this bioassay by measuring their corresponding
glucose and lactate level."

In their subsequent study, they developed a series of 2D
MOFs with peroxidase-like activities for monitoring the elimi-
nation process of heparin in live rats. Heparin-specific AG73
peptides would block the access of active sites after adsorbing
onto the 2D MOF, which in turn decreased the catalytic activity.
In the presence of heparin, the activity of 2D MOFs would
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Fig. 37 (A) Schematic illustration of off-line measurement of glucose in the brain of living rats via the INAzyme-catalyzed cascade reactions.
(B) Schematic illustration of global cerebral ischemia/reperfusion and treatment with ATX. (C) Dynamic changes of glucose and lactate following
ischemia and reperfusion with and without ATX pretreatment. The glucose and lactate levels before ischemia were normalized as 100. (D) Scheme
showing the monitoring of the heparin elimination process in live rats using 2D MOF nanozymes. (E) Dynamic changes of heparin concentrations in the
artery of live rats over 4 h following the administration of heparin. A fitting of the data indicates an exponential decay. Error bars indicate standard
deviations of three independent measurements. (A) Reprinted with permission from ref. 690. Copyright (2016) American Chemical Society. (B and C)
Reprinted with permission from ref. 281. Copyright (2017) American Chemical Society. (D and E) Adapted with permission from ref. 275. Copyright (2017)

American Chemical Society.

be restored. Therefore, a heparin sensing platform could be
constructed with the 2D MOF. As discussed in Section 2.1.5, 2D
MOFs possessed a greater catalytic activity than the bulk ones.
Such an excellent activity ensured a linear range from 0.1 to
10 pg mL~" and a detection limit of 15 ng mL™", thus meeting
the requirements of heparin detection in clinical samples.
Before in vivo monitoring, the high selectivity to heparin over
other interfering species was also evaluated. Then the elimina-
tion process of heparin was performed with in vivo micro-
dialysis technology, as shown in Fig. 37D. As the fluorescence
signals indicated, an exponential decrease of heparin suggested
depolymerization of heparin by the reticuloendothelial system
or urine from the renal route, which was consistent with
previous pharmacokinetic studies (Fig. 37E).>”°

Despite the achievement in effective in vivo detection of
glucose and heparin, there still existed a poor temporal resolu-
tion issue for off-line sensing. To solve this problem and
advance the future practical application, an online monitoring
platform was constructed by immobilizing nanozymes into
the channel of the microfluidics chip, as shown in Fig. 38A.

This journal is © The Royal Society of Chemistry 2019

Benefiting from the online platform, the dynamic changes of
cerebral glucose could be monitored. In Fig. 38B, a decrease to
49.1 £+ 12.7% after global ischemia was observed, matching well
with the off-line results of 50.2 £ 8.3%. Further reperfusion led
to a recovery back to 98.4 + 10.1% of the basal level. Such an
online detection platform demonstrated its practical applica-
tions for in vivo sensing and may help explore the mechanism
of an unclear illness.®*

Recently, Guo, Fang, and co-workers fabricated a needle-type
microelectrode by layer-by-layer deposition of Cu nanoflowers,
GOx, and polyurethane. The large surface area of Cu nano-
flowers ensured an excellent catalytic activity and the mass
transport limited by polyurethane membrane made the sensor
stable. Such an integrated microelectrode was then implanted
under the skin of cervical dorsal of anesthetized rats. A real-
time detection of the change of blood glucose level was realized,
and the detection results were consistent with those obtained
from a glucose meter.'®>® Andreescu and co-workers used
Pt-doped nanoceria and lactate oxidases as electrochemical
microbiosensors to realize in vitro detection of lactate and
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Fig. 38 (A) The INAzyme-based integrative fluorescence sensing platform for continuous in vivo measurement of neurochemicals (glucose as an
example here) in living rats. The platform mainly consisted of three parts: (a) the microdialysis device, which included two pumps with syringes, a
microdialysis probe (inserted in the rat’s brain), and a T-junction, connected with tubing; (b) the fluorescence microscope, which included the excitation
laser and a spectrometer; and (c) the microfluidic chip, which was connected with the microdialysis device via the tubing and had the INAzyme
immobilized in its microchannel. The 532 nm laser through the microscope was focused onto the sample within the microchannel with a distance of
2 mm far from the outlet. The resultant fluorescence spectra of the sample were continuously collected. (B) Continuously monitoring the dynamic
changes of glucose level in the striatum of a living rat brain following global ischemia/reperfusion with the INAzyme-based sensing platform. Adapted
with permission from ref. 690. Copyright (2016) American Chemical Society.

further in vivo monitoring of lactate levels in anesthetized rats
continuously for 2 h ischemia and reperfusion."**>

4.3 Imaging

Several studies have demonstrated the applications of nano-
zymes for imaging.'’”'%°771%% Benefiting from the intrinsic
properties (e.g., magnetism of Fe, X-ray absorption ability of
Ir, and optics of Au), magnetic resonance imaging, computed
tomography imaging, and optical imaging could be utilized for
tracking the in vivo behaviors of nanozymes, which will be
discussed in Section 4.4.5. Besides, taking advantage of the
catalytic properties of nanozymes, several colored or fluorescent
products could also be generated for imaging. A seminal study
was reported by Yan and co-workers (Fig. 39). They prepared
magnetoferritin NPs (M-HFn) by encapsulating peroxidase-
mimicking MNPs inside recombinant human heavy-chain
ferritin shells. The HFn shells could target tumor tissue via
over-expressed transferritin receptors onto tumor cell surface
without additional recognition ligands. Meanwhile, the iron
oxide cores catalyzed the oxidation of a peroxidase substrate to
produce a colored product for visualizing tumor tissues. In the
presence of H,0, and diazoaminobenzene, M-HFn showed an
intense brown color for visualizing the tumor tissues. To
further demonstrate the high specificity, sensitivity and accu-
racy of the M-HFn-based staining platform, 474 clinical speci-
mens from patients with nine types of cancer were tested (note:
in total, more than 1400 clinical specimens with ten types of
cancer have been tested so far). Their results showed that the
nanozyme imaging platform can discriminate cancerous cells
from normal cells with 98% sensitivity and 95% specificity.'*®°
Likewise, Gu et al. used avastin antibody functionalized Co;0,
NPs with peroxidase-like activities for immunohistochemical
staining, and their staining ability was comparable to that of
natural HRP.**’

1036 | Chem. Soc. Rev., 2019, 48, 1004-1076

Another example was demonstrated with bioorthogonal
nanozymes. For instance, Rotello and co-workers developed
charge switchable nanozymes by encapsulating transition metal
catalysts in pH responsive NPs for specific biofilm imaging. As
shown in Fig. 40, the zwitterionic NPs would switch to a cationic
state in the acidic microenvironments of bacterial biofilms,
resulting in a higher uptake by biofilms. And then imaging of
biofilms could be achieved by catalyzing the pro-fluorophores
with the uptaken nanozymes inside the biofilm.'*®' More
examples about bioorthogonal nanozymes will be discussed
in Section 4.4.5.

Several studies also demonstrated that nanozymes were able
to improve the imaging sensitivity. Tremel, Tahir, and co-
workers found that manganese oxide (MnO) with an intrinsic
SOD-mimicking activity can enhance its MRI contrast when
exposed to O,° . The enhanced MRI contrast was attributed to
the temporary change of the oxidation states of manganese ions
in the 0,°” scavenging process.'°®* In another study, Jiang,
Tian, and co-workers found that catalase-mimicking BSA-IrO,
NPs catalyzed the dismutation of H,O, to O, for enhancing its
photoacoustic signal by oxygen-induced inertial cavitation.'®*®
And the aforementioned H,O, sensor (Fig. 28), based on dis-
placing fluorophore-labeled DNA from the nanoceria surface,
was further used for fluorescence imaging of wound-induced
H,0, in zebrafish larvae.'®

4.4 Therapeutics

4.4.1 Neuroprotection. Owing to the SOD-mimicking acti-
vities of carboxyfullerenes, some pioneering works on their role
in protecting neural cells from radical damage were demon-
strated by Dugan and co-workers.**"*%%* Further, they demon-
strated that Cep-C3 may offer therapeutic effects on familial
amyotrophic lateral sclerosis (ALS). ALS, a neurodegenerative
disorder, is associated with several genetic mutations, such as
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American Chemical Society.

the missense mutations in SOD1 for familial ALS. If transgenic treated with Cg,-C3, a 10 day delay in symptom onset and an
mice carrying a human disease gene for familial ALS were 8 day improvement in survival could be observed.***
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Fig. 41 Representative PET images for placebo-treated (A) and Cgo-C3-treated monkeys (B) just prior to MPTP and at the end of 2 months of treatment.
PET images were taken with DTBZ and FD tracers, respectively. Note the bilateral uptake of each tracer pre-MPTP, showing the teardrop-shaped
substantia nigra bilaterally for all 4 monkeys. However, at the end of the study, there was significantly less uptake of both tracers on the lesioned side in
placebo-treated monkeys compared to Cgo-Cs-treated ones, or conversely, there was preservation of DTBZ and FD in Cgo-Cs-treated monkeys.
Reprinted with permission from ref. 1065. Copyright (2014) American Neurological Association.

Most encouragingly, Ceo-C; was proved to be capable of
treating Parkinsonian nonhuman primates. In the study,
Dugan, Perlmutter, and co-workers systematically treated
MPTP-induced Parkinson’s disease model of Macaca fascicularis
monkeys with Cgy-C; for two months (MPTP is 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine). The therapeutic outcomes
were evaluated by using (1) in vivo behavioral measures of motor
function, (2) ex vivo quantification of striatal dopamine, and
(3) positron emission tomography (PET) imaging of 6" *F]fluorodopa
(FD, reflecting dopa decarboxylase), [''C]dihydrotetrabenazine
(DTBZ, reflecting vesicular monoamine transporter type 2), etc.
These results demonstrated that the Cgy-C; treatment could
significantly reduce striatal injury and improve motor function
(Fig. 41). And it should be noted that Cg-C; treatment did not
show any toxicity."*®

Nanoceria, one creditable ROS scavenger, have also been
extensively studied for neuroprotection.'***'°®° ROS, generated
and accumulated during the ischemic process, would induce
oxidative damage, resulting in ischemic injury and stroke-
related cell death. Hyeon, Lee, and co-workers established that
nanoceria could eradicate ROS to protect against ischemic
stroke in vivo (Fig. 42). Animal experiments showed that nano-
ceria with optimal doses at 0.5 and 0.7 mg kg™ significantly
reduced the brain infarct volume.*®® In their following study,
triphenylphosphonium-conjugated nanoceria (TPP-nanoceria)
were developed as the ROS scavenger to protect mitochondria
against oxidative stress in Alzheimer’s disease. Therapeutic
effects of TPP-nanoceria were evaluated using a 5XFAD trans-
genic Alzheimer’s disease mouse model, where TPP-nanoceria
could target mitochondria and reduce neuronal death. More-
over, in vivo experiments showed that TPP-nanoceria could
relieve reactive gliosis and mitochondria damage, demonstrat-
ing their potential application for protecting mitochondria

1038 | Chem. Soc. Rev., 2019, 48, 1004-1076

against oxidative stress in Alzheimer’s disease.'’® In another
interesting study on the treatment of Parkinson’s disease, three
different types of nanoceria, including nanoceria, TPP-nanocetria,
and clustered nanoceria, were prepared for selectively scavenging
intracellular, mitochondrial, and extracellular ROS, respectively.
By scavenging mitochondrial and intracellular ROS, the micro-
glial activation and lipid peroxidation could be suppressed while
the expression level of tyrosine hydroxylase could be enhanced
in the striata of Parkinson’s disease model mice. The above
results demonstrated the critical importance of mitochondrial
and intracellular ROS in the development and progression of
Parkinson’s disease. Therefore, the function of ROS in different
cellular localizations in some diseases could be evaluated
through these three types of nanoceria.'®”' Nanoceria could
also be combined with polyoxometalates to effectively scavenge
ROS and degrade amyloid-B (AB) aggregates. Based on the
proteolytic and SOD activities, nanoceria/polyoxometalates
could not only inhibit AB-triggered BV2 microglial cell activa-
tion but also improve PC12 cell proliferation, demonstrating
their potential applications for treatment of neurotoxicity of Ap
peptide in neurodegenerative disease progression.'®”?

Though substantial success was achieved for neuroprotection
using nanoceria, nanoceria could only cross the blood brain
barrier (BBB) by targeting the damaged area of the BBB, which
resulted in very limited accumulation of CeO, in brain lesions.
To address this challenge, Shi et al. developed a nanoceria-based
neuroprotection agent (E-A/P-Ce0,), which was loaded with edar-
avone and further functionalized with Angiopep-2 and PEG. Since
Angiopep-2 could target the brain lesions via receptor-mediated
transcytosis, an effective BBB crossing and much higher accumula-
tion of E-A/P-CeO, NPs could be observed (Fig. 43B). And combined
with the synergistic SOD-mimicking activities of both nanoceria
and edaravone, E-A/P-CeO, was demonstrated to be the most
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Fig. 42 Nanoceria protect against ischemic stroke. (A) Brain infarct volume in rats treated with various doses of nanoceria during the stroke process. (B)
Representative brain slices of the control and nanoceria treated groups. The brain slices were stained with Nissl — the infarcts are shown as pale blue-
colored lesions while the undamaged region is stained deep blue. Adapted with permission from ref. 463. Copyright (2012) John Wiley and Sons.

.;\g K J # danG
: F.. k.

Across BBB '\‘Bﬁmlsvfhug -

A/P-CeO.

E-A/P-CeO,

* mmP-CeO,
I E-P/A-CeO,

Ceria nanoparticles (ng/g)

1 3

12 24

6
Time (h)

O

50

'y
o
I
—_—

w
o
n

n
o
n
. .-

-
o
N
—_—

infarct volume (%)

Control  P-CeO, A/P-CeO, E-A/P-CeO,

Fig. 43 (A) Schematic illustration of Angiopep-2 (ANG) targeting the overexpressed lipoprotein receptor-related protein (LRP) on brain capillary
endothelial cells, which facilitates the BBB crossing of E-A/P-CeQ, into brain tissue for stroke treatment. (B) Time-dependent concentrations (ug Ce per
g brain tissue) of nanoceria in normal brain tissue after administrating 0.5 mg kg~* of nanoceria (*P < 0.05). (C) Digital photograph of the representative
2,3,5-triphenyltetrazolium chloride-stained brain in each group within 24 h of stroke. (D) The volume proportion over the whole brain analyzed by using
Image-Pro Plus at 0.6 mg kg~* of nanoceria. Reprinted with permission from ref. 1073. Copyright (2018) American Chemical Society.

efficient protection against brain injury in stroke (Fig. 43C and
D). In another study, the in-depth mechanism of nanoceria’s
neuroprotection effect was deciphered by Li and co-workers. They
found that nanoceria could covert microglial polarization from a
pro-inflammatory phenotype into an anti-inflammatory phenotype,
which may be responsible for their neuroprotective effect.'®”

This journal is © The Royal Society of Chemistry 2019

Besides carboxyfullerenes and nanoceria, other nano-
materials were also used for neuroprotection.'””>'¢ For example,
as mentioned in Section 2.4.3, PEG-MeNPs with ROS/RNS (RNS
for reactive nitrogen species) scavenging abilities could provide
an effective protection against ischemic brain injury with
negligible side effects. Compared to the control group with
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around 32% infarct area, the treatment of PEG-MeNPs signifi-
cantly reduced the infarct area by half (~14%).°® Mugesh et al.
demonstrated that flower-like Mn;O, nanozymes mimicked
three antioxidation enzymes, including SOD, catalase as well
as GPx. The therapeutic effect of Mn;O, nanozymes was demon-
strated using an experimental model of Parkinson’s disease.
Their results suggested that Mn;O, nanozymes could provide
neuroprotective effects for cells, demonstrating their potential
for treating ROS-mediated neurodegenerative disorders.’”?

4.4.2 Cytoprotection. Recently, a variety of nanozymes have
also been demonstrated as antioxidants for cytoprotec-
tion,**3°°L107771091 por example, Mugesh et al. found that
V,05 nanowires exhibited an interesting GPx-like activity, cata-
lyzing the conversion of H,0, into H,O in the presence of GSH
(Fig. 44). Therefore, V,05 nanowires provided the cytoprotective
effect by scavenging H,0,. Cell experiments showed that V,05
nanowires could eliminate not only extrinsic H,O, but also
intrinsic cellular peroxide induced by CuSO,, demonstrating
V,05 nanowires as efficient antioxidants for cytoprotection.'*!
The detailed mechanism of GPx-like activity of V,05 nanowires
is presented in Section 2.1.2.

Another interesting example was directly growing MnO,-
nanozyme shells via mineralization for long-term cytoprotec-
tion of yeast cells. Owing to the SOD- and catalase-like activities
of MnO, nanozymes, the cellular resistance against harmful
H,0, was enhanced. Over 65% of yeast cells@MnO, could
survive after incubating with H,O, for 48 h, while only 5% of
native cells remained viable. The robust MnO, shell provided
improved cytoprotection against not only H,O, but also other
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stressors such as lytic enzymes and UV radiation. And this
protection was general to other living cells as well. It was worth
noting that such a protection could be biodegraded and thus
recover the functions of cells. However, the potential toxicity
of released Mn ions should also be considered in the future
application.'%%

Besides, Se-based nanozymes such as GO-Se nanocompo-
sites and Se@polydopamine with GPx-like activities were also
reported to eliminate H,O, for cytoprotection.'?*'%°* Recently,
a robust synthesis of fluorescent Se-doped carbon dots via
hydrothermal treatment of selenocystine at 60 °C was reported
by Xu et al. A further study demonstrated that the obtained
Se-doped carbon dots could effectively eliminate *OH for cell
protection. And the distribution of Se-doped carbon dots in
cells was verified by confocal microscopy imaging, which
showed a random location at cell nuclei, lysosomes, mitochondria,
and cytoplasm.'®”

4.4.3 Anti-inflammatory agents. Numerous studies have
demonstrated that nanozymes with multiple enzymatic activi-
ties were outstanding anti-inflammatory agents. For example,
ceria nanozymes with SOD- and catalase-like activities exhibited
excellent repetitive ROS scavenging ability due to their auto-
catalytic properties. As a result, several studies reported biocom-
patible nanoceria for in vitro and in vivo anti-inflammation.**%%%”
To further enhance the ROS removal efficiency, a doping method
was chosen. As discussed in Section 3.3, nanoceria with zr*"
doping (CZ NPs) possessed higher activities than nanoceria due
to the higher Ce®**/Ce*" ratio as well as faster recovery from Ce**
to Ce*". Two representative sepsis models (i.e., LPS-induced

H,O
A 2=2 GSH NADP* B Vn + GSH + GR + NADPH
= 1.5+
=
8
[0]
o
€ 10-
o)
V505 GR 5
Nanowires (Vn) 3
< 0.5 4 Vn+GSH+GR+NADPH+H202
0 1 2 3 4 8
H,O GSSG NADPH Time (min)
3 3
_ +CUSO,
[T I -
% 2 E 2
(3] )
= F
o1 o 1
3 3 I
0’\ OO FoeO FO O < O A 30 7.0 O & O CuSO,+Vn _
B Pl P s r ST e e NN A
A&l & AQA & 0\) A & AN &

Fig. 44 V,0s5 nanowires as a GPx mimic for cytoprotection. (A) Schematic showing the GPx-like antioxidant activity of V,Os nanowires and GSH
recycling by GR. (B) Plot of absorbance versus time revealing the activity of V,Os nanowires in the presence of V,Os nanowires, GSH, NADPH, GR, and
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endotoxemia rat model and CLP-induced bacteremia mouse
model) were used to demonstrate the in vivo anti-inflammatory
effect of CZ NPs (Fig. 45A). Compared with the control group,
the median survival rate was improved by 2.5 times with CZ NP
administration, demonstrating CZ NPs as a novel therapeutic
agent for systematic inflammation.**

Besides, PB was also used as a ROS scavenger on the basis of
its catalase- and SOD-like activities under physiological condi-
tions. The detailed mechanism of its multiple enzyme-like
activities is discussed in Section 2.1.1. The in vitro inflamma-
tory model of RAW264.7 cells and in vivo liver inflammation
model of rats suggested that PB with ROS scavenging ability

This journal is © The Royal Society of Chemistry 2019

could protect against oxidative damage and alleviate inflam-
matory response.’*® Another in vitro inflammatory model of
A549 cells and in vivo pulmonary inflammation model of mice
exposed to cigarette smoke successfully demonstrated the inhi-
bition of pulmonary inflammation with SOD- and catalase-
mimicking PtNPs as antioxidants."**® Later, instead of intranasal
administration, glycine-functionalized copper(u) hydroxide NPs
with SOD-mimicking activities were directly put into cigarette
filters, which also exhibited antioxidant abilities and protected
the A549 cells from oxidative stress. Such a strategy might be a
direct way for the anti-pulmonary inflammation of smokers in
the future.'*
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Recently, Wei et al. have demonstrated that Mn;O, NPs
could act as promising anti-inflammation agents because of
their ROS scavenging ability for not only O,*~ and H,0, but
also *OH (Fig. 45B). Notably, Mn;0, NPs exhibited superior ROS
removal efficiency compared to nanoceria and better stability
than natural enzymes. Further in vitro and in vivo experiments
proved the anti-inflammatory therapeutics of ROS-scavenging
Mn;0, nanozymes.''°

Another innovative example was developing an interesting
multi-antioxidant enzyme synergetic platform (ie., V,05@
PDA@MnO, nanocomposites; PDA, polydopamine) to imitate
the intracellular antioxidation defense process involving SOD,
catalase, and GPx. The obtained hybrid nanocomposites exhi-
bited multi-antioxidation enzyme activities, where V,05 served
as a GPx mimic and MnO, as a SOD and catalase mimic. Even
for PDA, a synergetic efficient antioxidative effect was also
found. Encouraged by the excellent ROS scavenging ability,
later, they constructed a PMA-induced ear inflammation model,
demonstrating the potential application of V,0;@PDA@MnO,
for in vivo anti-inflammation.**°*

Besides SOD and catalase mimics, hydrogenase-like nanozymes
with H, production were also reported for anti-inflammation.
Sung, Chia, and co-workers fabricated a liposomal hybrid contain-
ing a photosensitizer chlorophyll @, an electron donor ascorbic
acid and a photo-reducing AuNP as a hydrogenase-like nanozyme.
Activated by a 660 nm laser, H, would be generated to reduce *OH
to H,0, therefore alleviating tissue inflammation.>*’

4.4.4 Combating bacteria. Unlike the aforementioned ROS
elimination, the oxidase- or peroxidase-like activity for convert-
ing O, or H,0, into ROS would endow nanozymes with anti-
bacterial activities.''°>™%” Excellent reviews summarizing
nanozymes’ antibacterial applications are available.”*'®
Herein, we will discuss some representative examples. For
example, Qu et al. synthesized AuNPs loaded on mesoporous
silica (MSN-AuNPs) with oxidase- and peroxidase-like activities
for combating bacteria. And these catalytic activities of MSN-
AuNPs could be retained over a broad pH range even at neural
pH, which allowed for killing bacteria under physiological
conditions. They demonstrated that the peroxidase-like activity
of MSN-AuNPs was attributed to the generation of *OH in the
presence of H,0,, while the oxidase-like activity was from several
ROS, including '0,, *OH, and O,* . Therefore, the MSN-AuNPs
could generate excessive ROS in the presence of O, or H,0,,
resulting in considerable antibacterial properties. Further anti-
bacterial experiments were performed with both Gram-positive
bacteria Staphylococcus aureus (S. aureus) and Gram-negative
bacteria Escherichia coli (E. coli). Compared with the control
group, the MSN-AuNPs exhibited highly effective inhibition of
the proliferation of both bacterial strains.'**® Besides, other
peroxidase-mimicking nanomaterials, such as carbon nanotubes,
Pt hollow nanodendrites, and AuNPs/g-C;N,, were also reported
to effectively generate *OH for killing both Gram-positive and
Gram-negative bacteria,>*$>>%1104

Recently, Zhou, Ge, and co-workers found that Pd-nanocrystal
facets showed different antibacterial activities against Gram-
positive and Gram-negative bacteria (Fig. 46). Their study
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suggested that the oxidase- and peroxidase-like activities of Pd
nanocrystals exhibited facet-dependence, where {100}-faceted Pd
cubes possessed greater catalytic activities than {111}-faceted
Pd octahedra. According to a previous report, the antibacterial
activity against bacteria was expected for Pd cubes rather than
Pd octahedra. As shown in Fig. 46A, the survival rate and the
scanning electron microscopic (SEM) images of S. aureus did
evidence the higher antibacterial activity of Pd cubes compared
to Pd octahedra. On the other hand, for Gram-negative bacteria
E. coli, an opposite result was observed. More effective antibac-
terial properties were from Pd octahedra instead of Pd cubes
(Fig. 46B). Further experiments and molecular dynamics simula-
tions suggested that a stronger membrane penetration of Pd
octahedra promoted the antibacterial activity against E. coli, as
shown in Fig. 46C and D.®*®

Besides, other therapies (such as photothermal therapy) have also
been utilized together with *OH for combating bacteria."*"*™'"*?
For instance, Zhao, Gu, and co-workers found that peroxidase-
mimicking PEG-MoS, nanoflowers could rapidly and effectively
kill bacteria (e.g., E. coli and Bacillus subtilis) through a syner-
gistic effect of catalysis and photothermal therapy. The syner-
gistic processes were as below: first, PEG-MoS, nanoflowers
would decompose H,0, to produce *OH for damaging cell walls
and membranes, making cells vulnerable to heat; then, PEG-
MoS, nanoflowers with near-infrared absorption could cause
hyperthermia under 808 nm irradiation for photothermal
therapy. Meanwhile, the hyperthermia improved the oxidation
of GSH, further helping to accelerate the whole antibacterial
outcome. Notably, a catalysis-induced damage to cells could
shorten the irradiation time and minimize the side effects of
photothermal therapy."'*®

4.4.5 Cancer therapy. ROS could also do harm to cancer
cells. According to the different ways of ROS generation (mecha-
nisms), nanozymes for cancer therapeutics could be roughly
classified into two types: (1) nanozymes as peroxidase or oxidase
mimics with ROS generation during catalysis; (2) ROS produced
under light irradiation in the presence of photosensitizers and
catalase mimics, where the key role of nanozymes is to generate
O, to enhance the PDT efficiency.

The principle of the first type was similar to the above-
mentioned antibacterial activity.""****° Recently, Shi et al.
proposed and demonstrated the concept of catalytic nano-
medicine. As shown in Fig. 47, the GOx-Fe;0,@DMSNs nano-
catalyst was fabricated by encapsulating GOx and ultrasmall
Fe;0, NPs in the dendritic mesoporous silica NPs (DMSNs).
After being taken up by cancer cells, the GOx could deplete
glucose in tumor cells, which would not only starve cancer cells
but also produce considerable concentration of H,0, for down-
stream reaction. Subsequently, the abundant H,O, would be
in situ catalyzed by ultrasmall Fe;O, NPs via Fenton-like reac-
tion to produce toxic *OH, which in turn induced the apoptosis
and death of tumor cells. The biodegradation behavior and
pharmacokinetics of GOx-Fe;0,@DMSNs were also studied.
Encouragingly, the structure of GOx-Fe;O0,@DMSNs could
be degraded in cancer cells upon 7 day incubation. And no
significant effect on Kunming mice growth proved the high
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biosafety of GOx-Fe;0,@DMSNs. Besides, in vivo behaviors
(such as distribution kinetics in the whole blood and the
2.65 h circulating half-life of GOx-Fe;0,@DMSNs in the
bloodstream) further demonstrated an improved pharmaco-
kinetics. On the basis of the biodegradation behavior and the
high biocompatibility, the GOx-Fe;0,@DMSNs were applied
for in vivo tumor -catalytic therapeutics, which exhibited
satisfactory tumor suppression effects for 4T1 and U87 tumor
xenografts.''*!

Likewise, Yan et al. reported that nitrogen doped porous
carbon nanospheres (N-PCNs) exhibited four enzyme-like acti-
vities including oxidase, peroxidase, catalase, and superoxide
dismutase, which could regulate ROS in vivo. Further modifica-
tion of N-PCNs with ferritin helped targeted-delivery into lyso-
somes via receptor-mediated endocytosis. Then, the acidic
environment of lysosomes facilitated the N-PCNs performing
peroxidase- and oxidase-mimicking activities to generate ROS
and consume oxygen, resulting in the toxic effect and hypoxia
for tumor cells (Fig. 48). Moreover, the results of their animal
experiments showed that the N-PCNs could efficiently reduce
the tumor volume and improve the survival rate of tumor-
bearing mice.**?

For the second type, nanozymes with catalase-like activities
were normally used for producing more oxygen to enhance the
PDT efficacy.®>7>®!1?271124 1y the PDT processes, O, would be

This journal is © The Royal Society of Chemistry 2019

converted into ROS by light-activated photosensitizers. How-
ever, the hypoxic microenvironment of cancer cells has limited
the therapeutic effects, which provides an opportunity for
nanozymes with catalase-like activities because they could
in situ decompose H,0, into O, and H,0. For example, Hyeon
et al. developed biocompatible manganese ferrite NP-anchored
mesoporous silica NPs (MFMSNs) for improving the PDT
efficiency (Fig. 49). Continuously generated O, from MFMSNs
and ROS under laser irradiation relieved the hypoxia cancer
microenvironment and enhanced the therapeutic efficacy.
Moreover, as a contrast agent for magnetic resonance imaging,
MFMSNs could be tracked in vivo.'">>

Similarly, other nanomaterials (such as Pt decorated photo-
sensitive MOFs and BSA-IrO,) were also demonstrated to
improve the therapeutic efficacy by producing 0,.'0>%112%1125
In certain cases, several approaches were applied together for
cancer treatment."">>™'"*° For example, the BSA-IrO, NP was
promising for cancer theranostics because of its excellent
photothermal conversion efficiency and photocatalytic activity, as
well as high X-ray absorption ability for computed tomography
imaging. More importantly, BSA-IrO, NPs with catalase-mimicking
activity could not only supply O, for overcoming tumor hypoxia
and enhancing photoacoustic imaging but also act as self-anti-
inflammatory agents for protecting normal cells against H,O,-
induced oxidative stress.'®*
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Besides ROS, in some recent research studies, bioorthogonal
nanozymes have also been used in pro-drug activation for
cancer therapeutics by converting a pro-drug into the toxic
drug. For instance, first, non-covalent encapsulation of the
transition metal catalyst (e.g., Ru complex or Pd complex) in
the alkanethiol monolayers on AuNP cores was performed.
Then, additional capping of the cucurbit[7]uril (CB[7]) to the
head groups of monolayers would protect the catalyst from
release, meanwhile blocking the access to catalytic active sites,
leading to the deactivation of the bioorthogonal nanozymes. When
adding a competing guest molecule (i.e., 1-adamantylamine
(ADA)), the CB[7] would be taken away from the bioorthogonal
nanozymes, resulting in the exposure of active sites (Fig. 50A).
Therefore, the catalytic activity of bioorthogonal nanozymes
could be reversibly modulated by such supramolecular inter-
action between ADA and CB[7]. As shown in Fig. 50B, the
propargyl group of pro-5FU was only cleaved with exposed
active catalysts to produce the toxic 5-FU, which demonstrated
future therapeutics at the site of action with minimized side
effects of 5-FU.>"> Likewise, a light-controlled bioorthogonal
nanozyme was prepared with azobenzene isomerization and
cyclodextrin instead of ADA and CB[7]. With light-induced
structural changes of azobenzene, cyclodextrin would be
released for pro-5FU activation, demonstrating its potential

1044 | Chem. Soc. Rev., 2019, 48, 1004-1076

application for cancer therapeutics. Further, instead of using
pro-drug for cancer therapeutics, pro-fluorophore was chosen
to demonstrate the cell imaging ability of the bioorthogonal
nanozymes.”®°

44.6 Others. Several studies have also demonstrated nano-
zymes’ broad applications in disease therapeutics,>*>%*1241130-1141
For example, Song, Fan, and co-workers demonstrated that
catalase-like dietary Fe;O, NPs delayed aging and protected
against neurodegeneration in vivo. A Drosophila model was
selected to evaluate the effects of Fe;O, NPs on aging and life
span. Aged Drosophila (six weeks old) exhibited increased ROS
levels and decreased climbing ability (0.43 cm s~ '). Compared
with the control group, the ROS levels were significantly
reduced and the climbing ability (0.6 cm s™') was enhanced
when the flies daily ingested 200 pg mL ™" Fe;O, NPs. More
encouragingly, the median life span (ts,) was improved from
49 to 57 days by ingestion of Fe;0, NPs. Moreover, they found that
dietary Fe;04 NPs could relieve neurodegeneration in a Drosophila
Alzheimer’s disease model. After administrating dietary Fe;O,
NPs, the level of apoptosis in the brain was reduced and the
median life span was extended by 16%, demonstrating that
dietary Fe;O4 NPs could protect against neurodegeneration in a
Drosophila Alzheimer’s disease model.'**> Besides, PAPLAL, a
mixture of Pd and Pt NPs used in Japan over the past 60 years,

This journal is © The Royal Society of Chemistry 2019
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has also been studied by Shimizu and co-workers for treating
oxidative-induced aging-related skin diseases. Such an effect
was due to the SOD- and catalase-mimicking activities of Pd
and Pt NpPs."'*?

4.5 Others

4.5.1 Environmental protection. As discussed above, nano-
zymes have exhibited broad applications in detecting toxic pollu-
tants, such as Hg>', Ag', and pesticides.?®"00716>1028,1144-1149
Moreover, various studies demonstrated that nanozymes could
remove pollutants for water treatment and environmental protec-
tion via a Fenton-like reaction >3*?02320:838115071160 A widely
explored nanozyme was based on iron, which could not only
degrade pollutants through the peroxidase-like catalytic process, but
also be recycled for sustainable usage.®”*%10%671,116171183 pegides the
Fenton-like reaction, the oxidation reaction catalyzed by polyphenol
oxidase mimics was also helpful for removing another type of
pollutants (i.e., phenols) from the environment,*%4*41

In a recent study, Mugesh et al. developed vacancy engineer-
ing nanoceria as phosphotriesterase mimics to hydrolyze the
organophosphorus-based nerve agents. A mechanism study
showed that Ce** and Ce"" ions in the hotspots played a vital
role in effectively catalyzing the hydrolysis of nerve agents.””® By
using phosphotriesterase-mimicking nanoceria, some environ-
mentally harmful nerve agents, such as paraoxon, could be
effectively degraded.*’®''#+11%5 [n addition to nanoceria,

1046 | Chem. Soc. Rev., 2019, 48, 1004-1076

MOF-based nanomaterials, such as UiO-66, could also cleave
organophosphate bonds of CWAs for environmental protection
and national security.”**"'*"11%9 A detailed discussion of MOF-
based nanomaterials for phosphotriesterase mimics is presented
in Section 2.5.3. Given the low hydrolysis efficiency of sulfur
mustard, further combination of porphyrin linker-based or
polyoxometalate-based oxidation in MOFs was used to detoxify
sulfur mustard (e.g., 2-chloroethyl ethyl sulfide)."**°

4.5.2 Anti-biofouling. Tremel et al. demonstrated that V,05
nanowires could act as vanadium haloperoxidase mimics. When
the bromide ions and hydrogen peroxide were present, the V,05
nanowires could catalyze the oxidation of bromide ions to form
HOBr, which endowed them with a strong anti-biofouling
activity.”* In their subsequent study, they developed CeO,_,
nanorods as haloperoxidase mimics due to the existence of the
Ce"*/Ce®* redox couple. Density functional theory calculations
suggested that the Ce®" defect may be responsible for its
haloperoxidase-like activity. Similarly, bromide ions could be
oxidized by CeO,_, nanorods to form HOBr in the presence of
H,0,. Subsequently, the reactive HOBr reacted with signaling
molecules involved in bacterial quorum sensing (i.e., N-(3-0xo-
acyl)homoserine lactone) to form a halogenated product, leading
to the final anti-biofouling (Fig. 51A)."**!

Nanozymes with peroxidase-like activities can also be used for
combating biofouling. Gao et al. demonstrated that peroxidase-
mimicking Fe;O, NPs with H,O, could effectively improve the
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ref. 1191. Copyright (2017) John Wiley and Sons. (B) Adapted with permission from ref. 1192. Copyright (2016) Elsevier.

oxidative cleavage of biofilm components (i.e., nucleic acids,
proteins, and oligosaccharides). Moreover, the Fe;0,~H,0, sys-
tem could not only degrade the existing biofilm but also prevent
the formation of a new biofilm."**® Later, Gao, Koo, and co-
workers developed a method for dental biofilm elimination by
using Fe;O, MNPs with a peroxidase-like activity. Their results
illustrated that Fe;0, MNPs could catalyze H,O, to generate
*OH, which resulted in the degradation of the biofilm matrix and
the death of bacteria in a short time. Furthermore, by using a
rodent model, in vivo studies demonstrated that the Fe;0,-H,O,
system could effectively suppress dental caries (Fig. 51B).""
Likewise, ferumoxytol, which was approved by the U.S. Food and
Drug Administration for treatment of iron deficiency, was used
as a peroxidase mimic by Koo and co-workers to disrupt oral
biofilms and prevent tooth decay in the presence of low con-
centrations of H,0,. Moreover, they performed microbiome and
histological analyses and demonstrated the negligible adverse
effects of ferumoxytol on oral microbiota diversity and gingival
and mucosal tissues.''**

Besides peroxidase-mimicking nanozymes, an anti-biofilm
DNase-mimicking nanozyme was also reported by Qu and co-
workers. They synthesized Fe;0,/SiO, nanoparticles as the core
to confine AuNPs on the surface, followed by functionalizing
AuNPs with the Ce(iv) complex as the catalytic monolayers. Such
a DNase-mimicking nanozyme could effectively cleave the extra-
cellular DNA in extracellular polymeric substances, thus inhibit-
ing the biofilm formation and dispersing the formed biofilms.
Because of the high stability and easy separation with an external
magnetic field, the as-synthesized nanozyme could be reused for
five rounds. Moreover, hydrolysis-induced disruption of the
integrated extracellular polymeric substance helped the tradi-
tional antibiotics to eradicate the bacterial biofilms."*%®

4.5.3 Logic gates. Various studies used nanozymes to con-
struct logic gates.***2% For example, Qu and co-workers devel-
oped labelfree, resettable, colorimetric logic gates, including
“AND”, “OR”, and “INHIBIT”, by combining natural enzymes
with thermally responsive ceria nanozymes.’**® As shown in
Fig. 52, the colorless nanoceria would turn into a yellow colored

This journal is © The Royal Society of Chemistry 2019
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one in the presence of H,O, because of the change in the
dominant oxidation state from Ce®" to Ce"" on nanoceria’s sur-
face. On the basis of nanoceria’s color change, various logic gates
were constructed by combining with several bioreactions. When
employing B-galactosidase and GOx as inputs and nanoceria’s
color as output, an “AND” logic gate could be achieved. Similarly,
when using GOx and xanthine oxidase as inputs, an “OR” logic
gate was constructed. When combining catalase with GOx or
xanthine oxidase, two “INHIBIT” logic gates were formed.
Interestingly, these logic gates could be reset because the yellow
colored nanoceria could turn into a colorless one on heating
at 85 °C. Finally, practical logic sensing applications were
demonstrated by using the proposed platform for multiplex
detection."**

Another example was reported by Chang et al. They used
functional logic gates for selective detection of Pb>* and Hg>" by
tailoring AuNPs’ peroxidase-like activity with metal ions. They
found that Pt*" and Pb*>" could significantly enhance the
peroxidase-like activity of AuNPs when depositing on the surface.
On the basis of this phenomenon, an “AND” logic gate could be
constructed when Pt** and Pb>" were employed as inputs and the
catalytic activity of AuNPs as output. Even though Bi** could
enhance the peroxidase-like activity of AuNPs, the presence of
both Bi** and Pb*" exhibited an inhibition effect. Therefore, an
“INHIBIT” logic gate could be achieved by using Bi** and Hg”" as
inputs.'*** Besides “AND” and “INHIBIT” logic gates, others, such
as “OR” and “XOR”, were also constructed by tuning the AuNPs’
catalase- or oxidase-like activity with various metal ions. Based on
these logic gates, various metal ions were successfully detected.'**®

Very recently, Dong and co-workers developed an “INHIBIT”
logic gate for sensitive GSH detection. They found that MnO,
nanosheets could effectively quench Scopoletin’s fluorescence
while enhancing Ampliflu Red’s fluorescence by oxidation
reaction. In the presence of GSH, the MnO, nanosheets would
be decomposed into Mn?*, resulting in the restored fluorescence
of Scopoletin and decreased fluorescence of Ampliflu Red.
Therefore, a ratiometric fluorescence signal could be obtained
for GSH sensing. Accordingly, an “INHIBIT” logic gate could be
constructed by using MnO, nanosheets and GSH as inputs and
the ratiometric fluorescence signal as output.**°

5. Conclusions, challenges, and
perspective

Herein, we summarize recent advances in expanding the types of
nanozymes, deepening the understanding of reaction mecha-
nisms, and regulating their catalytic properties. With these
advances, great achievements in applications such as biomedical
sensing, therapeutics, and environmental remediation are dis-
cussed. Despite the remarkable progress that has been made since
the first comprehensive review in 2013, there still remains plenty
of room for advancing future research of nanozymes.

(1) Rational design of nanozymes. Up to now, most of nano-
zymes have been prepared via a trial-and-error strategy.
To guide the synthesis of high-performance nanozymes with
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desired properties, the following studies might be considered.
First, a better understanding of the catalytic mechanism of a
nanozyme should be achieved to reveal the structure-activity
relationship. Second, both experimental and computational
studies should be combined together to elucidate the catalytic
mechanisms. Third, the concepts of single atom (active site)
nanozymes and single nanozyme catalysis should be intro-
duced into the field. Fourth, machine learning and other
artificial intelligence techniques should be explored to search
for the best nanozyme candidates.

(2) Sabatier principle and descriptors of nanozyme activities.
The Sabatier principle qualitatively states that an optimal
catalyst for a given reaction should interact with the reactants
neither too strongly nor too weakly."**>'2°® The principle
results in “a volcano-type relationship between activity and
bond strength”.'>°® Based on the Sabatier principle and the
more quantitative scaling relationships, descriptors of catalytic
activities can be identified and the corresponding activity (and
selectivity) maps can be obtained. The Sabatier principle has
been successfully used to search for catalysts for heterogeneous
catalysis (such as in ammonia synthesis and electrocata-
lysis)."?°>*2°¢ Ingspired by such success and encouraged by our
recent results, here we propose that general design rules for
high-performance nanozymes can be established from the
electronic point of view by identifying suitable descriptors of
activities. These descriptors can be the adsorption (binding free)
energy of a reactant (intermediate) on catalysts; the dissociation
energy of a reactant (intermediate) on catalysts; d band for
transition metal; e, occupancy, O p band center, metal-oxygen
hybridization (bond strength), and charge-transfer gap for tran-
sition metal oxides; etc.

(3) Mimics of the protein scaffold (and native microenviron-
ment) of an enzyme. The current studies are mostly focused on
the active sites of enzymes of interest. The mimics of the
protein scaffold of an enzyme, which is important for the
selectivity and efficiency of an enzymatic reaction, have largely
not been studied yet.'**” Moreover, some enzymes act properly
only in their native environments (such as residence within a
lipid membrane). The mimics of such an environment were
rarely reported. Therefore, new strategies should be explored to
address these challenges in the future study of nanozymes.

(4) Expanding the types of nanozymes and beyond. Currently,
the types of reactions catalyzed by nanozymes have been
expanded from redox to hydrolysis and a few others. But they
are still not wide enough to cover all the important enzymatic
reactions. To further increase the types of nanozymes, a fast
and possible method is to create the analogues of active centers
in natural enzymes, and then incorporate them into MOFs or
other nanomaterials for mimicking the catalytic activities.

For an even wider view, the fabrication of organelle and cell
mimics should be considered for future studies.'>°® The study
of the potential implications of nanozymes in prebiotic chem-
istry and origin of life would be another challenging but
rewarding research area.”’

(5) Specific nanozymes versus multi-enzyme mimicking nano-
zymes. Another critical issue is the low substrate specificity of
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nanozymes, with specificity being a fundamental property of
natural enzymes. Although the combination of natural enzymes
and nanozymes together could partially solve this problem, the
stability and cost of the whole catalyst system were sacrificed
because of the natural enzymes. Thus, by learning from nature,
incorporating certain recognition mechanisms such as building
protein-like (or aptamer-like) binding pockets and molecular
imprinting of selective substrate pockets should be promising
approaches to nanozymes with high specificity.”*>”>**>% Con-
structing asymmetric nanomaterials or using bioorthogonal
nanozymes could also be considered as an optional choice in
the future. Fine-modulation of the interaction of substrates
with nanozymes by engineering the nanomaterials could be an
alternative way to fabricate specific nanozymes.**'%1211

On the other hand, some nanozymes have multi-enzymatic
activities, which have been demonstrated to be helpful for
therapeutics in the Applications section. However, in certain
cases, one unavoidable type of catalytic properties would cause
some potential side effects, which should be carefully investi-
gated to obtain an effective window for therapy.

(6) Multi-functional nanozymes. Taking advantage of the
physiochemical properties of nanomaterials, the development
of multi-functional nanozymes should be another interesting
and challenging topic in the future.®® Besides catalysis, nano-
materials endow nanozymes with more functions including
magnetic, optical, and thermal properties, allowing more potential
applications for ultra-sensitive sensing, sustainable chemistry, and
multi-modality therapy.

(7) Bioeffects of nanozymes. To advance nanozymes for transla-
tional applications, both the benefits and risks of them should be
systematically evaluated. Such studies would include but not be
limited to assessments of cellular fate of nanozymes, clinical
toxicity, pharmacokinetics, immunogenicity, etc. A further conju-
gation with ligands may help to decrease the toxicity and guide the
targeting, but the accompanying influence on the catalytic activi-
ties and the subsequent metabolism of nanozymes come up. The
long-term effects on the environment should also be considered.

(8) Standardization of nanozyme research. As summarized in
Tables S11-S13 (ESI{), one type of nanomaterials has several
different kinetics parameters. For a fair evaluation of different
nanozymes, standards should be established to quantitatively
determine their catalytic activities. Recently, Yan, Liang,
and co-workers proposed standardized assays for peroxidase-
like nanozymes, which would promote the development of
peroxidase-like nanozyme based bio-detection."”"* In the future
study, we expect standards for other types of nanozymes to be
set as well. Notably, the specific surface area, a unique char-
acteristic of nanomaterials, plays an important role in the
catalytic activities of nanozymes, especially for those with porous
structures. Therefore, it is necessary to take the specific surface
area into account when setting the standards.

(9) Killer applications. With the enormous development of
nanozymes, we expect to see more practical applications, such
as stem cell promotion, drug screening, and even some bio-
medical devices. Not only biomedicine, but also environment,
agriculture, forensic science, and even national security fields
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are full of expectation as well. However, to gain long-term

support for the nanozyme research, nanozymes have to find
their unique applications in some specific niches.
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