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Near dissociation states for H2
+–He on MRCI

and FCI potential energy surfaces†

Debasish Koner, a Juan Carlos San Vicente Veliz,a Ad van der Avoird b and
Markus Meuwly *a

New potential energy surfaces (PES) have been constructed for H2
+–He using a reproducing kernel Hil-

bert space (RKHS) representation from an extensive number of ab initio energies computed at the multi

reference and full configuration interaction levels of theory. For the MRCI PES the long-range

interaction region of the PES is described by analytical functions and is connected smoothly to the short

range interaction region, represented as a RKHS. All bound ro-vibrational states for the ground

electronic state of H2
+–He are calculated using two different methods to determine quantum bound

states. Comparing transition frequencies for the near-dissociation states for ortho- and para-H2
+–He

allows assignment of the 15.2 GHz line to a J = 2 e/f parity doublet of ortho-H2
+–He whereas the

experimentally determined 21.8 GHz line is only consistent with a (J = 0) - (J = 1) e/e transition in

para-H2
+–He.

I. Introduction

The interaction between ions and neutral atoms or molecules is
of central importance in atmospheric and astronomical pro-
cesses and environments. Prominent species in the interstellar
environment include H3

+, CH2
+, HCO+ and N2H+, among

others.1 Additionally, ions are also considered to play an
important role in the formation of atmospheric aerosols.2

Very recently,3 the HeH+ ion, which was the first molecule of
the primordial universe,4 has been detected in interstellar
space and means for the direct detection of H2

+ have been
discussed.5 However, although H2

+ is most likely formed and
present in space, e.g. through the HeH+ + H - H2

+ + He
reaction,3 (which is believed to be the first atom–diatom reac-
tion in the universe6) collisions with H and H2 are also
important loss channels of the ion. Nevertheless, with H2

+

present in the interstellar medium, it is also likely that the
H2

+–He complex is formed. Hence, H2
+–He plays an important

role already in the early stages of the Molecular Universe.
The interaction between He and H2

+ is also important for
the rotational cooling of H2

+ through collisions with Helium as
the buffer gas.7 This is an attractive way to generate transla-
tionally and internally cold H2

+ ions suitable for precision
measurements.8,9 With even further increased precision and

quantum state control of the ions, fundamental natural constants
such as the ratio of the electron to the proton mass, me/mp, can be
determined with unprecedented accuracy.

Another process of interest which has been recently investi-
gated is the Penning ionization of 3S excited He colliding with
H2.10 This process produces H2

+–He with sufficient energy to
dissociate into ground state and rovibrationally excited He and
H2

+ fragments. Such rovibrationally inelastic half-collisions
are particularly sensitive to the long-range part of the inter-
molecular potential, which is dominated by polarization
interactions induced by the charge and quadrupole of H2

+.
Furthermore, several long-range states for H2

+–He have been
characterized from microwave spectroscopy and by using electric
field extraction.11,12 However, the interpretation of these spectra
has remained elusive, in part due to the limited accuracy of the
available potential energy surfaces.

In the past, several PESs have been constructed at different
levels of theory to investigate the spectroscopy and dynamics of
the H2

+–He complex.13–18 To characterize spectral transitions in
the microwave region, an accurate long-range potential is
required.14,15 However, the level of theory used for the electronic
structure calculations in these earlier efforts was rather modest
by today’s standards. Full configuration interaction (FCI) with the
cc-pVQZ basis has been used more recently but no explicit
analytical representation was included.17 Later, using the ab initio
data of ref. 17 a new PES was constructed by including an explicit
analytical formula only for the diatomic potentials.18

In the present work high-level electronic structure methods
combined with advanced representation techniques for global
potential energy surfaces and accurate representation of the
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long-range potential are used. With these PESs quantum calcu-
lations of all bound states of H2

+–He with H2
+ in its ground

electronic and vibrational state are then carried out. As the
near-dissociative states are particularly sensitive to the long
range part of the PES, two different, advanced electronic
structure techniques are used: Multireference configuration
interaction (MRCI) with Davidson correction (+Q) and full
configuration interaction calculations, in order to compare
their performance. Also, both PESs are augmented with the
analytical long range electrostatics for validating the long-range
part computed with the two electronic structure methods. First,
the computational methods are presented, followed by the
discussion of the bound states computed and their interpreta-
tion in view of the near-dissociative states.

II. Computational methods
A. The potential energy surfaces

Two different levels of theory – (a) multi reference configuration
interaction level including the Davidson correction (MRCI+Q)19,20

with the augmented Dunning-type correlation consistent
polarized hexaple zeta (aug-cc-pV6Z)21 basis set and (b) full
configuration interaction22,23 with the augmented Dunning type
correlation consistent polarized quintuple zeta (aug-cc-pV5Z)24,25

basis set – are used in the present work to calculate the ab initio
energies. Initial orbitals for the MRCI calculations were obtained
using the complete active space self-consistent field (CASSCF)26–28

method with three 1s orbitals of H and He in the active space. The
Molpro29 software was used to perform all electronic structure
calculations.

The grids for the ab initio energy calculations are set up in
Jacobi coordinates (R,r,y). Here, r is the H2

+ bond length, R is
the distance between He and the center of mass of the H2

+ ion,
and y is the angle between -

r and
-

R. The angular grid is defined
by Gauss-Legendre quadrature points chosen in the range
between 0 r y r 901 given the spatial symmetry of the system.
Details of the angular and radial grids for the MRCI+Q and FCI
calculations are given in Tables S1 and S2 in the ESI.†

The complete adiabatic surface for H2
+–He can be expressed

as a many-body expansion30

VHeHH0 ðrHeH; rHeH0 ; rHH0 Þ

¼ V
ð1Þ
He þ V

ð1Þ
H þ V

ð1Þ
Hþ

þ V
ð2Þ
HeHþðrHeHÞ þ V

ð2Þ
HeH0þ ðrHeH0 Þ þ V

ð2Þ
HH0þ ðrHH0 Þ

þ V ð3ÞðrHeH; rHeH0 ; rHH0 Þ;

(1)

where rHeH, rHeH0 and rHH0 are the distances between the
respective atoms, and VHeHH0(rHeH,rHeH0,rHH0) is the total energy
of the triatomic system at the corresponding geometry. The
V(1)

i are the atomic energies, whereas the V(2)
i (ri) and

V(3)(rHeH,rHeH0,rHH0) are the two- and three-body interaction
energies, respectively, at corresponding configurations.

In general, two body interaction energies, i.e., the diatomic
potential, for a molecule AB can be expressed as18,31

V
ð2Þ
ABðRABÞ ¼

c0e
�aABRAB

RAB
þ
XM

i¼1
ciriAB þ Vlongð~rÞ; (2)

with c0 4 0 to ensure VAB(RAB) - N at RAB - 0 and rAB ¼
RABe

�bð2Þ
AB

RAB . The long range part, Vlong(r̃), can be written as14

Vlongð~rÞ ¼ �
adq2

2~r4
� aqq2

2~r6
� aoq2

2~r8
�
bddqq

3

6~r7
� gdq

4

24~r8
; (3)

where q is the charge, and ad, aq and ao are the dipole, quadrupole
and octopole polarizabilities for H and He, respectively. bddq and gd

are the first and second hyperpolarizabilities, respectively. The values
for the polarizabilities of He and H are taken from ref. 14 and 32 and
r̃ is defined as33

r̃ = r + rl exp(�(r�re)), (4)

to remove the divergence of the long range terms at short H–H
and H–He separations. Here, rl is a distance parameter and re is
the equilibrium bond distance of the diatomic molecule. The
parameters used in this work to obtain the diatomic potentials
are given in Table 1.

The linear parameters ci and the nonlinear parameters aAB

and b(2)
AB in eqn (3) are determined by fitting the expression with

the ab initio energies using the Levenberg–Marquardt nonlinear
multidimensional fitting method.34 The optimized linear and
nonlinear parameters for the diatomic potentials calculated via
fitting are given in Tables S3 and S4 (ESI†).

The three-body interaction energies, V(3)(rHeH,rHeH0,rHH0) =
V(3)(r,R,y) are calculated from eqn (1). For a particular configu-
ration of H2

+–He, V(3)(r,R,y) can be calculated using the repro-
ducing kernel Hilbert space35 (RKHS) approach.

The procedure for computing the analytical energy of a given
configuration from a set of known ab initio energies is briefly
described here. According to the RKHS theorem, the value of a
function f (x) can be evaluated from a set of known values f (xi)
at positions xi as a linear combination of kernel products

~f ðxÞ ¼
XN

i¼1
ciKðx; xiÞ; (5)

where ci are the coefficients and K(x,xi) are the reproducing
kernels. The coefficients are calculated from the known values

Table 1 Parameters used in the diatomic potentials. All values are in
atomic units

H He

Dipole polarizability ad 4.5 1.384
Quadrupole polarizability aq 15.0 2.275
Octopole polarizability ao 131.25 10.620
First hyperpolarizability bddq 159.75 20.41
Second hyperpolarizability gd 1333.125 37.56

H2
+ HeH+

rl 10.0 8.0
req 2.005815 1.4633
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by solving a set of linear equations

f ðxjÞ ¼
XN

i¼1
ciKðxi; xjÞ: (6)

Here it is worth mentioning that the RKHS approach exactly
reproduces the input data at the reference points. The derivatives
of f̃(x) can be calculated analytically from the kernel functions
K(x,x0). For a multidimensional function the D-dimensional
kernel can be constructed as the product of D 1-dimensional
kernels k(x,x0)

Kðx; x0Þ ¼
YD

d¼1
kðdÞðxðdÞ; x0ðdÞÞ; (7)

where k(d)(x(d),x0(d)) are the 1-dimensional kernels for d-th
dimensions.

For the radial dimensions (r and R) a reciprocal power decay
kernel35

k½2;4�ðx; x0Þ ¼ 2

15

1

x54
� 2

21

xo

x64
; (8)

is used in the present work where, x4 and xo are the larger and
smaller values of x and x0. The value of this kernel smoothly decays
to zero according to x�4 as the leading term in the asymptotic
region, which gives the correct long-range behavior for atom–diatom
type interactions. For the angular dimension, a Taylor spline kernel

k½2�ðz; z0Þ ¼ 1þ zoz4 þ 2z2oz4 �
2

3
x3o; (9)

is used, where z4 and zo are analogous to x4 and xo. Here, the
variable z is defined as

z ¼ 1� cosy
2

; (10)

so that the values of z are always in the interval [0,1].
Finally, the 3-dimensional kernel is

K(x,x0) = k[2,4](R,R0)k[2,4](r,r0)k[2](z,z0), (11)

where, x, x0 are (R,r,z) and (R0,r0,z0), respectively. A computa-
tionally efficient toolkit is used in this work to calculate the
coefficients and in evaluating the function.36 Adding a small
regularization parameter (here l = 10�19) to the diagonal
elements provides additional numerical stability. In practice,
l is increased until a regular solution is obtained for the
inversion.

To represent the long range part of the H2
+–He interaction

the analytical form from ref. 14

VlongðR; r; yÞ

¼ �adq
2

2R4
� aqq2

2R6
� a0q2

2R8
�
bddqq

3

6R7
� gdq

4

24R8

� 3adqYðrÞP2ðcosyÞ
R6

� 5adqFðrÞP4ðcosyÞ
R8

� 6aqqYðrÞP2ðcosyÞ
R8

� C0
6ðrÞ þ C2

6ðrÞP2ðcosyÞ
R6

� C0
8ðrÞ þ C2

8ðrÞP2ðcosyÞ
R8

(12)

is used. Here, the first five terms represent the charge +
induced multipole interactions, the sixth term represents the
dipole + quadrupole induction interaction and the seventh and
eighth terms represent the higher order induced-dipole +
hexadecapole and induced-quadrupole + quadrupole interactions,
respectively. Here, Y(r) and F(r) are the quadrupole and hexa-
decapole moments of H2

+, respectively. The last two terms
in eqn (12) are the contributions from dispersion interactions.
The r-dependence of the moments and dispersion coefficients is
included by representing them as a second degree Taylor series.
All parameters used in eqn (12) are those from ref. 14. The
parameters for He are given in Table 1.

For configurations with R \ 9.0 a0 the MRCI+Q/aug-cc-pV6Z
calculations are discontinuous along the R-coordinate, see
Fig. 1, where MRCI+Q/aug-cc-pV6Z energies are given fixed
values of y and r. For large values of R, MRCI+Q/aug-cc-pV6Z
energies are discontinuous which originates from the Davidson
correction of the MRCI energies because the order of the states
along a potential energy scan can swap. This then leads to
discontinuities in the Davidson-corrected energies. Hence, for
the long range part of the PES the explicit analytical long-range
expression (see eqn (12)) was used to construct the full 3D PES
which is referred to as MRCI+Q+LR in the following. In order to
smoothly connect the short- and long-range parts of the
MRCI+Q PES a Fermi (switching) function is used (see also
ref. 37 for a different switching function), see Fig. 2

fsðRÞ ¼
1

exp
R� R0

dR
þ 1

(13)

where R0 = 8.5 a0 and dR = 0.2 a0. The function has a value of 0.5
at R = 8.5 a0. The total potential (Vtot) is then calculated as

Vtot = fsVRKHS + (1 � fs)Vlong, (14)

where VRKHS is the short range part of the interaction potential
obtained from RKHS interpolation using the many body expan-
sion and Vlong = Vlong(R,r,y) + VH2

+ (r).

Fig. 1 MRCI+Q/aug-cc-pV6Z and FCI/aug-cc-pV5Z energies as a func-
tion of R for fixed y = 172.9351 and r = 2.0 a0. The black line is the RKHS
interpolation of the FCI energies.
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Full CI calculations are smooth out to R B 50 a0, contrary to
MRCI+Q, see Fig. 1. Hence, the full 3-dimensional PES was also
calculated using FCI using a somewhat smaller basis set, i.e.,
aug-cc-pV5Z. This PES, called FCI in the following, was again
represented as a RKHS. Although the FCI energies are smooth
in the R-long range, a third PES (FCI+LR) was constructed by
using the same long range expression used for the MRCI+Q+LR
PES. For the FCI+LR PES the parameter values in the switching
function were R0 = 13.5 a0 and dR = 0.25 a0 in eqn (13).

B. Bound state calculations

Ro-vibrational bound state calculations for different J states
with e and f symmetries are carried out in scattering coordinates
using the 3D discrete variable representation (DVR) method with
the DVR3D program suite.38 The radial Gauss-Laguerre quadra-
ture grids consist of 86 and 32 points along the R and r
coordinates, respectively. For the Jacobi angle y, a grid of 36
Gauss-Legendre points was used and for the radial grids (r, R) the
wavefunctions were constructed using Morse oscillator functions.
For the diatom (H2

+), re = 2.5 a0, De = 0.1026 Eh and oe = 0.018 Eh

are used and with these parameters the r-grid covered points
between 0.92 to 3.8 a0. As the wave functions for the near-
dissociation states need to cover large values along R, the corres-
ponding values were Re = 11.5 a0, De = 0.08 Eh, and oe = 0.00065 Eh

which defined the R grid between 1.82 and 20.87 a0. The r2

embedding38 is used to calculate the rotationally excited states,
where the z-axis is parallel to R in body-fixed Jacobi coordinates.
For the J 4 0 calculations, the Coriolis couplings are included. In
the r2 embedding, calculations with ipar = 1 and 0 correspond to
the ortho and para H2

+, respectively. The e and f symmetries are
assigned by the parity operator p.

Another method by which we calculated the bound states is
the coupled-channels variational method (CCVM). It is similar
to a coupled-channels (CC) scattering calculation, but instead
of propagating the radial coordinate R to solve the CC

differential equations it uses a basis also in R and obtains the
desired number of eigenstates of the Hamiltonian matrix with
the iterative Davidson algorithm.39 For the angular motion
of H2

+ in the H2
+–He complex we used a free rotor basis with

jH2
þ ranging from 0 to 14 (or 16, in tests). The basis in the H2

+

vibrational coordinate r contains the v = 0–7 eigenfunctions of
the free H2

+ Hamiltonian for jH2
þ ¼ 0 on a grid of 110 equidi-

stant points with r = 0.25–5.5 a0. The basis in R was obtained by
solving a one-dimensional (1D) eigenvalue problem with the
radial kinetic energy and a potential Veff(R). This potential is a
cut through the full 3D potential of H2

+–He with y and r fixed at
the equilibrium values, to which we added a term linear in R
with a slope that was variationally optimized by using the R
basis in full 3D calculations of the lower H2

+–He levels. The
1D radial eigenvalue problem was solved with sinc-DVR40 on a
357-point grid with R = 2 to 50 a0. In order to converge also
near-dissociative states we finally included 120 radial basis
functions in the 3D full direct product basis.

In all bound state calculations the atomic masses were
mH= 1.00782503 and mHe = 4.00260325 amu, respectively,41

which differ slightly from those used in earlier bound state
and scattering calculations which employed mH = 1.00727647 amu
and mHe = 4.00234755 amu.42 These differences lead to shifts in
the bound states by B 0.5 cm�1, see Table S6 (ESI†). The states in
the present work are labeled with respect to the H2

+ quantum
numbers v and j for the vibrational and rotational state of the
diatomic, and J for the spin-free orbital angular momentum of the
complex. The fine and hyperfine splittings due to coupling of
electron and total nuclear spin, and coupling of the resultant to
the rotational angular momentum of the nuclei are both less than
100 MHz, so are several orders of magnitude smaller than the
separation between rotational levels of the complex. Thus,
identification of N (used in experiments12) with J is a meaningful
approximation. It is also worthwhile to mention that for ortho-
and para-H2

+ the dissociation limits for the complex differ due to
the different nuclear spins for the two spin isomers (0 for para and
1 for ortho). For para-H2

+ only even j-states are allowed and the
complex dissociates to E = 0 whereas for ortho-H2

+ only odd
j-states exist and the complex dissociates to the j = 1 state of
H2

+ with an energy of 2B, where B is the rotational constant. For
the MRCI+Q and FCI PESs the dissociation limits for ortho-H2

+ are
58.2320 cm�1 and 58.2336 cm�1, respectively.

III. Results and discussion
A. Quality of the PESs

First, the quality of the ab initio calculations and their RKHS
representation is considered. In Fig. 3 the analytical energies
are compared with the ab initio energies for a few selected
Jacobi angles at r = 2.0 a0 for the MRCI+Q+LR PES. A similar
comparison is also shown for the FCI PES in Fig. S1 (ESI†).
Excellent agreement between the two sets of data is found, see
Fig. 3. Fig. S2 (ESI†) presents the contour plot of the analytical
energies for the H2

+–He system for r = 2.0 a0.
The quality of the RKHS representation of the MRCI+Q+LR

and FCI PES is reported in Fig. S3 (ESI†). For the grid points

Fig. 2 Upper panel: energies obtained from MRCI+Q/aug-cc-pV6Z,
RKHS, analytical long-range and RKHS+analytical are plotted as a function
of R for fixed y = 172.9351 and r = 2.0 a0. Lower panel: the weights for the
short range interaction energies and long range interaction energies as a
function of R.
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used to generate the RKHS representation, the agreement
between reference points and the reproducing kernel is excel-
lent with R2 values of (1.0–8 � 10�10) and (1.0–2 � 10�12) for
MRCI+Q+LR and FCI PESs, respectively. The root mean squared
errors (RMSE) for the training data set are 0.67 and 0.02 cm�1

for the MRCI+Q+LR and FCI PESs, respectively. In addition,
ab initio energies were also calculated at the MRCI+Q/aug-
cc-pV6Z and FCI/aug-cc-pV5Z level of theory for off-grid
geometries. They are also reported in Fig. S4 (ESI†) together
with the RKHS energies evaluated at these geometries. Again,
the agreement between the electronic structure calculations
and the RKHS representation is good with RMSEs of 2.16 cm�1

for the MRCI+Q+LR PES and 0.92 cm�1 for the FCI PES.
The equilibrium geometry of the FCI/aug-cc-pV5Z surface is

a linear He–H–H configuration (re = 2.07494 a0 and Re = 2.97120 a0),
with an energy of �2735.11 cm�1 below the H2

+ asymptote.
This compares with the MRCI+Q+LR calculations for which
r = 2.07447 a0, R = 2.97127 a0 and depth �2736.17 cm�1 and the
earlier QCISD(T)/aug-cc-pvQz PES15 (r = 2.0750 a0, R = 2.9720 a0 and
depth�2717.0 cm�1) values. For comparison, the refined PES from
ref. 18 supports a linear equilibrium structure with a depth of
�2732.34 cm�1 and re = 2.07792 a0 and Re = 2.96596 a0. Hence, the
structures of all PESs differ by less than 0.01 a0 but the energetics
varies over a range of B20 cm�1 whereas the dissociation energies
for the two PESs from the present work only differ by 1.1 cm�1.

B. Bound states

The ground state energy of H2
+(v = 0, j = 0)–He computed from

the MRCI+Q+LR surface for ortho-H2
+–He using DVR3D and

CCVM are �1795.1567 and �1795.3328 cm�1, respectively. The
same energies, are obtained from the FCI PES as �1793.7632

and �1793.9067 cm�1, using DVR3D and CCVM, respectively.
These values are B40 cm�1 lower compared to those reported
previously15 (�1754.269 cm�1) on the QCISD(T) PES. In ref. 15
only 3 quadrature points along r were used for the 3D bound
state calculations, which may not be sufficient to fully converge
the energies. The ground state energy is also calculated in
the present work following a time dependent wave packet
approach43 on a 2D potential fixing r at 2.0 a0. These ground
state energies are in fair agreement with previous results
(�1603 vs. �1593 cm�1).15

For para-H2
+–He the ground state energies obtained from

the MRCI+Q+LR PES using DVR3D and CCVM are �1795.1575
and �1795.3352 cm�1, respectively. For the FCI surface the
ground state energies of para-H2

+–He are calculated as
�1793.7639 and �1793.9091 cm�1 using DVR3D and CCVM,
respectively. The difference between DVR3D and CCVM is less
than 0.17 cm�1 for both, ortho and para-H2

+–He. For the
FCI+LR PES all the bound states obtained from different
methods for both, ortho and para-H2

+–He are within 0.02 cm�1

or less of the FCI PES results. Hence, only the results obtained
from the MRCI+Q+LR and FCI PESs are reported.

A direct comparison for all and the near-dissociative (within
20 cm�1 of dissociation) bound e states for ortho-H2

+–He and J = 0
to J = 6 from DVR3D calculations and using the MRCI+Q+LR (red)
and FCI (black) PESs is given in Fig. 4 and 5. All states up to the
dissociation limit of v = 0, j = 1 state of H2

+ are reported. The level
pattern for the two PESs is nearly identical. The distribution of the
energy difference DE between the MRCI+Q+LR and the FCI PESs
for calculations with DVR3D or CCVM is given in Fig. S5 (ESI†).

The transitions that were probed by the microwave experi-
ments lie close to dissociation. Hence, a particular focus here is

Fig. 3 The analytical energies at off-grid points from the MRCI+Q+LR PES (solid line) and the MRCI+Q/aug-cc-pV6Z ab initio energies (open symbols)
as a function of R for several Jacobi angles and at fixed r = 2.0 a0. The two points at long range (R B 10 a0 for y = 83.7971 and y = 71.3911) are due to
convergence problems with MRCI+Q, see also Fig. 1.
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on accurately computing these stationary states and to
determine whether any candidate transitions can be identi-
fied from using the MRCI+Q+LR and the FCI PESs. A tentative
assignment in particular for the 15.2 GHz and 21.8 GHz
transitions has been given previously based on experiments
using electric field dissociation.12 They were analyzed using
an effective Hamiltonian. The 15.2 GHz transition was
assigned to a low-N transition (in the terminology of ref. 12,
N is the spin-free angular momentum which is J in the present
work) with DN = 0 with N = 3 or N = 4 in ortho-H2

+–He. In the
following, N is used when referring to the analysis of the
experiments12 whereas J is used when discussing the present
calculations.

For the 21.7 GHz transition on the other hand the analysis
led to an assignment involving DN = 1 with N = 11 and N0 = 10 in
para-H2

+–He. While the analysis leading to a DN = 1 transition
involving para-H2

+ is based on physical grounds, that to a high-
N state involves fitting of the Zeeman pattern which is more

approximate. The selection rules for these transitions are e 2 f
for DJ = 0 and e 2 e or f 2 f for DJ = �1, respectively.

First, the near-dissociative states for ortho-H2
+–He are dis-

cussed. All near-dissociative states from the MRCI+Q+LR and
FCI PESs using the DVR3D and CCVM methods are reported in
Fig. 6a–d. All energies for J = 0 to 6 are also reported in Tables 2
and 3. There is one e/f parity doublet with DJ = 0 with a
transition frequency between 10 and 18 GHz, involving the
J = 2 state for ortho-H2

+–He. Using DVR3D the transition
frequency is 14.4(5) GHz whereas with the CCVM code the

Fig. 4 Bound state energies for J = 0 to 6 for ortho-H2
+–He with e

symmetry computed from DVR3D calculations. Results on the
MRCI+Q+LR surface (red) and FCI (black) are shown. The ground state
energy (�1793.7632 cm�1) for the FCI/aug-cc-pv5Z surface is marked with
a dashed line.

Fig. 5 Same as Fig. 4 except for the near dissociation states. States within
B20 cm�1 of the dissociation are reported.

Fig. 6 Near dissociation ortho-H2
+–He states (in cm�1) and predicted

transition frequencies in (GHz) using the FCI (left, panels a and c) and
MRCI+Q+LR (right, panels b and d) PESs. States with e (black) and f
symmetry (red) are reported separately. Results from DVR3D and CCVM
are in the top and bottom row, respectively. The 14.4 GHz (MRCI+Q+LR,
DVR3D), 14.5 GHz (FCI, DVR3D) and 9.3 (both PESs, CCVM) GHz parity
doublet is a candidate for the 15.2 GHz line observed experimentally which
had been assigned to a parity doublet with DN = 0.12

Table 2 Near dissociation states calculated using MRCI surface with
DVR3D and CCVM for H2

+–He in cm�1. Zero is set to the energy of
H2

+(v = 0, j = 0) state. The dissociation limit for ortho is at 58.2336 cm�1

and 58.3124 cm�1 for the DVR3D and CCVM respectively, which corre-
sponds to H2

+(v = 0, j = 1), whereas the dissociation limit for para- is at
0 cm�1 which corresponds to H2

+(v = 0, j = 0)

J

ortho para

e f e f

CCVM DVR3D CCVM DVR3D CCVM DVR3D CCVM DVR3D

0 39.896 40.321 �15.641 �15.719
55.689 55.876 �1.509 �1.137

1 43.199 43.668 54.629 54.464 �13.965 �14.035
54.514 54.582 �0.954 �0.430
56.959 57.273

2 49.345 49.755 56.329 56.439 �10.712 �10.766
56.639 56.923 �0.061 0.895
58.272 59.186

3 44.938 44.941 41.798 41.783 �6.082 �6.109
55.443 55.588

4 46.022 45.971 50.718 50.712 �0.587 �0.540
54.375 54.375

5 40.655 40.711 40.682 40.680 �7.877 �7.799
55.518 55.507

6 55.985 55.959 �13.897 �13.746
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transition is at 9.3 GHz. The parity doublet in both cases is
within 2 cm�1 of dissociation which makes it a pair of near-
dissociative states. This is also confirmed by considering
the expectation value for the R-coordinate for the two states
involved which are hRi = 13.1 a0 for the e state and hRi = 12.7 a0

for the f state which confirms their long range character as
suggested from the experiments.

Next, the near-dissociative states for para-H2
+–He are dis-

cussed for the two PESs and the two methods to compute
bound states, see Fig. 7a–d. The only near-dissociative states
involving either an e/e or an f/f transition with a transition
frequency around 20.1(2) and 16.7(6) GHz from DVR3D and
CCVM involves a J = 0 and a J = 1 state. The hRi = 15.0 a0 for the

J = 0, e state and hRi = 16.0 a0 for the J = 1, f state, show the long
range nature of the wave functions. The potential candidate for
the 21.8 GHz transition is not found for the high J states
sufficiently close to dissociation to be part of a suitable candi-
date transition.

IV. Discussion and conclusions

Two new PESs at the MRCI+Q+LR and FCI level of theory with
large basis sets and represented as a reproducing kernel have
been used to determine all bound and near-dissociative states
for ortho- and para-H2

+–He. Although MRCI+Q is already a high
level of electronic structure theory, it was found to break down
for H2

+–He separations longer than R B 10 a0, see Fig. 1 and 3.
For this part of the MRCI PES an analytical long range potential
was used. In order to establish that such an approach is
meaningful, the full 3d PES was calculated at the even higher
full CI level of theory. It is found that at both levels of theory the
bound states compare to within fractions of a wavenumber
when stationary states are determined from the same nuclear
quantum code, see Table S5 (ESI†). Moreover, the stationary
states on one and the same PES determined from two different
quantum bound state codes (DVR3D and CCVM) also agree
closely, typically within less than fractions of one cm�1.

The need for such new PESs can also be gleaned from Table S6
(ESI†) which compares the J = 0 bound states for para-H2

+–He on
the FCI PES with three different methods and compares them
with results on the earlier, high-quality PES used in previous
work.18,42 The dissociation energies between the present and
previous18 PESs differ only by about 3 cm�1 whereas the lower
bound states differ rather by 20 cm�1. This suggests that the
shape of the PESs away from the minimum differs also due to the
different long range behaviour of the present and previous PESs.
This is also supported by the observation that the total number of
bound states on the present and previous PESs differs by one,
i.e. one near-dissociative state is missing. Furthermore, the table
also shows that three different methods for computing bound
states (DVR3D, CCVM and time-dependent wave packet (TDWP)43)
yield stationary states that differ by B0.3 cm�1 or less.

The present computations provide stringent benchmarks on
potential transitions that have been observed experimentally.
One such assignment is for the 15.2 GHz transition which
corresponds to ortho-H2

+–He. The transition found in the
present work involves an e/f parity doublet with J = 2. This
compares with a tentative assignment to an e/f parity doublet
involving either a J = 3 or J = 4 state. For the 21.8 GHz transition
which had been tentatively assigned to an e/e or f/f transition in
para-H2

+–He the candidate, near-dissociation states are J = 0
and J = 1, both of which are within less than 2 cm�1 of
dissociation and the transition frequencies range from 16 to
22 GHz. However, no high-J candidate states suitable to assign
the experimentally observed transition were found.

This work presents the generation and representation of two
high-accuracy, full dimensional PESs for H2

+–He together with
quantum bound state calculations that provide first potential

Table 3 Near dissociation states calculated using FCI surface with DVR3D
and CCVM for H2

+–He in cm�1. Zero is set to the energy of H2
+(v = 0, j = 0)

state. The dissociation limit for ortho is at 58.2320 cm�1 and 58.3124 cm�1

for the DVR3D and CCVM respectively, which corresponds to H2
+(v = 0,j = 1),

whereas the dissociation limit for para is at 0 cm�1 which corresponds to
H2

+(v = 0, j = 0)

J

ortho para

e f e f

CCVM DVR3D CCVM DVR3D CCVM DVR3D CCVM DVR3D

0 39.575 40.036 �16.005 �16.067
55.662 55.860 �1.527 �1.150

1 42.934 43.438 54.601 54.648 �14.315 �14.368
54.494 54.575 �0.969 �0.448
56.916 57.232

2 49.213 49.647 56.314 56.437 �11.021 �11.058
56.623 56.916 �0.061 0.881
58.271 59.162

3 44.497 44.513 41.473 41.473 �6.311 �6.320
55.422 55.577

4 45.652 45.611 50.538 50.547 �0.680 �0.619
54.067 54.084

5 40.565 40.626 40.854 40.860 �8.092 �8.005
55.219 55.220

6 55.626 56.610 �11.890 �11.742

Fig. 7 Near dissociation para-H2
+–He states (in cm�1) and predicted

transition frequencies in (GHz) using the FCI (left, panels a and c) and
MRCI+Q+LR (right, panels b and d) PESs. States with e (black) and f
symmetry (red) are reported separately. Results from DVR3D and CCVM
are in the top and bottom row, respectively.
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assignments of experimentally characterized, near-dissociation
states. The results from both, MRCI+Q+LR and full CI PESs,
using two different approaches for calculating the quantum
bound states are largely consistent. It will be interesting to use
the present PESs in future inelastic scattering calculations.

Code availability

The code for the RKHS PESs has been made available on github.44
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D. de Fazio, A. Aguilar, X. Giménez and J. M. Lucas, Mol. Phys.,
2000, 98, 1835–1849.

17 C. Ramachandran, D. D. Fazio, S. Cavalli, F. Tarantelli and
V. Aquilanti, Chem. Phys. Lett., 2009, 469, 26–30.

18 D. de Fazio, M. de Castro-Vitores, A. Aguado, V. Aquilanti
and S. Cavalli, J. Chem. Phys., 2012, 137, 244306.

19 H.-J. Werner and P. J. Knowles, J. Chem. Phys., 1988, 89,
5803–5814.

20 P. J. Knowles and H.-J. Werner, Chem. Phys. Lett., 1988, 145,
514–522.

21 A. K. Wilson, T. van Mourik and T. H. Dunning, THEOCHEM,
1996, 388, 339–349.

22 P. J. Knowles and N. Handy, Chem. Phys. Lett., 1984, 111,
315–321.

23 P. J. Knowles and N. C. Handy, Comput. Phys. Commun.,
1989, 54, 75–83.

24 T. H. Dunning, J. Chem. Phys., 1989, 90, 1007–1023.
25 D. E. Woon and T. H. Dunning, J. Chem. Phys., 1994, 100,

2975–2988.
26 H.-J. Werner and P. J. Knowles, J. Chem. Phys., 1985, 82,

5053–5063.
27 P. J. Knowles and H.-J. Werner, Chem. Phys. Lett., 1985, 115,

259–267.
28 H.-J. Werner and W. Meyer, J. Chem. Phys., 1980, 73, 2342–2356.
29 H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby and
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