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How to calculate charge mobility in molecular
materials from surface hopping non-adiabatic
molecular dynamics – beyond the hopping/
band paradigm

Antoine Carof, *a Samuele Giannini a and Jochen Blumberger *ab

Charge transport in high mobility organic semiconductors is in an intermediate regime between small

polaron hopping and band transport limits. We have recently shown that surface hopping non-adiabatic

molecular dynamics is a powerful method for prediction of charge transport mechanisms in organic

materials and for near-quantitative prediction of charge mobilities at room temperature where the

effects of nuclear zero-point motion and tunneling are still relatively small [S. Giannini et al., Nat.

Commun., 2019, 10, 3843]. Here we assess and critically discuss the extensions to Tully’s original

method that have led to this success: (i) correction for missing electronic decoherence, (ii) detection of

trivial crossings and (iii) removal of decoherence correction-induced spurious charge transfer. If any one

of these corrections is not included, the charge mobility diverges with system size, each for different

physical reasons. Yet if they are included, convergence with system size, detailed balance and good

internal consistency are achieved.

1 Introduction

Organic semiconductors are promising materials for a large
range of electronic applications.1–4 Their flexibility and tunability
are advantageous for organic photovoltaics or diodes, but their
charge carrier mobility is still moderate compared to inorganic
semiconductors.5 The experimental and computational quest for
OSs with larger mobility is hampered by insufficient knowledge of
the charge transport (CT) mechanism in such materials. The
parameters determining the CT usually range in a regime where
the standard transport theories (band theory and the hopping
model) fail.6 Without an existing model at hand, a direct propaga-
tion of electron-nuclear dynamics is required. While improved
theoretical models have recently been proposed, e.g., transient
localization theory,7–9 explicit propagation of coupled electron-
nuclear dynamics is arguably the most promising method to reveal
the true nature of charge carriers in organic semiconductor
materials. The explicit propagation is founded on rigorous quan-
tum mechanical principles, is free of many of the assumptions
that limit the predictitive power of theoretical models, and thus
encompasses a wide range of possible transport mechanisms.

Among the numerous existing methods to propagate nuclei
and electrons in a non-adiabatic framework at a molecular
scale (e.g., ab initio multiple spawning,10,11 exact factorization,12–14

Ehrenfest dynamics15), Tully’s fewest switches surface hopping
(FSSH) has become one of the most popular methods.16,17 The
FSSH algorithm relies on the usual molecular dynamics (MD)
framework and additionally integrates electronic dynamics expli-
citly solving the time-dependent Schrödinger equation. By allowing
instantaneous vertical transitions (hops) between potential energy
surfaces, FSSH also includes the feedback between nuclei and
electrons. The classical treatment of the nuclei and the ad hoc – but
based on physical arguments – probability for hops between
electronically excited states permits a fast, yet accurate, propagation
of the dynamics in many situations. The properties required for
FSSH (excited state energies, forces and non-adiabatic coupling
vectors) can be calculated on-the-fly using time-dependent density
functional theory11,18,19 or semi-empirical Hamiltonians.20–25 The
latter approach renders FSSH attractive for study of condensed
matter problems and large systems.26,27 Moreover, FSSH has a
number of desirable attributes: it conserves total energy and it was
shown to obey detailed balance to a good approximation.25,28–33

However, this method also has a number of well-known short-
comings and a plethora of variants appeared in the literature since
the original work of Tully to address them.34–38

Among these various intrinsic issues, some shortcomings
hinder particularly the simulation of charge transport: (i) the decay
of the electronic coherences between adiabatic states (decoherence)
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is missing in the original formulation,39 (ii) undetected trivial
crossings may lead to unphysical long-range charge transfers,
(iii) the common decoherence correction schemes induce spurious
long-range charge transfers and (iv) nuclear quantum effects that
are particularly important at low temperatures, such as zero-point
energy and tunneling, are missing. In this paper we investigate in
detail how issues (i)–(iii) affect the FSSH simulation of charge
transport in organic materials and we analyse the performance of
various correction schemes to mitigate these shortcomings. For
inclusion of nuclear quantum effects in the surface hopping
simulation of electron transfer, we refer to a recent publication.40

The aim is to identify the best ‘‘set-up’’ or ‘‘flavour’’ of FSSH
simulations for reliable calculation of charge mobilities in mole-
cular materials.

Fig. 1 illustrates issues (i)–(iii). The lack of an inherent
decoherence mechanism within FSSH (see Fig. 1(A)) is a well-
known issue, often raised in the literature when studying
excited states and relaxation processes.41 Without a correction
to enforce a decoherence, the electronic dynamics is strongly
biased and that impacts the charge transfer rate.42 Numerous
correction schemes have been developed,21,43–51 yet several
open questions remain, especially in relation to charge trans-
port simulations. What is the impact of the different decoherence
schemes on the equilibrium distribution of states? How important
is the decoherence to calculate the electronic mobility using FSSH
simulations? On the other hand, the correct detection of trivial
crossings has been often an overlooked problem, though it limits
substantially the accuracy of charge transport simulations via
FSSH. When a trivial crossing occurs, it must be taken care of
with an update of state indices, otherwise unphysical charge
transfer will occur (see Fig. 1(B)). But such events are often
undetected by the original FSSH algorithm, due to the finite
MD timestep of the simulation. Different approaches have been
developed to detect trivial crossings and to update the state indices
accordingly.52–57 Finally, Fig. 1(C) shows another source of spurious
transfer recently pointed out by our group26 and Wang and
coworkers.58 This transfer is induced by the common decoherence
correction schemes, and, if not removed, will render any mobility
calculation erroneous.

The goal of this paper is to establish the best practice for
FSSH simulation of charge transport in real materials by
determining the best set-up in terms of decoherence correction,
elimination of spurious long-range charge transfers, detection
of trivial crossings and appropriate definition of mean-square-
displacement for mobility calculation. We present here a
thorough study of the role of the decoherence correction
schemes in both equilibrium and transport properties. We assess
the necessity of a state-tracking algorithm to detect and to take care
of the trivial crossings and of a correction to remove the spurious
charge transfers induced by the decoherence correction schemes.
We also discuss the definitions of electronic populations
(somewhat ambiguous in FSSH due to the simultaneous
propagation of quantum and surface states59) and we compare
different definitions for the mean-square displacement calculation.
To test these various corrections and set-ups and explore the role
of decoherence and state-tracking algorithms in large molecular

Fig. 1 Illustration of three intrinsic shortcomings of the original fewest-
switches surface hopping (FSSH) algorithm for the simulation of charge
transport. (A) The lack of decoherence biases the electronic wavefunction
C(t) that becomes inconsistent with the active state wavefunction ca(t)
after passing through an avoided crossing. We discuss different decoher-
ence corrections in Section 2.2. (B) A trivial crossing of two potential
energy surfaces leads to unphysical long-range charge transfer. We use a
state-tracking algorithm to detect trivial crossings and reorder the states
(see Section 2.3). (C) Decoherence correction-induced spurious charge
transfer (DCICT). We develop a spurious charge transfer correction (SCTC)
algorithm described in Section 2.4.
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systems, we needed an efficient method to propagate surface
hopping trajectories. We relied on our recently developed
fragment-orbital based surface hopping (FOB-SH),25,60 a semi-
empirical approach that is designed to determine efficiently
and yet accurately the electronic Hamiltonian and nuclear
derivatives (forces, non-adiabatic coupling vectors) in large organic
crystals. We conclude that a combination of a decoherence scheme,
a trivial crossing detection and a correction of spurious long-range
transfer permits converging the electronic mobility with system size
and MD timestep.

This paper is organized as follows. In Section 2, we provide a
short summary of the FOB-SH method followed by a discussion
of the different existing decoherence schemes, a detailed
description of the trivial crossing issue and the state-tracking
algorithm used in this work. We also outline the spurious
charge transfer correction developed by us. We present the
alternative electronic propagation proposed by Hammes-Schiffer
to deal with the presence of forbidden transitions (elimination of
classically forbidden hops, EFH) and we discuss the different
electronic populations commonly used in the literature and the
various MSD definitions. We then provide in Section 3 the details
of the molecular systems (force field and parameters) we have
used to study equilibrium and dynamical properties. Our results
are discussed in Section 4: we first investigate the impact of
decoherence on equilibrium properties for chains of ethylene-like
molecules of different lengths and test the EFH propagation to
improve the internal consistency. We then focus on the effect of the
state-tracking algorithm and the decoherence correction scheme on
electronic mobility and the inverse participation ratio (IPR, a
measure of the size of the charge carrier) in an embedded chain
of real anthracene molecules. We conclude our work in Section 5.

2 Theory
2.1 Fragment-orbital based surface hopping

To simulate the transport of excess charge carriers in molecular
systems, we have recently developed an efficient fragment
orbital based surface hopping (FOB-SH) framework. In this
section, we will summarize the main elements of FOB-SH and
its strengths. In Fig. 2 we report a simplified flowchart of the
FOB-SH algorithm to help in discussing its fundamental
features. For a more detailed consideration of FOB-SH, we refer
to our previous publications.24–26

The FOB-SH method is based on the following assumptions.
(i) The full many-body electronic wavefunction is replaced by a
one-particle wavefunction C(t) for the excess charge carrier.
(ii) The excess charge wavefunction C(t) can be expanded in
a localized, non-orthogonal basis set made up of fragment orbitals
that mediate its transport in the system (usually these orbitals are
SOMOs of the isolated molecules {jm}). C(t) takes the form:

CðtÞ ¼
XM
m¼1

um
0 ðtÞjmðRðtÞÞ (1)

where R is the 3N vector of nuclear positions and M is the number
of fragment orbitals mediating the charge transfer. (iii) The

electronic Hamiltonian in the basis of the fragment orbitals
is represented by a parametrized tight-binding Hamiltonian. To
facilitate the forthcoming propagation equations, Löwdin ortho-
gonalization of the basis set {jm} is applied to define the
orthogonal localized basis set {fl},

fl ¼
XM
m¼1

Tmljm (2)

where Tml = [S�1/2]ml, with S the overlap matrix of the fragment
orbital basis set (%Sml = hjm|jni). The excess charge wavefunc-
tion is now:

CðtÞ ¼
XM
l¼1

ulðtÞflðRðtÞÞ (3)

Inserting eqn (3) into the time-dependent Schrödinger equa-
tion, one obtains

i�h _uk ¼
XM
l¼1

ulðtÞ Hkl � i�hdklð Þ; (4)

where Hkl = hfk|H|fli, with H the electronic Hamiltonian and
dkl = hfk| _fli the non-adiabatic coupling elements (NACEs) of
the localized orthogonal basis set. As those NACEs are generally
close to zero, we label the orthogonal localized basis as a
diabatic basis.

To carry out simulations on large systems and long time
scales, we designed a parametrized approach to determine the
electronic Hamiltonian Hkl, thus avoiding explicit expensive
electronic structure calculations. The diagonal elements
Hkk = hfk|H|fki, which corresponds to the energy of a charge
localized on molecule k, are calculated via a classical force field
where molecule k is charged and all the other M � 1 molecules
are neutral. The off-diagonal elements Hkl = hfk|H|fli, which
correspond to the electronic coupling matrix elements or
transfer integral, are calculated using our recently developed
analytic overlap method (AOM).61 This method relies on the
assumption of a linear relationship between off-diagonal
elements Hkl and %Skl (i.e., the overlap between the fragment
orbitals (jk,jl) projected into Slater-type functions), namely
Hkl = C%Skl. C is a fitting parameter and can be obtained by
correlating the overlap %Skl with high quality DFT calculations.61

This method allows the calculation of Hkl for a cost several
orders of magnitude lower than that of explicit electronic
structure calculations. It was found that errors are less than a
factor of 2 with respect to reference coupling values, obtained
with approximate coupled cluster (SCS-CC2)/Generalized
Mulliken Hush calculations,62 which spanned 5 orders of
magnitude. We refer to our previous paper61 for a more detailed
description of the AOM. It is worth noting the analogy between
the calculation of the FOB-SH electronic Hamiltonian and the
empirical valence bond approach of Warshel and co-workers,63

where the electronic Hamiltonian is also built from the classical
force field for the diagonal elements and different parametriza-
tions for the off-diagonal elements. As indicated in Fig. 2 this
Hamiltonian is a key feature of the FOB-SH method that allows
fast computation.
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Besides the electronic Hamiltonian matrix elements, the time-
dependent Schrödinger equation (eqn (3)) requires the determina-
tion of the NACEs dkl which can be related to the non-orthogonal

NACEs dkl
0 ¼ D0½ �kl¼ jkj _jlh i

� �
,

dkl ¼ TyD0T
� �

kl
þ TyS _T
h i

kl
; (5)

Both Dkl
0 and _T are obtained from the finite difference

between t and t + Dt. We have taken special care that the
nuclear positions Rt and Rt+Dt are translated within the center-
of-mass frame at each timestep. Otherwise, in the case of non-
zero center-of-mass nuclear velocities, the overlap element
hjk(Rt)|jl(Rt+Dt)i would have arbitrary values.

Fig. 2 Scheme of the FOB-SH (fragment orbital-based surface hopping) algorithm. Different colors represent improvements of the algorithm necessary
to fulfil: trivial crossing detection, detailed balance and energy conservation and internal consistency. In red are reported modifications and properties
that have been analysed in the present work. Symbols are defined according to equations in the text. RK: Runge–Kutta algorithm, EFH: elimination of
forbidden hops, AOM: analytic overlap method, SC-FSSH: self-consistent fewest switches surface hopping, FSSH: fewest switches surface hopping,
NACV: non-adiabatic coupling vector, SCTC: spurious charge transfer correction, MSD: mean squared displacement (eqn (30)), IPR: inverse participation
ratio (eqn (35)).
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We now turn to the propagation of the nuclei according to
the velocity-Verlet as shown in Fig. 2 and to the force calcula-
tion. In the FSSH algorithm, the nuclei evolve on one adiabatic
energy surface Ea (where Ea = [Had]aa, with Had = U†HU and U

the unitary transformation matrix that diagonalizes H to Had).
It is worth noticing that before starting the electronic integration,
the phase of the eigenvectors forming U must be checked and
made consistent along the trajectory for an accurate calculation of
_U at a later stage of the algorithm (eqn 8). Since H and U are
real, this amounts to a check of the sign of the eigenvectors
(‘‘check sign’’ in Fig. 2).64 From U, we can define the adiabatic

wavefunctions ci, ci ¼
PM
k¼1

Ukifk, that form the adiabatic basis.

The nuclear force acting on nucleus I is FI,a = �rIEa and can be
obtained from the Hellmann–Feynman theorem:

FI ;a ¼ � ca rIHj jcah i ¼ � Uy rIHð ÞU
� �

aa

¼ �
X
k;l

Uy
� �

ak
rIH½ �kl U½ �la

¼ �
X
k

Ukaj j2 rIH½ �kk�
X
kal

UkaUla rIH½ �kl

(6)

where [rIH]kl = rIhfk|H|fli. We refer to our previous paper25

for the derivation of eqn (6). The gradients of the electronic
Hamiltonian matrix diagonal elements are obtained directly from
the classical force field, whereas a finite difference approach is
used for the matrix off-diagonal elements based on the AOM.60

We note that the finite difference for the off-diagonal gradients
requires an order of NatomM calculations of Hkl elements that
would make explicit electronic structure calculations unafford-
able. The nuclear forces on a given adiabatic state a obtained
in eqn (6) consist of a linear combination of the diagonal and
off-diagonal forces on the diabats, with a weighting that is
proportional to the projection of the adiabats on the diabats –
the weighting takes into account the effect of charge delocaliza-
tion on the adiabatic forces.

Finally, the core of the FSSH method is the choice of active
surface Ea on which the nuclei evolve and the feedback of the
electronic dynamics onto the nuclear motion. In Tully’s
approach,39 the active surface is decided in two steps: (i) a
new state is chosen via a stochastic process and (ii) the energy
conservation requirement is applied to determine whether the
change in active state is energetically possible. The stochastic
process (i) is based on the hopping probabilities calculated at
each timestep t between the active surface and all the other
states j:

gja ¼ �
Re cj

�cad
ad
ja

� �
caj j2

Dt (7)

where dad
ja = hcj| _cai are the adiabatic NACEs, which are calculated

from the diabatic NACEs (dkl � [D]kl),

dad
ja ¼ UyDU

� �
ja
þ U _U
h i

ja
: (8)

The adiabatic coefficients cj are the expansion coefficients
of the electronic wavefunction in the adiabatic basis, CðtÞ ¼PM
i¼1

ciðtÞciðRðtÞÞ. The probability to remain in state a is simply

gaa ¼ 1�
P
jaa

gja. After the calculation of the probability gja, a

random number is drawn to decide whether a hop can be
attempted to a new state n. If so, the following condition should
hold to ensure energy conservation,

Etot(R) = Ta(R) + Ea(R) = Tn(R) + En(R) (9)

where Ea and En are the potential energies and Ta and Tn are the
nuclear kinetic energies before and after the hop. When a hop
is attempted from state a to state n, all quantities Ea, Ta and
En are already known. To ensure eqn (9) is satisfied, the nuclear
kinetic energy (i.e., the nuclear velocities) must be adapted.
Based on the theoretical studies of Pechukas65 and Herman,66

Tully prescribed to adjust the velocity component in the direc-
tion of the non-adiabatic coupling vectors (NACVs) dad

I,an =
hca|rIcni.39 But if there is not enough kinetic energy along
the NACVs to satisfy eqn (9), the hop is rejected, the active state
remains in state a and the velocity components along the
NACVs’ direction are reversed.67 To apply the NACV-oriented
adjustment in the FOB-SH framework, we have derived an exact
expression for the NACVs in terms of available nuclear gradients in
the diabatic basis as well as an efficient approximation.25

However, the rejection of hops causes an inconsistency in
FSSH populations. Tully’s hopping probability (eqn (7)) was
designed to ensure for a model two-state system that – on
average – the wavefunction C(t) is similar to the adiabatic active
state. On the other hand, the energy conservation criterion
leads to rejecting some classical nuclear hops along the
dynamics. Without any correction, the electronic wavefunction
will over-populate excited states that are high in energy and
therefore unreachable for the classical nuclei. This yields the
so-called FSSH internal inconsistency, i.e., a divergence
between C(t) and ca(t) (as illustrated in Fig. 1(A)).

Due to this internal inconsistency, two different adiabatic
populations coexist in the FSSH algorithm, the quantum
amplitude averaged over the trajectory, h|ci(t)|

2itrj and the
surface population,

Psurf
i ðtÞ ¼

1

Ntraj

Xtraj
n¼1

di;anðtÞ; (10)

where an(t) is the index of the active state at time t of trajectory n.
The internal inconsistency of FSSH leads to a divergence of those
two adiabatic populations. In Sections 2.2 and 2.5, we will
discuss different remedies to correct for this inconsistency
of FSSH.

2.2 Decoherence corrections

The lack of an inherent decoherence mechanism is a long-
standing issue of FSSH, already mentioned in Tully’s original
paper39 and often advocated in the literature when studying
excited state dynamics and relaxation processes.41 After leaving
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an avoided crossing where the adiabatic states mix, the full
electronic-nuclear wavefunction splits into two sub-wavepackets
wi(R) and wj (R), which evolve on different adiabatic surfaces
Ei and Ej. Immediately after the crossing, the center and/or
the phase of each wavepacket may diverge in phase space,
decreasing the wavefunction coherence between surfaces
i and j,

Ð
dRwi

�ðRÞwjðRÞ. This effect is not taken into account

in standard FSSH, where the coherence term (i.e., ci*cj)
remains finite. The lack of decoherence ruins the dynamics
of the system, leading to the failures of FSSH for some
important processes. Rossky and co-workers41 found that, in
the absence of decoherence, decay rates from excited states to
the ground state are too fast, yielding incorrect excited state
dynamics. Landry and Subotnik42,68 have later shown that the
decay in the charge transfer rate between two molecules
obtained with FSSH does not follow the behaviour predicted
by Marcus theory.

Since the pioneering work of Rossky and collaborators,43

numerous correction schemes have been suggested in the
literature to tackle the decoherence problem. The most com-
mon can be divided into three main categories. (i) Collapsing
approaches, in which the electronic wavefunction is reset to the
active state C(t) = ca(t) when a given criterion is fulfilled.
Criteria suggested in the literature rely on collapsing events
after each attempted or successful hop, after each successful
hop50 or when the adiabatic NACEs fall below a threshold.44

(ii) Exponential damping approaches, in which all non-active
adiabatic populations ci are damped at each time step ci -

ci exp(�Dt/tia), while the active state population is scaled to
ensure norm conservation. tia is the decoherence time.45,47

(iii) Stochastic damping approaches that rely on random num-
bers to determine whether the wavefunction is collapsed.42,51,69

In the last category, each component of the wave-vector con-
taining the expansion coefficients ci with i a a (where a is the
active state index) is reset to zero whenever the collapsing
probability is larger than a given random number (Z A [0,1])
drawn at each time step. The relative population is transferred
to the active state in order to conserve the norm. Within this
method, the probability of a collapsing event can be expressed
as gcollapse

i = Dt/tia in which Dt is the MD timestep. A longer
decoherence time tia results in a lower probability to collapse
gcollapse

i .
As far as we know, no exact expression was derived in the

literature to calculate the decoherence time tia in the context
of mixed-quantum classical approaches. However, different
formulations were either proposed based on physically grounded
justifications45,46 or derived using approximations for the
evolution of nuclear wavepackets.41,43,48 More recently, using
controlled approximations, a decoherence time has been
derived from quantum classical Liouville equation (QCLE)
formalisms.36 Those expressions rely on the absence of
decoherence when the potential energy surfaces are close to
each other or when nuclei are fixed. The energy based-
decoherence time (EDC) proposed by Persico and Granucci
(starting from an original expression suggested by Truhlar
and co-workers45,46) has the aforementioned characteristics

and is widely used in the literature:

tia ¼
�h

Ei � Eaj j C0 þ
E0

Ta

� 	
: (11)

Here Ta is the nuclear kinetic energy and C0 and E0 are
parameters to determine. We note that the system size impli-
citly enters into eqn (11) through the nuclear kinetic energy Ta

(an extensive quantity). Therefore, we suggest normalizing the
nuclear kinetic energy by the number of degrees of freedom
involved in the FSSH algorithm Ta - Ta/Ndof. By taking the first
term of eqn (11), we obtain

tia ¼
�h

jEi � Eaj
; (12)

i.e., the fastest decoherence time possible (due to the Heisenberg
uncertainty principle) and free of any ad hoc parameters.

Other expressions for the decoherence time, derived for
condensed phase systems and frozen Gaussians travelling on
different potential energy surfaces, involve nuclear forces rather
than the energy. For instance, Rossky and co-workers41,43 derived:

tia ¼
XN
I¼1

FI
i ðtÞ � FI

aðtÞ


 



2�h
ffiffiffiffiffi
aI
p

 !�1
; (13)

where the sum goes over the N nuclei of the system, FI
i(t) and FI

a(t)
are the instantaneous forces on decoherent and active states,
respectively, and aI is a parameter dependent on the frozen
Gaussian width, which has a simple expression in the high
temperature limit, aI = 6MIkBT/h�2, where MI is the mass of the
Ith nucleus.

Finally, Subotnik and co-workers developed an extension of
FSSH, the augmented-FSSH (A-FSSH), directly from QCLEs to
incorporate the decoherence mechanism more rigorously. New
dynamical variables are propagated along the nuclear and
electronic degrees of freedom to calculate an instantaneous
decoherence time.42,49 Yet propagation with this method is
more expensive than FSSH and might not be suitable to study
large systems with several hundred molecules.

2.3 Trivial crossings and state tracking

The presence of trivial (or unavoided) crossing becomes a
substantial limitation in performing charge transport simula-
tions with FSSH. A trivial crossing event occurs when two
energy surfaces cross with zero couplings between them, leading
to an actual reordering of the state indices (as shown in Fig. 1(B)).
Physically, such crossings occur when the adiabats are not inter-
acting, i.e., when the adiabatic wavefunctions are localized in
distant regions in space. If the state reordering is not taken care
of, the dynamics is continued on the wrong surface, leading
to spurious charge transfer that biases any mobility calculation
(see Fig. 1(B)). The problem is greatly amplified in systems with
many adiabatic states in a narrow energy band (e.g., in OSs),
where adiabatic energy surfaces can frequently cross each other.

In practice, the FSSH algorithm is implemented with a finite
timestep, meaning that the trivial crossing and index update
may be missed. Moreover, the distinction between a trivial

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
N

ov
em

be
r 

20
19

. D
ow

nl
oa

de
d 

on
 9

/2
0/

20
24

 3
:3

7:
58

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9cp04770k


26374 | Phys. Chem. Chem. Phys., 2019, 21, 26368--26386 This journal is© the Owner Societies 2019

crossing and an avoided crossing with a very small energy
gap is unclear with a finite timestep. This inherent issue of
the FSSH algorithm was often overlooked, as it only arises for
systems with many adiabatic states and more strikingly for
charge transport. Recently, different solutions emerged in the
literature to tackle the missed trivial crossings. Most of them
resort to a state tracking algorithm. At each MD timestep,
a map is drawn between the indexes of the adiabatic states
at time t � Dt and at time t. To build that map, Thiel and
co-workers relied on energy criteria and the maximum of over-
lap between adiabats at time t � Dt and time t,52 whereas
Tretiak and co-workers used the more sophisticated min-cost
algorithm.53,54

Another innovative approach, suggested by Wang and
Beljonne, is their flexible surface hopping method (FSH), where
the size of the ‘‘active’’ region of the OS that transports the
charge evolves at each MD timestep.55 Such an approach
not only permits maintaining the relatively small number of
adiabatic states (provided that the charge carrier remains
localized in space) and diminishing the number of trivial
crossings, but also requires new criteria and rules to decide
at each MD timestep which part of the OS should be included
in the active region. Recently, Wang and co-workers proposed
to use the overlap between adiabats at time t � Dt and at time t
to classify the surface crossings in different types to determine
how to calculate the hopping probability and whether the
adiabats’ indexes must be updated.56 They also combined this
classification approach with a restriction to hop only to adia-
bats with a large enough adiabatic population,57 which strays,
however, from the spirit of Tully’s original FSSH.

An alternative route would be to improve the calculation of
the hopping probability to capture such trivial crossings.
A norm-preserving interpolation of the adiabats between time
t � Dt and time t can provide a better estimation of the NACV
dad

ij .70 Subotnik and co-workers generalized the norm-preserving
interpolation to multiple states crossing using the logarithm of
the overlap matrix (eqn (16)).51 They extended this approach very
recently to ensure phase consistency and trivial crossing
correction.71 Wang and Prezhdo proposed a few years ago an
alternative straightforward improvement of the probability to
hop.72 They invoked the exact sum rule,

X
kaa

gka ¼ �
d caj j2

.
dt

caj j2
dt; (14)

to correct the probability to hop to the state the closest in energy,

gja ¼ �
d caj j2

.
dt

caj j2
dt�

X
kaa; j

gka (15)

However, there are some issues with eqn (14). First, to derive
eqn (14), one needs to integrate eqn (7) from t to t + Dt. If a true
trivial crossing is encountered, the adiabatic NACE dad

ij will
diverge, the integration will not be permitted and eqn (14)
will be invalid. Second, due to the finite timestep, the exact
configuration where the surfaces cross is never realized in practice

and gja always remains smaller than 1. Hence, there is no
guarantee that the dynamics is continued on the correct surface.
Therefore, we suggest that eqn (14) is applied after the trivial
crossing problem is accounted for by state tracking/re-indexing of
states. In fact, eqn (14) itself cannot correct for a true trivial
crossing.

In this work, we opt for a combination of the mapping
approach and the self-consistent correction (eqn (15)) for surface
hopping. We build the map M between the adiabatic states j at
time t and adiabatic states i at time t � Dt with a maximum
overlap criterion. First, we calculate the overlap Oij,

Oij = hci(t � Dt)|cj (t)i. (16)

For each state j = l, we identify state il with the maximum
overlap, |Oill| = maxi|Oil|. If |Oill| 4 1 � e (where e is a constant
set to 0.1), we map state l at time t with state il at time t � Dt,
(l) = il. After that step, all the remaining states j = k at time t that
could not be mapped to states at t � Dt (since |Oik| o 1 � e for
all unmapped states i) are arranged by index (i.e., by increasing
adiabatic energy) and mapped onto one another. As the func-
tion map M is a bijection between states at t and states at
t � Dt, the reverse map M�1 (which associates states at t � Dt
with states at t) is easily found. We can track the index of the
active state at t, knowing its value at t� Dt, at = M�1(at�Dt). This
step permits changing the index of the active state without
hopping. We stress that our algorithm maps all the states at
t with the states at t � Dt, not only the active state, as required
by the calculation of the NACEs (eqn (17)). We also note that
our mapping criterion produces a unique map and that the
algorithm can be run over the states in any order. After the
mapping, we make the phase of the eigenvectors consistent
along the trajectory by checking the sign of the overlap matrix
element Oi,M(i) and by reversing the sign of ci if Oi,M(i) o 0
(as we discussed in Section 2.1 and underlined in Fig. 2 with the
comment ‘‘check sign’’). We finally determine the correct
hopping probability (eqn (7)), which requires the adiabatic
NACEs (eqn (8)) and in particular the second term

�
Uy _U

�
ja

.
As suggested by Hammes-Schiffer and Tully,67 we take advan-
tage of the anti-symmetry of this term. After mapping, this term
now is,

Uy _U
h i

ðtÞja ¼
1

2
Uy _U
h i

ðtÞja � Uy _U
h i

ðtÞaj
� �

¼ 1

2Dt
UyðtÞUðtÞ
� �

ja
� UyðtÞUðt� DtÞ
� �

j;MðaÞ

� �

� 1

2Dt
UyðtÞUðtÞ
� �

aj
� UyðtÞUðt� DtÞ
� �

a;Mð jÞ

� �

¼ 1

2Dt
� UyðtÞUðt� DtÞ
� �

j;MðaÞ

�

þ UyðtÞUðt� DtÞ
� �

a;Mð jÞ

�
:

(17)

Finally, we apply the self-consistent correction to improve
the probability to hop (as in eqn (15)) towards the closest state
in energy, i.e., the one likely to be affected by numerical
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inaccuracies due to finite timesteps. The overall efficiency of
our approach to remove the trivial crossings will be discussed
in Section 4.2.

2.4 Spurious charge transfer

Although the decoherence correction is paramount to maintain
the internal consistency of the FSSH algorithm as discussed in
Section 2.2, it may create an undesirable charge displacement
in the cases of large systems and high densities of states.
In those systems, a surface hop between adiabatic states
localized in different regions of space is unlikely but still
possible in the FSSH algorithm (due to the stochasticity of
the hopping algorithm). After an unlikely hop, the decoherence
correction scheme (damping-based or collapsing-based) will
move the electronic wavefunction C(t) closer to the new active
state ca(t), thus leading to unphysical charge transfer, as
illustrated in Fig. 1(C). This problem was recently pointed out
by our group26 and Wang and coworkers.58 We labelled such
events decoherence correction-induced spurious charge transfers
(DCICTs). They arise because the different decoherence correction
schemes act on the adiabatic (i.e., non-local) representation. Note
that, since the mean-squared displacement (MSD) depends on the
square of the distance, this will have a strong impact on the
diffusion coefficient and on the mobility (see Section 2.7).

Recently, Wang and collaborators proposed to switch off the
decoherence correction when the surface population is below a
certain threshold and showed that the spurious transfer is
indeed alleviated.58 However, this formulation can reduce the
internal consistency of surface hopping as some decoherence
events are actually removed. Independently from the latter
study, we have developed a three-step strategy to remove the
DCICTs as illustrated in Fig. 1(C): (i) at each timestep, an
‘‘active’’ region that encloses 99.9% of the electronic density
|C(t)|2 is determined, (ii) the decoherence correction is applied
and (iii) any change in the diabatic population D|ul|

2 outside
the active region is reset to zero, while the diabatic populations
inside the active region are scaled accordingly to preserve the
norm. We call this strategy spurious charge transfer correction
(SCTC, previously termed SPTC in our previous paper26).
In practice, it amounts to a local decoherence correction within
the active region, while outside the active region the diabatic
populations remain unchanged. All DCICTs are removed, while
decoherence correction is still applied at each timestep. Note
that the propagation of the wave function according to eqn (4)
remains unaffected by the presence of the active region.

2.5 Elimination of forbidden hops

As discussed in Section 2.1, a key issue in FSSH simulation is
the internal inconsistency between the surface population and
the wavefunction population. One of the main reasons for this
discrepancy is the lack of an intrinsic decoherence mechanism,
as detailed in Section 2.2. Another source of internal inconsistency
is attributed to forbidden hops, namely attempted hops triggered
by the stochastic FSSH algorithm (probability to hop in eqn (7))
but that do not fulfil the conservation energy requirement
(eqn (9)).73 Although frustrated hops are actually essential to

maintain detailed balance as pointed out by Tully,29,74 they can
be a source of internal inconsistency. When such forbidden
hops are encountered, NACEs between the active state and
those classically forbidden states are finite and the TDSE
(eqn (4)) will transfer a small amount of the electronic wave-
function C(t) to those states. In some cases an ad hoc decoherence
scheme cannot completely correct the problem especially when
the electronic coupling is high (i.e., when a large number of
forbidden transitions are present because the surfaces are distant
from each other). This problem has been partially overlooked in
the literature as most applications of surface hopping are related
to fast relaxation processes from excited states to low-energy
states.44,48,50 In this case, almost all transitions are downward
(thus allowed) and a simple decoherence scheme is sufficient to
reach a satisfactory internal consistency.

At the early stage of FSSH development, Hammes-Schiffer
and co-workers already suggested a route to ensure internal
consistency even in the presence of a great number of forbidden
transitions.44,73 They proposed to remove the undesired popula-
tion transfers, by setting the corresponding NACEs/NACVs to
classically forbidden states to zero in the TDSE. In this work, we
call their approach elimination of forbidden hop (EFH). In this
approach the FSSH algorithm is modified in the following way:
(i) at each timestep, one first determines which transitions are
energetically forbidden between the active state and the excited
states using the energy conservation criterion in eqn (9), (ii) for
such forbidden transitions, the corresponding adiabatic NACEs/
NACVs are exactly set to zero and (iii) one propagates the modified
electronic TDSE (analogue to eqn (4)) that, in the adiabatic basis,
now reads,

i�h _ci ¼
XM�1
j¼0

cjðtÞ Had
ij � i�hdad;efh

ij

� �
; (18)

in which dad,efh
ij are the modified adiabatic NACEs forming the

new matrix Dad,efh. This matrix is now sparse as certain transitions
are forbidden. In our implementation, the electronic propagation
(eqn (4)) is carried out in the diabatic basis, which gives better
numerical stability.25,75 For this reason, eqn (18) can be trans-
formed in the diabatic basis:

i�h _uk ¼
XM
l¼1

ulðtÞ Hkl � i�hdefh
kl

� �
(19)

in which defh
kl = [Defh]kl and Defh is the NACE matrix in the diabatic

basis. The latter can be written in terms of the adiabatic NACE
matrix Dad,efh as (see eqn (8)),

Defh ¼ UDefh;adUy þ _UUy: (20)

The main difficulty arising in eqn (20) is the presence of the time

derivative _U and the adiabatic NACE between two subsequent
nuclear time steps. As discussed in Section 2.3, especially near
crossing points, NACEs have sharp localized peaks resembling
Dirac delta functions that can be easily missed. However, as we

show in the following, _U can be eliminated from eqn (20). In its
final form Defh only contains the smooth NACEs between the
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active state and the energetically forbidden states that are high
in energy. To this end, we write Defh in the following way:

Defh = D + (Defh � D), (21)

where D is the matrix of diabatic NACEs with elements

½D�kl ¼ dkl ¼ fkj _fl

D E
that appear in the unmodified Schrödinger,

eqn (4). Substituting eqn (20) in eqn (21) and defining
~Dad ¼ Dad;efh �Dad, _U is eliminated from eqn (20),

Defh ¼ Dþ U ~DadUy: (22)

We will discuss in Section 4.1 the effects of this alternative
electronic propagation on the internal consistency and the
equilibrium properties.

2.6 Electronic populations

Our objective is to calculate the electronic mobility from FOB-SH
simulations. Electronic-based properties are, however, ambiguous
in FSSH, as different definitions can be found for the electronic
population. Landry and Subotnik provided a detailed account of
the existing definitions in ref. 59 and they highlighted that these
populations can produce divergent properties. In the most com-
mon approach (‘‘Method 1’’ in ref. 59 or the ‘‘surface method’’)
electronic properties are calculated using the active adiabatic state
ca(t). To avoid confusion, we prefer to call this population a
projected active state population (PAS). The electronic population
on site k is

PPAS
k = |hfk(t)|ca(t)i|2 = |Uka|2(t). (23)

Other authors use the intrinsic FSSH wavefunction C(t)
(‘‘Method 2’’ or the ‘‘wavefunction population’’) to obtain
electronic properties and the local population on k is26,76,77

Pwf
k = |hfk(t)|C(t)i|2 = |uk|2(t). (24)

This population definition relies on the propagated electronic
wavefunction C(t) that does not observe detailed balance in the
absence of decoherence. We will demonstrate in Section 4.2
that this definition fulfils detailed balance as well as Method 1
when decoherence is included. Finally, Landry and Subotnik
also suggested using the mixed quantum-classical density36

(‘‘Method 3’’ or the ‘‘MQC population’’) and they obtained
the following diabatic population:

PMQC
k ¼ Ukaj j2ðtÞ þ 2

X
io j

Re UkiðtÞcicj�Ukj
�ðtÞ

� �
: (25)

As mentioned before, the projected active state method has
the advantage of giving the correct detailed balance distribu-
tion (the electronic state distribution follows an approximately
Boltzmann population in FSSH). However, this method is
also more sensitive to trivial crossings, as any trivial crossing
missed will instantaneously modify ca(t). In contrast, C(t)
(in ‘‘Method 2’’) would not be directly impacted by a missed
trivial crossing, although in the long term there will be a bias in
the dynamics.

2.7 Mean-square displacement

In the literature, the charge mobility m is often obtained from
the diffusion coefficient D by means of the Einstein equation:

m ¼ qD

kBT
(26)

where kB is the Boltzmann constant, T the temperature and
q the charge of the carrier. The diffusion coefficient is defined
as the slope of the mean square displacement (MSD) at
long times,

D ¼ 1

2
lim
t!1

d

dt
MSDðtÞ: (27)

While for a classical particle the MSD is well defined, MSD = hx(t)�
x(0)2i, with x the position of the classical particle and the brackets
referring to a statistical average, various equations for the MSD of a
quantum particle can be found in the literature. In our previous
papers,26,60 we propose first to determine the expectation value of
the ‘‘position’’ of the quantum particle, %x(t) = hC(t)|x|C(t)i, and then
to use it within the classical definition to obtain:

MSDcocðtÞ ¼ 1

Ntraj

XNtraj

n¼1
�xnðtÞ � �xnð0Þ½ �2 (28)

where

�xnðtÞ ¼ CnðtÞ xj jCnðtÞh i;

¼
XM
k¼1

Pk;nxk;nðtÞ;
(29)

in which Pk,n is the diabatic population of site k and for trajectory n
(Pk,n could be PPAS

k,n , Pwf
k,n or PMQC

k,n ), and xk,n is the distance between the
center of mass of molecule k and the molecule initially charged.
Finally, the sum runs over trajectories and stands for the statistical
average. We denote the resultant MSD in eqn (28) as MSDcoc, where
coc stands for the center of charge. On the other hand, Elstner and
collaborators76,77 have chosen to define the MSD as the expectation
value of the squared displacements (X � %x(0))2 (with %x(0) =
hC(0)|x|C(0)i) and to average the expectation value of such an
operator in the following manner:

MSDðtÞ ¼ 1

Ntraj

XNtraj

n¼1
CnðtÞ x� �xnð0Þð Þ2




 


CnðtÞ
D E

¼ 1

Ntraj

XNtraj

n¼1

XM
k¼1

Pk;n xk;nðtÞ � �xnð0Þ
� �2

(30)

Other authors55,58,78 considered the time-evolution of the spread or
variance (var) of the wavefunction,

MSDvarðtÞ ¼ 1

Ntraj

XNtraj

n¼1
CnðtÞ x2



 

CnðtÞ
� 

� CnðtÞ xj jCnðtÞh i2

¼ 1

Ntraj

XNtraj

n¼1

XM
k¼1

Pk;nxk;n
2ðtÞ �

XM
k¼1

Pk;nxk;nðtÞ
 !2

0
@

1
A

(31)
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The three definitions are of course related, MSD = MSDcoc +
MSDvar. The MSD (eqn (30)) is preferable because it accounts
for both the motion of the center of charge and the spreading of
the wavefunction. Therefore it can be used for both extremes,
small polaron hopping and pure wavefunction spreading,
and all intermediate cases. We will analyse the two different
contributions MSDcoc and MSDvar in Section 4.2.

3 Numerical details
3.1 Chains of ethylene-like molecules

To investigate the detailed balance of FOB-SH, we used one-
dimensional chains of two (dimer), three (trimer) and five
(pentamer) ethylene-like molecules (ELMs), as shown in Fig. 3(A).
The name ‘‘ethylene-like’’ stresses that only the nuclear geometries
correspond to a real ethylene molecule, while the CT parameters
(namely the reorganization energy l and the AOM scaling value C)
are chosen freely to explore a large range of physical behaviours.
Within a chain, the ELMs are spaced by 4 Å and a weak center of
mass restraint potential (force constant = 11 kcal mol�1 Å�2) is
applied to keep the chain straight. Because the NVE ensemble is
used in all our FOB-SH simulations to avoid any dynamical bias
introduced by the thermostat, the chain is embedded in a bath of
neon atoms that mimics the role of a thermostat and reduces the
fluctuations of the temperature (especially for the short chains with
few degrees of freedom). The simulation boxes are cubic with size
a = 60 Å and contain one chain of ELMs and 123 neon atoms
(124 for the dimer). Periodic boundary conditions are applied in all
directions of the simulation box. We insist, however, that the
electronic propagation occurring within the chain of ELMs is not
periodic: when the charge reaches the edges of the chain, it is
scattered backward and it does not continue at the other end of
the chain.

In the present model, hole transfer is mediated by a set of
(orthogonalized) HOMOs of the ethylene molecules, fk, k = 1,
M, that are used to construct the electronic Hamiltonian H.

Diagonalization of the Hamiltonian H gives the M adiabatic
electronic states. For a detailed explanation of how the orbitals
fi(R(t)) are reconstructed along the trajectory we refer to ref. 60.
The diagonal elements Hkk are calculated with a force field
energy function whose parameters for neutral and positively
charged ELMs are chosen as in our previous work.25,60 For
charged ELMs, the equilibrium distance of the CQC bond is
displaced (1.387 Å) with respect to the one in the neutral state
(1.324 Å) corresponding to the reorganization energy for hole
transfer between two ELMs of l = 200 meV. Such reorganization
energies are typical for organic semiconductors and an order of
magnitude smaller than those, e.g., for redox processes in
aqueous solution79–81 or oxide materials.82 Intra-molecular
interactions for neutral ELMs are taken from the Generalized
Amber Force Field (GAFF).83 The intermolecular interactions
among the ELMs and between ELMs and Ne atoms are modelled
by Lennard-Jones terms with parameters taken again from the
GAFF database for neutral and charged ELMs and from ref. 84 for
Ne and applying the Lorentz–Berthelot mixing rules. Electrostatic
interactions in the form of fixed point charges do not significantly
alter the energetics of this system because only one ELM carries a
net charge and the other ELMs and Ne are charge neutral. Hence,
for convenience, electrostatic interactions were switched off in all
simulations.

The initial configurations are built with the investigated
chain in its energy-minimized geometry and the neon atoms
positioned on a regular grid. The system is equilibrated with a
1 ns NVT run at 298 K using a Nosé–Hoover thermostat85,86 and
using a force field energy function where the first molecule of
the chain is charged. From the last configuration of the NVT
run, 100 ps Born–Oppenheimer molecular dynamics (BOMD)
trajectories are started for each adiabatic electronic state (two,
three and five states for the dimer, trimer and pentamer,
respectively). This is done for each of the six AOM scaling
values C that determine the strength of electronic coupling
according to Hkl = C%Skl. For the dimer and trimer, we choose
C = 14, 82, 272, 381, 816 and 1360 meV that correspond to

average coupling values V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hklj j2

D Er
of about 2, 10, 34, 51,

130 and 220 meV. For the pentamer, we choose C = 14, 82, 272,
381, 544 and 816 meV that correspond to V = 2, 10, 34, 49, 72,
and 111 meV. We remove the first 20 ps where the system
equilibrates and use the last 180 ps of the BO trajectories in the
different states to calculate free energy differences for conse-
cutive adiabatic electronic states, depending on the size of the
system: DAi,i�1(C) = �kBT lnhexp[�(Ei � Ei�1)/kBT]iEi�1

, where
i represents the given state, for each scaling value C. The
corresponding ‘‘exact’’ excited state populations are deter-
mined according to the Boltzmann population of each state i:

Pex
i ðCÞ ¼

e�bDAi;0

PM�1
i¼0

e�bDAi;0

: (32)

We extract Boltzmann-weighted configurations (nuclear coor-
dinates and velocities) from such BOMD runs as starting

Fig. 3 Representations of the systems analysed in this work. (A) Snapshots
for the organic semiconductor models formed by ELMs (ethylene-like
molecules): dimer, trimer and pentamer (the neon bath is not shown for
clarity). (B) Supercell and electronically active chain along the b direction
for anthracene. A snapshot of a polaron with typical delocalization over
three molecules is shown. Isosurfaces of the magnitude of the wave-
function are shown and coloured according to the phase y, C(t) =
|C(t)|exp(iy): �p/4 r y r 3p/4 in blue and 3p/4 o y o 7p/4 in red.
Hydrogens have been removed for clarity.
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configurations for the FOB-SH runs, to ensure the correct
distribution of excited state populations at the start of the
run (at t = 0) and a well-sampled phase space. The electronic
wavefunction is initialized in the corresponding adiabatic state
i (C(0) = ci) to ensure perfect internal consistency at t = 0.

For each set of parameters (chain length, C value, decoherence
correction), we generated 1000 independent FOB-SH trajectories
starting from the initial configuration evenly sampled from the
corresponding BOMD trajectories. Each trajectory is run for 10 ps
in the NVE ensemble. The nuclear dynamics is propagated with
the velocity-Verlet algorithm with forces calculated according to
eqn (6) and with a MD timestep Dt = 0.1 fs. The wavefunction of
the excess charge carrier C(t) was propagated by integrating
eqn (4) using the Runge–Kutta algorithm of 4th order and an
electronic timestep dt = Dt/5 = 0.02 fs. An interpolation scheme is
used to calculate the Hamiltonian matrix elements at each
electronic timestep.60 Error bars were determined by block
averaging over the 1000 trajectories with a block size of 200
independent runs.

3.2 Chains of embedded anthracenes

To investigate the mobility and IPR of a real system, we have
modelled an electron hole transfer in a chain of electronically
active anthracene molecules, embedded in a larger crystal
comprised of electronically inactive anthracene molecules, see
Fig. 3(B). We have compared 4 chains of different lengths: 12,
24, 36 and 48 molecules. The simulation boxes are monoclinic,
with angles a = 90.01, b = 124.71 and g = 90.01 and with
dimensions a = 8.562 Å and c = 11.184 Å. We have adapted
the box length in the b direction to ensure that the distance
between the chain and the edges of the box is above 8 Å.
Periodic boundary conditions are applied in all directions of
the crystal, but, similarly to the chains of ELMs, the electronic
dynamics occurs along non-periodic chains. To check the
convergence of mobility with respect to the length of the chain,
different numbers of molecules of chains are investigated.
Table 1 presents the total number of molecules and the length
b for the different chain lengths.

As for the ELM model system described in the previous
section, we assume that the electron hole transfer is mediated
by the HOMOs of the anthracene molecules that form the basis
functions for the excess charge expansion (eqn (1)). The M
diagonal elements Hkk are, again, estimated using M classical
force field energy functions. In the kth energy functions,
anthracene molecule k is positively charged, while all the others
are neutral. Intra-molecular interactions for the neutral anthra-
cene molecule are taken from the Generalized Amber Force
Field (GAFF).83 These intramolecular parameters are used also
for the charged anthracene, except for the carbon–carbon bond
length which was chosen instead to reproduce the reorganization
energy l. The reorganization energy is determined using four DFT
calculations on neutral and charge anthracene molecules in both
neutral and charged geometries as:

l = [EC(RN) + EN(RC)] � [EC(RC) + EN(RN)] (33)

where EC/N(RN/C) is the energy of the charged/neutral molecule
in the optimized neutral/charged state and EC/N (RC/N) is the
energy of the charged/neutral molecule in the optimized
charged/neutral minimum. The geometries of charged and
neutral molecules were optimized with the B3LYP functional87

and 6-311g(d) basis set. The intermolecular interactions between
anthracene molecules are also taken from the GAFF database.
As in each classical force field all but one molecule are neutral and
the anthracene has zero dipole moment, we did not include
electrostatic interactions.

The off-diagonal elements of the electronic Hamiltonian Hkl

are calculated using the AOM.61 First, the HOMO of anthracene
(which is non-degenerate) is projected onto an atomic Slater
basis consisting of one atomic p orbital per carbon atom.
The calculation of the HOMO and its projection are done using
CPMD software88 using the PBE exchange–correlation functional.89

Core electrons are described by Goedecker–Teter–Hutter (GTH)
pseudo-potentials,90 and the valence electrons are expanded in
plane waves with a reciprocal space plane wave cutoff of 90 Ry.
The dimers are centered in a simulation box with dimensions of
12 � 40 � 40 Å3. After that, the electronic coupling HDFT

kl is
calculated using the FODFT method62 for four different dimers
extracted from the crystal structure, while the HOMO–HOMO
overlap %Skl = hjk|jli is calculated using the AOM for the same four
dimers. The FODFT couplings are scaled by a constant 1.348 as
recommended in ref. 62. A linear regression is applied between
HDFT

kl and %Skl to determine the AOM scaling value C = 3.09 eV.
Each FOB-SH simulation involves 1000 independent trajec-

tories initialized from 100 different initial conditions (10 tra-
jectories repeated with a different random seed for each initial
condition). Starting from the crystal structure, the system is
equilibrated for 500 ps in the NVT ensemble using a Nosé–
Hoover thermostat.85,86 Then a MD run of length 500 ps is
carried out in the NVE ensemble from which 100 configurations
are chosen at equidistant intervals. These configurations are
used as the initial configurations for subsequent FOB-SH runs.
The initial wavefunction is fully localized on the first molecule
of the chain, C(t = 0) = f1(0), and the initial active state is
randomly drawn from all adiabatic states with a probability
hci(0)|f1(0)i2. Each trajectory is then run for 2 ps in the NVE
ensemble. We opt for the NVE ensemble to avoid any artificial
thermostat that may bias the calculation of the electronic
mobility. The large number of degrees of freedom due to the
‘‘inactive’’ part (inactive for electronic propagation, as depicted
in Fig. 3) of the anthracene crystal plays the role of a thermostat
and ensures small temperature fluctuations. The nuclear dynamics

Table 1 Different lengths of embedded active chains of anthracene
molecules in a larger crystal and related total numbers of anthracene
molecules in the crystal and lengths of the chains in the b direction

Number of active
molecules

Total number of anthracene
molecules b (Å)

12 256 97.3
24 448 170.2
36 640 243.2
48 832 316.2
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is propagated using the velocity-Verlet algorithm and different MD
timesteps are tested to check for convergence (Dt = 0.025, 0.05,
0.1 and 0.5 ps). The electronic wavefunction is propagated using
the Runge–Kutta algorithm of 4th order and electronic timestep
dt = Dt/5.

4 Results
4.1 Energy conservation, detailed balance and internal
consistency

Before investigating charge transport properties, we focus here
on the influence of various decoherence correction schemes
and the treatment of classically forbidden hops on key equili-
brium properties such as energy conservation, detailed balance
and internal consistency. In this section, we exclude analysis of
trivial crossings or DCICTs, as these issues arise only when
considering large systems and transport properties.

4.1.1 Effect of decoherence correction. The role of deco-
herence correction in detailed balance has been only partially
considered in the literature.31 To investigate to what extent
decoherence correction influences the thermal population of
each state, we have carried out FOB-SH simulations using one
dimer of ELMs in a bath of neon atoms for several commonly used
decoherence correction algorithms: instantaneous decoherence
after each attempted hop (IDA),50 energy-based decoherence
correction (EDC, eqn (11)),47 pure dephasing decoherence correc-
tion (PDDC, eqn (12)), force-based decoherence correction41,43,69

using a damping algorithm (FDC, eqn (13)) and a stochastic
algorithm (SC-FDC), and finally the absence of a correction scheme
(NO DC). Simulations are initialized as described in Section 3.1.
Fig. 4(A) shows the energy drift averaged over 1000 FOB-SH NVE
runs as a function of electronic coupling. The general trend is
similar to the results previously obtained by us in ref. 25, with a
monotonic decrease of the energy drift from 10�5 Ha per ps per
QM atom to 10�7 Ha per ps per QM atom. We explain this
behaviour by observing that, with increasing coupling, the number
of successful hops decreases, while the potential energy surface
softens. The notable fact is that the energy drift is independent of
the decoherence correction scheme. This can be expected as the
decoherence only affects the electronic wavefunction, not directly
the nuclear degrees of freedom whose total energy is conserved
along the simulation.

A similar conclusion holds for the detailed balance.
In Fig. 4(B), we show the electronic population of the excited
state, averaged over the 1000 trajectories and over time, against
the time average electronic coupling. The exact result obtained
from the BOMD simulations as described in Section 3.1 is also
indicated. Since the work of Tully and collaborators,29,74 the
ability of the ‘‘vanilla’’ FSSH (i.e., without decoherence correc-
tion) to reach detailed balance is well-known. We recently
reinforced the point that the NACV-oriented adjustment of
velocities after a hop is paramount for this agreement to
hold.25 Remarkably, we find here that the bias introduced by
the decoherence correction in the electronic dynamics is almost
negligible in terms of equilibrium distribution. This can be readily

explained in the cases of EDC, PDDC and FDC, for which the
decoherence time is small (i.e., fast decoherence) far from the
crossing region and it is large (i.e., slow decoherence) within
the crossing region. For this reason, such corrections have only a
minor effect in the proximity of an avoided crossing, which
is where the probability for hops sharply increases and the
thermal equilibration between the electronic states occurs. Thus,
decoherence only affects the dynamics away from the crossing
region, where, in any case, the surfaces are quite well separated in
energy and the number of hops is small. Therefore, damping-
based schemes maintain the correct flux between states and do
not ruin the detailed balance.

It is important to notice that such an argument does not apply
to instantaneous decoherence algorithms. These algorithms
require the nuclei to be in the crossing region in order to trigger
the decoherence event (i.e. there must be either an attempted or a
successful hop in order to collapse the wavefunction) and they do
not depend on any decoherence time. This explains why for the
latter algorithms we can observe larger deviations for both energy
drift and excited state population, even though the bias is still
small due to the small number of collapsing events with respect to
the total number of steps in the dynamics.

We conclude that all the decoherence schemes investigated
here can reach approximately the detailed balance, meaning
that the bias introduced in the electronic dynamics does not
affect the flux between adiabatic states.

While the different decoherence algorithms give virtually
identical results for energy drift and detailed balance, they give

Fig. 4 Properties of a FOB-SH simulation for an ethylene-like molecule
(ELM) dimer cation with a total of two electronic states at T = 300 K.
The conserved energy drift (A), excited state population (B) and internal
consistency (C and D) are shown as functions of the diabatic electronic
coupling strength between the two ELMs. Different electronic decoherence
corrections (DCs) are compared: damping of adiabatic electronic populations
with force-based (FDC, eqn (13)), stochastic force-based (SC-FDC), energy-
based (EDC, eqn (11)), and pure dephasing decoherence times (PDDC,
eqn (12)), instant collapse (IDA) and no DC. Exact populations in (B) are
obtained as described in Section 3.1. The internal consistency in (C) is
measured in terms of the root-mean-square error (RMSE, eqn (34)), and
divided by the excited state population Pex

1 in (D).
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very different results for internal consistency. We measure the
latter by calculating the time-averaged root mean square error
between the surface population and the quantum amplitude of
the excited state i, Psurf

i (t) (eqn (10)) and h|ci(t)|
2itrj, respectively,

RMSEi ¼
1

T

ðT
0

dt Psurf
i ðtÞ � ciðtÞj j2

D E
trj

� 	2
 !1=2

; (34)

where h� � �itrj refers to an average over trajectories. In case of
perfect internal consistency, RMSEi = 0 for all i. Fig. 4(C) shows
the RMSEs obtained for the usual range of coupling values and
Fig. 4(D) shows the RMSEs normalised with respect to the exact
excited state population, RMSEi/P

surf
i . We can observe that

RMSEs follow the same trend for all the decoherence methods
(an increase from low couplings to medium-sized coupling
values (maximum around 50 meV) and a slight decrease there-
after). The damping methods show very good internal consis-
tency, with FDC and DCCP giving the best performance for all
coupling strengths, and significantly improving over wavefunc-
tion collapse and no decoherence correction (Fig. 4(C)). Hence,
the particular choice of damping time seems rather unimpor-
tant for good average internal consistency, i.e. in the long time
limit (eqn (34)).

However, Fig. 4(D) reveals that the internal consistency,
normalized with respect to the excited state population Pex

i ,
deteriorates with increasing coupling strength. The quantum
populations of excited states are generally overestimated in this
regime. In our previous paper,25 we showed that for couplings
V 4 kBT/2, adiabatic NACEs still transfer the electronic popula-
tion from the ground state to the excited state, while attempted
hops become increasingly energy-forbidden. Therefore, the
wavefunction population in the excited state is overestimated
compared to the surface population. While for no DC and
collapse the error is substantial to the extent that there is no
longer any consistency between quantum and surface ampli-
tudes in the high coupling regime, the damping methods
significantly improve on this situation, albeit not perfectly.
For a large coupling value of 100 meV, the excited state surface
population is about 10�4 (Fig. 4(B)), while the quantum popula-
tions are about 10�3, giving RMSE1/Pex

1 E 10. While this deviation
may not be relevant in many practical situations, it is desirable to
investigate further possible improvements to internal consistency
such as elimination of energy forbidden hops.

4.1.2 EFH propagation. To improve the internal consis-
tency at medium and large couplings, we resorted to the EFH
scheme suggested by Hammes-Schiffer and collaborators44,73

and described in detail in Section 2.5 for a diabatic electronic
propagation. In EFH the electronic propagation is modified,
avoiding electronic population transfer to excited states ener-
getically unreachable by the nuclei (i.e., these states would
fail the energy conservation requirement (eqn (9)) with a
NACV-oriented adjustment). To test the EFH algorithm, we
have carried out FOB-SH simulations using an identical set-up
as described before (a dimer of ELMs in a bath of neon atoms),
but now the electronic dynamics is propagated using eqn (18).
Fig. 5(A) and (B) show, respectively, the excited state populations

and RMSE1/Pex
1 as functions of electronic couplings for the EFH

propagation with decoherence, standard FSSH propagation with a
decoherence scheme and standard FSSH propagation without any
decoherence scheme. For both EFH and standard FSSH propaga-
tion, we use force-based decoherence correction (FDC) as we have
shown that all damping-based approaches give identical results
for detailed balance and internal consistency. Though EFH pro-
pagation biases electronic dynamics and, indirectly, hopping
probability and detailed balance, Fig. 5(A) shows that EFH
dynamics gives excited state populations in agreement with the
exact results. In fact, at small couplings, when the number of
frustrated hops is small, EFH yields the same results as the
standard FSSH propagation with decoherence. By contrast, when
the electronic coupling is high and the effect of EFH becomes
active (removal of amplitude transfer to states that are energeti-
cally not accessible), EFH propagation shows a larger uncertainty
and a larger error bar. This effect will be considered further in the
following. Fig. 5(B) shows again that EFH coincides with the
standard propagation at small couplings where the internal
consistency is good, but performs by far better at larger couplings
with respect to standard FSSH propagation with and without
decoherence (i.e., RMSEi/P

ex
i is about two orders of magnitude

smaller in the former case).
4.1.3 Trimer and pentamer chains. To assess the validity of

our previous conclusions, we investigate detailed balance and
internal consistency for two larger systems: a trimer and a
pentamer of ELMs with three and five states, respectively,
embedded in a bath of neon atoms. The initialization of these
systems is described in Section 3.1. For each system, we have
carried out FOB-SH simulations using two different set-ups:
standard propagation with FDC to account for decoherence and
EFH propagation with FDC. Fig. 6(A) and (C) show the popula-
tions Psurf

i (t) for the different excited states i and Fig. 6(B) and (D)
show RMSEi/P

ex
i against electronic coupling. The standard FSSH

propagation produces excited state populations close to the exact
ones for all excited states in both systems. This confirms that
FSSH with a decoherence scheme can reach detailed balance

Fig. 5 Excited state population (A) and internal consistency (B) from FOB-SH
simulations for an ELM-dimer cation with a total of two electronic states, at
T = 300 K. Decoherence correction (DC) and decoherence correction with
the elimination of forbidden hops (DC + EFH) are compared to simulations
without decoherence correction (no DC). The DC method used is damping
with force-based decoherence time (FDC, eqn (13)). Internal consistency is
measured by the relative root-mean-square error defined in eqn (34). The
exact result for the excited state population is obtained as described in
Section 3.1. Error bars are obtained by block-averaging over five independent
blocks of 200 trajectories each.
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even for larger systems. On the other hand, excited state popula-
tions using EFH differ quantitatively from the exact results. We
suggest the following explanation. In a situation where the
adiabatic NACE is not-negligible between the active state and
another state much higher in energy, there can be population
transfer to the excited state due to the standard FSSH propaga-
tion. If a hop is attempted, it will be rejected due to the large
energetic gap between those states. However, the population
transfer may increase the probability of hopping a few time steps
later, when hypothetically the energy gap might be smaller and
therefore this second hop successful. By contrast, using EFH
propagation no population transfer is allowed in the first case,
leading to a decrease in the hopping probability also in the
second case where the energy gap between surfaces would have
been small enough to allow the second attempted hop. On
average, EFH diminishes the flux to the excited states and thus
underestimates their populations. Even though detailed balance
in EFH is not as good as in the standard propagation scheme, it
massively improves internal consistency for the excited states of
both systems in the high coupling region, as can be seen in
Fig. 6(B) and (D).

In conclusion, EFH greatly improves the internal consis-
tency; nevertheless, it biases the hopping probability and
produces a worse agreement with the exact equilibrium popu-
lation when compared with the standard FSSH propagation.
It is worth noting that in large organic semiconductors the
density of states in a given band is quite high, most of the hops
are allowed and the most important source of internal incon-
sistency is the wavefunction branching rather than the
presence of frustrated hops. For these reasons we will not

consider further this correction to investigate dynamical
properties and charge transport.

4.2 Charge mobility

We now focus on building and describing the best FOB-SH
set-up to calculate the mobility and delocalization of a charge
carrier in organic semiconductors. We make use of the system
described in Section 3.2, a hole diffusing in a chain of
anthracene molecules embedded in a larger crystal. Several
parameters and set-ups need to be assessed: the role of the state
tracking algorithm and/or the spurious transfer correction, the
size of the system, the MD timestep, the decoherence correction
scheme, the population definition, the MSD definition and finally
the length and the number of trajectories.

4.2.1 MSD definition. We first clarify how to determine
the mobility. As we have indicated in Section 2.7, different
definitions of the MSD have been used in the literature. We ran
a FOB-SH simulation for a chain of 48 anthracene molecules for
2 ps using our reference set-up: state tracking and SCTC are
switched on, the MD timestep is 0.1 fs, the decoherence
correction scheme is pure-dephasing (PDDC) and the diabatic
population Pwf is used to calculate the MSD. Fig. 7(A) shows the
three MSD definitions against time. MSDcoc and MSD quickly
increase simultaneously until 200 fs, then they diverge slightly
and end up in a linear regime with the same slope, clearly visible
after 1 ps. In contrast, MSDvar increases more slowly and reaches a
plateau regime after 1 ps. In fact, as shown by different authors
using simulation tools26,55,58,91 and by experiments,92–94 the
electronic wavefunction is delocalized over few molecules and
the charge spreading remains approximately constant in time.

As described in Section 2.7, the mobility is related via the
diffusion coefficient (eqn (26)) to the slope of the MSD at long
times (eqn (27)). In Fig. 7(A), the best linear fits are indicated by
black dashed lines for all three MSD definitions. We conclude
that to determine the mobility, both MSDcoc and MSD will give
the same value for the diffusion constant, whereas MSDvar will
give a zero value for this coefficient and so for the mobility.

Fig. 6 Excited state population and internal consistency of FOB-SH
simulations for an ELM trimer-cation (A and B) and an ELM pentamer-
cation (C and D), as functions of the diabatic electronic coupling strength
between the monomers, at T = 300 K. Simulations are carried out with DC
(damping with force-based decoherence time, eqn (13)) and with DC +
elimination of forbidden hops (DC + EFH). Exact populations are calculated
as described in Section 3.1. The first, second, third and fourth excited states
are shown as solid, dashed–dotted, dashed and dotted lines, respectively.
Error bars represent standard deviations over five independent blocks of
200 trajectories each.

Fig. 7 (A) Mean-square-displacement (MSD) and (B) inverse participation
ratio (IPR, eqn (35)) for hole transport in anthracene, from FOB-SH
simulations. In (A) the MSD (eqn (30)) is broken down into the MSD for
the centre of charge, MSDcoc (eqn (28)), and the MSD due to the changes
in the spread or variance of the wavefunction, MSDvar (eqn (31)). FOB-SH
simulations were carried out for an embedded chain of 48 anthracene
molecules, applying a MD timestep of 0.1 fs. Error bars are obtained by
block-averaging over five independent blocks of 200 trajectories each.
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Besides the mobility, it is also interesting to measure the
delocalization of the wavefunction. Rather than using the
wavefunction spreading, MSDvar, we prefer to follow ref. 55
and to calculate the inverse participation ratio (IPR):

IPRnðtÞ ¼
1PM

k¼1
Pk;nðtÞ


 

2: (35)

In particular, IPRn(t) measures the number of sites over which
the wavefunction is delocalized at time t for trajectory n. This
quantity can be averaged over time and over trajectories to
obtain the equilibrium converged value. In Fig. 7(B) we show
the evolution of the IPR against time. At t = 0, the wavefunction
is initially localized on the first molecule of the chain and
IPR(t = 0) = 1. The IPR increases rapidly during the first few
hundreds of femtoseconds before reaching a plateau at around
1 ps. The initial transient increase corresponds to the wave-
function spreading until the equilibrium polaron width is
reached. In fact, this behaviour of the IPR mirrors exactly the
time evolution of MSDvar. We note that in this system the
transient behaviour lasts about 1 ps and that trajectories of at
least 2 ps are necessary to calculate the mobility. In the
following, we always apply a linear fit to the MSD between
1 ps and 2 ps to extract the slope, the diffusion coefficient and
the mobility and we calculate the time average of the IPR also
between 1 and 2 ps.

4.2.2 Trivial crossings and spurious charge transfer. We now
investigate the necessity of the state tracking algorithm
and decoherence-induced spurious charge transfer correction
described, respectively, in Sections 2.2 and 2.3 in order to
obtain convergence for the MSD and the mobility as functions
of chain length and timestep. Fig. 8 shows the MSDs for
different chain lengths and the wavefunction populations of
sites k (Pwf

k , eqn (24)) for a representative FOB-SH trajectory for
three different set-ups: (A) state tracking and SCTC both active,
(B) state tracking and no SCTC and (C) no state tracking and no
SCTC. If both state tracking and SCTC are switched on, the
MSD converges for increasing chain length: up to 500 fs all
MSDs are identical for the different chain lengths, as the charge
initially explores just a few molecules around its initial posi-
tion. After 500 fs, the MSD for a chain of 12 molecules is slightly
below the MSD for the longer chains, which are all practically
identical, as the diffusive charge starts to feel the boundary and
to bounce back at the end of the chain. The smooth evolution of
the polaronic charge carrier is illustrated for one representative
trajectory in Fig. 8(D), where no spurious charge transfer event
is present. The spreading of the charge carrier is around 2, in
agreement with the IPR in Fig. 7(B). When the SCTC is switched
off (panel B), MSDs as function of chain lengths start to diverge
after a few femtoseconds, indicating that frequent decoherence-
induced spurious transfer events bias the charge dynamics. It is
worth noticing that spurious charge transfers induce a much
larger displacement of the charge as in a few time steps the charge
can completely change its localization. A spurious transfer is
shown in panel (E) for a representative FOB-SH trajectory
without SCTC, where the charge carrier ‘‘jumps’’ from molecule

7 to molecule 13 in a few femtoseconds. We also note that the
order of magnitudes spanned by these MSDs (500–100 Angstroms)
and the presence of a linear regime may be deceptive, but the
divergence with system size underlines the unphysical aspect of
the charge displacement. In Fig. 8(C), we show the MSDs for
different chain lengths when both SCTC and state tracking are
switched off. In a few femtoseconds, the MSDs reach a plateau that
depends on the size of the system (i.e., the larger the system the
larger the plateau value). Such dynamics for the charge corre-
sponds to an unphysically fast diffusion in which the numerous
missed trivial crossings yield an almost random motion of the
charge along the chain. This is well exemplified in Fig. 8(F) for a
FOB-SH trajectory without SCTC and state reordering. Missing
index updates cause numerous jumps of the charge carrier at long
distance (tens of molecules). Only the use of a state-tracking
algorithm to detect the trivial crossings and the SCTC to eliminate
the decoherence-induced spurious charge transfers leads to a
physical MSD independent of system size.

4.2.3 Number of trajectories. We now consider the conver-
gence of transport properties (mobility m and IPR) as a function
of the number of FOB-SH trajectories. We ran FOB-SH simula-
tions using different numbers of trajectories (10, 50, 100, 150,
200, 500, 1000) for a chain of 48 anthracene molecules. Fig. 9(A)
and (B) show the mobility and the IPR calculated using
these different FOB-SH simulations against the number of
trajectories. We find that the mobility converges at about

Fig. 8 Importance of state reordering and spurious charge transfer
correction in FOB-SH simulations of hole transport along embedded
chains of anthracene molecules. (A–C) MSDs (eqn (30)) for hole transport
with chain lengths as indicated (12, 24, 36 and 48 molecules). (D–F) Time
evolution of the hole carrier wavefunction population (Pwf

k , eqn (24)) along
a representative FOB-SH trajectory. The MSDs and the wavefunction
populations are compared for three different set-ups: (A and D) adiabatic
electronic states are reordered using the state tracking algorithm (see
Section 2.3) and the decoherence-induced spurious charge transfer
correction is active (SCTC, see Section 2.4); (B and E) state reordering is
active, and SCTC is switched off; and (C and F) state ordering and SCTC are
switched off. Note that the MSD is independent of system size only in (A).
For all set-ups, decoherence keeps the charge localized over about
2 molecules (consistently with Fig. 7(B)). Long-range spurious transfer
events are highlighted with red arrows in (E) and (F); note that the charge
transport in (C) is completely biased by unphysical jumps of the charge.
The MD timestep is 0.1 fs and the decoherence correction is damping
with pure dephasing decoherence time. Error bars represent standard
deviations over five independent blocks of 200 trajectories each.
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100 trajectories and the IPR after as few as 10 trajectories. This
implies that the IPR distribution is more homogeneous among
the trajectories than the mobility one. Based on the conver-
gence of mobility with 100 trajectories, we calculated error bars
for mobility and the IPR in the FOB-SH simulation by block-
averaging over five independent blocks of 200 trajectories each.

4.2.4 Timestep. To confirm that our set-up (decoherence
correction, state-tracking and SCTC) also permits the conver-
gence with timestep, we ran a FOB-SH trajectory using four
different timesteps (0.025 fs, 0.05 fs, 0.1 fs and 0.5 fs) for a
chain of 48 anthracene molecules. We report the mobility and
IPR values obtained using these different timesteps in Fig. 9(C)
and (D) respectively. Fig. 9(C) and (D) show that the three
smallest timesteps (0.025 fs, 0.05 fs, 0.1 fs) give the same
mobility results, whereas the mobility is four times higher at
0.5 fs, indicating that the state tracking algorithm fails to detect
all trivial crossings at this large timestep. In contrast, the
different IPRs presented in Fig. 9(D) are identical for all MD
timesteps. The IPR is a static quantity and it is thus insensitive
to the failure in the detection of the trivial crossings.

4.2.5 Decoherence and diabatic populations. We now
discuss the choice of diabatic population definition and the
effect of the decoherence correction. Using the converged
set-up described in the paragraph above (state tracking, SCTC
and 0.1 fs for the MD timestep), we ran FOB-SH simulations for
different chain lengths (12, 24, 36 and 48) either without
decoherence or using the pure-dephasing decoherence
schemes. For each FOB-SH run, we calculated the mobility

and IPR for the three different diabatic population definitions
(Pwf, PPAS, PMQC, see Section 2.6). The results are reported in
Fig. 10 against the number of molecules forming the chain.
In the original FSSH implementation,39 no decoherence correc-
tion and PPAS are used to calculate different properties; this
set-up corresponds to the green lines in Fig. 10(A) and (B).
We immediately see that the mobility does not converge with
increasing system size. Without decoherence, in fact, Tully and
collaborators29 already showed that in the long time limit the
electronic wavefunction C(t) delocalizes equally over all the
available adiabatic states. In that case, the adiabatic population
appearing in the denominator of the hopping probability
(eqn (7)) is the same for all states, so hops can be attempted
between states localized in completely different positions. The
larger the chain, the farther apart the charge can jump after
such unphysical (but allowed by FSSH) hops. Thus the mobility
for all three different diabatic population definitions increases
with the number of molecules. Conversely, the IPR for PPAS is
independent of system size, showing that the delocalization of
the eigenfunction of the active state (ca) is size independent as
well. In contrast, the IPR for Pwf increases with chain length,
mirroring the delocalization of the electronic wavefunction on
the adiabatic states. We note that the IPR for PMQC is very close
to the one for PPAS. These results prove that, without decoherence,

Fig. 9 (A and C) Hole mobility m and (B and D) time-averaged inverse
participation ratio (IPR) with respect to (A and B) the number of FOB-SH
trajectories and (C and D) the MD timestep. FOB-SH simulations were
carried out for an embedded chain of 48 anthracene molecules, with pure
dephasing decoherence correction (PDDC, eqn (12)). In (C and D), error
bars are obtained by block-averaging over five independent blocks of
200 trajectories each.

Fig. 10 Importance of decoherence correction for the convergence of
charge mobility with respect to system size. No decoherence correction is
applied in (A) and (B) and the pure dephasing decoherence correction
(PDDC, eqn (12)) scheme is applied in (C) and (D). Results are shown for
different choices for the diabatic populations used to calculate the charge
mobility m and the inverse participation ratio (IPR): wavefunction
(Pwf, eqn (24)), active state (PPAS, eqn (23)) and mixed quantum-classical
populations (PMQC, eqn (25)). The data were obtained from FOB-SH
simulations of hole transport along an embedded chain of anthracene
molecules with a MD timestep of 0.1 fs. Error bars are obtained by block-
averaging over five independent blocks of 200 trajectories each.
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the mobility cannot converge with different system sizes whatever
the diabatic population definition.

The mobility and IPR obtained with a decoherence correction
(pure-dephasing correction) are shown in Fig. 10(C) and (D)
respectively. In contrast to the results obtained without
decoherence, the mobility is well converged with respect to
chain length. Adding a decoherence correction permits localizing
(in adiabatic and diabatic space) the electronic wavefunction
C(t), to eliminate the undesired hops present without decoherence
and to converge with system size. The decoherence correction also
ensures the internal consistency of the method, explaining why the
three population definitions behave similarly. The IPR results are
similar to the ones for the mobility: convergence for the different
system sizes and similar values for all three population definitions.
Although, in general, we recommend using the wavefunction
population (Pwf, eqn (24)) as it is generally less affected by
potentially undetected trivial crossings. Based on these results,
we conclude that a decoherence correction is mandatory for the
calculation of mobility and the IPR.

5 Conclusion

In the present work, we have employed the fragment-orbital
based surface hopping (FOB-SH) approach that is a powerful
tool to perform atomistic non-adiabatic dynamics in large
realistic molecular systems. We have explored and discussed
several possible improvements applicable to any surface hopping
code when calculating equilibrium and dynamical properties,
i.e., decoherence correction with various decoherence times,
spurious charge transfer correction (SCTC), electronic propagation
with the elimination of classically forbidden transitions (EFH),
trivial crossing correction and state tracking. The correct way to
retrieve important observables from FSSH simulations such as
electronic populations, mean-square displacement and electronic
mobility has also been discussed.

Using an organic semiconductor model formed by chains of
ethylene-like molecules, we have first looked at equilibrium
properties (i.e., energy conservation, detailed balance and
internal consistency) over three orders of magnitude of electronic
coupling and different system sizes. We have shown that good
energy conservation and detailed balance is obtained regard-
less of the decoherence time and algorithm used. In fact,
generally speaking, the decoherence biases the dynamics only
away from the crossing region and it does not significantly
modify the flux between adiabatic states. On the other hand,
when comparing the effects of different decoherence correc-
tions in restoring the consistency between surface and wave-
function populations, we have shown that the damping-based
algorithms with fast decoherence times produce far better
results than instantaneous collapsing events and maximize
internal consistency across several orders of coupling strengths.
However, for small systems, some degrees of internal inconsis-
tency can still be seen when electronic coupling is large due to the
presence of a significant number of forbidden transitions and the
inability of the ad hoc damping procedure to correct for such

cases. Therefore, to further reduce the internal inconsistency
in this coupling region, we have explored an alternative electronic
propagation (called the elimination of classically forbidden
hops – EFH) in which electronic population transfer between
adiabatic states is removed in the case of classically forbidden
transitions for the nuclei. Although the algorithm massively
improves internal consistency at high couplings, the agreement
with the detailed balance deteriorates due to the bias introduced
in the electronic dynamics.

Then, focussing on charge transport in a real organic crystal
(i.e., anthracene), we have studied two fundamental properties
related to the actual efficiency of organic semiconductors: the
electronic mobility and the inverse participation ratio (the
latter measures the size of the charge carrier). We have found
that charge carriers propagate through OSs as polarons via
diffusive jumps, somewhat in analogy with the diffusion of gas
molecules in a complex environment,95,96 though with the
sizes and shapes of the polarons strongly fluctuating in
time. We have also found that a state-tracking algorithm is
mandatory in the case of a large number of states to detect the
trivial crossings and to map the adiabatic states between two
different MD timesteps, thus improving the electronic and
nuclear dynamics and avoiding spurious long-range charge
transfers. Without a state-tracking procedure, the mean-
square displacement does not reach a diffusive linear regime,
prohibiting mobility calculation. In addition, to ensure the
convergence of the electronic mobility with the size of the
system and the number of excited states, we have shown that a
combination of the decoherence correction scheme and
decoherence-induced spurious charge transfer correction is
required.

Besides those paramount improvements to the surface
hopping algorithm, we have also compared different defini-
tions used in the literature for the mean-square displacement
and for the electronic population definition. We have shown
that the two commonly used definitions for the mean-square
displacement (MSD and MSDcoc) give the same diffusion coeffi-
cient and the same mobility, whereas the third one (MSDvar),
which is related to the spreading of the wavefunction, rather
than to the diffusion of the charge carrier, yields always a zero
slope as the polaron reaches a finite equilibrium size and does
not grow indefinitely. Regarding the choice of electronic popu-
lation to use in FSSH, we have compared the three definitions
suggested in the literature (Pwf, PPAS and PMQC) and we have
shown that these definitions coincide when a decoherence
scheme is active.

In conclusion, we have established a well-founded set-up to
run fewest switches surface hopping simulation of charge
transport that converges electronic mobilities for different
timesteps and different system sizes and that achieves detailed
balance and good internal consistency.
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