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Machine learning prediction of coordination
energies for alkali group elements in battery
electrolyte solvents†

Atsushi Ishikawa, *abcd Keitaro Sodeyama, *acd Yasuhiko Igarashi,ae

Tomofumi Nakayama, e Yoshitaka Tateyama bce and Masato Okada e

We combined a data science-driven method with quantum chemistry calculations, and applied it to the

battery electrolyte problem. We performed quantum chemistry calculations on the coordination energy

(Ecoord) of five alkali metal ions (Li, Na, K, Rb, and Cs) to electrolyte solvent, which is intimately related to

ion transfer at the electrolyte/electrode interface. Three regression methods, namely, multiple linear

regression (MLR), least absolute shrinkage and selection operator (LASSO), and exhaustive search with

linear regression (ES-LiR), were employed to find the relationship between Ecoord and descriptors.

Descriptors include both ion and solvent properties, such as the radius of metal ions or the atomic

charge of solvent molecules. Our results clearly indicate that the ionic radius and atomic charge of the

oxygen atom that is connected to the metal ion are the most important descriptors. Good prediction

accuracy for Ecoord of 0.127 eV was obtained using ES-LiR, meaning that we can predict Ecoord for any

alkali ion without performing quantum chemistry calculations for ion–solvent pairs. Further improvement

in the prediction accuracy was made by applying the exhaustive search with Gaussian process, which

yields 0.016 eV for the prediction accuracy of Ecoord.

Introduction

Electrolytes are indispensable components of rechargeable
secondary batteries, and finding good electrolytes is a key issue
in the development of next-generation batteries.1,2 Currently,
electrolyte solvents for Li ion batteries (LIBs) have been established,
such as ethylene carbonate, propylene carbonate, dimethyl carbo-
nate, diethyl carbonate, and ethyl methyl carbonate. However, we
still have only limited knowledge about electrolyte solvents for other
metal ions (Na, K, Mg, Ca, etc.). Considering the limited Li resources
in the Earth’s crust, it is necessary to develop alternative batteries

that use more abundant metal ions. Thus, extending our knowledge
of LIBs to other systems, such as Na or K ion batteries, is critical for
future battery technology.3,4 Ideal batteries should possess high
voltage and high capacity, as well as fast charging/recharging. From
an atomistic perspective, in the charging/recharging processes the
ions are transferred between the anode and cathode, and thus ion
diffusion between the electrode and electrolytes determines the
charge–discharge rate.

The ion transfer between the electrolyte and the electrode
has a large impact on the ion transport of the whole battery.
The overall process of ion transfer between electrolyte and
electrode is complicated, mainly because of the formation of
the solid–electrolyte interface layer. Therefore, finding the
direct relationship between ion transfer efficiency and the
properties of isolated molecules is quite a challenging task.

In spite of these difficulties, several studies have shown that
the character of the single ion–solvent pair is useful for under-
standing the tendencies in the ion transfer at the electrolyte/
electrode interface. For example, the activation energy of electrolyte–
electrode Li transfer is largely influenced by the desolvation energy
of the ion from the electrolyte molecule.5,6 This suggests that ion–
solvent interaction is one of the important factors governing the ion
transfer phenomenon. In this context, the coordination energy of
the ion to the solvent (Ecoord) can be a good indicator for ion transfer
at the electrolyte/electrode interface. Indeed, several studies have
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investigated Ecoord of Li, Na, and K with various solvent molecules
using quantum chemistry methods.7,8 For this reason, the search
for battery electrolytes based on Ecoord would be an efficient and
important approach.

Recently, great advances have been made in machine learning-
based or data science-driven approaches. These approaches, in
combination with high-throughput theoretical calculations,
have also been applied to battery electrolytes.9–15 For example,
a computational screening of over 12 000 materials has been
reported for solid electrolytes in LIBs.16,17 Existing studies have
mainly focused on solid electrolytes, while investigations on
liquid electrolytes are limited.18,19 This is mainly because a solid
system has a rather rigid structure, thus extracting structural,
electronic, and energetic information from it is straightforward.
By comparison, a liquid system is much more flexible in terms
of molecular structure, making the extraction of structural
information more challenging.

In the present study, a machine learning-based technique,
in combination with quantum chemistry calculations, was
applied to the battery electrolyte problem, to derive an accurate
and efficient method to predict values of Ecoord. Here, we
consider coordination of alkali metal ions (Li, Na, K, Rb,
and Cs) to electrolyte solvents, and use Ecoord calculated by
quantum chemistry methods as the target properties. To the
best of our knowledge, computational evaluation of Ecoord for such
a wide range of alkali metals has not previously been reported. We
expect that the combination of computational chemistry and data
science-driven methods will be of great benefit in the search for
electrolytes for next-generation batteries. Extending our knowledge
of electrolyte solvents to metal ions other than Li would facilitate
the computational screening of materials in post-LiBs.

Theoretical background
Data science method

Predicting Ecoord with simple physical or chemical properties of
the solvent has two main advantages: (i) reduced cost of quantum
chemistry calculations, since the computation for the ion–solvent
complex is avoided, and (ii) it provides a fundamental under-
standing of the ion–solvent interaction, because it shows which
solvent properties are critical for estimating the Ecoord value. In
the present case, we can regard Ecoord and the solvent properties
as the target properties and descriptors, respectively. Finding the
relationship between these two sets is often called the variable
selection problem.

Among several approaches for variable selection, the simplest
one is multiple linear regression (MLR). However, MLR often
suffers from redundant descriptors when their number becomes
large. The sparseness of the variable space is useful to alleviate
this redundancy and avoids overfitting. Recently, sparse
methods, such as the least absolute shrinkage and selection
operator (LASSO), have been applied to many problems.20 Despite
its success, LASSO gives only one combination of descriptors,
which is not guaranteed to be the best among all possible pairs
of descriptors. In order to analyze the stability of the chosen

descriptor combination, examining combinations other than
the optimal one is informative.

Recently, we showed that the exhaustive search with linear
regression (ES-LiR) method, proposed and developed by Okada
and co-workers, is quite useful in this context.21–23 In the ES-LiR
method, all combinations of variable pairs are tested, guaranteeing
that the best pair should be found. Thus, the ES-LiR method is a
new and powerful solution for the variable selection.

Based on the above considerations, here, we applied the
MLR, LASSO, and ES-LiR methods to find the relationship
between Ecoord and solvent properties. The MLR was performed
by minimizing the least-squares error

E ¼
X
m

zm �
X
i

wix
m
i

 !
2 (1)

where z and xi (i = 1,. . ., Nvar) are the target value and the ith
explanatory variable, respectively, and Nvar is the total number
of variables. LASSO involves a penalty parameter (l) that is
linear in the error function:

E ¼
X
m

z�
X
i

wix
m
i

 !2

þ l
X
i

wij j (2)

If l is sufficiently large, some of the coefficients wi become
zero. This makes the model sparse with respect to explanatory
variables. To determine l, we used the tenfold cross-validation
error (CV error), that is, the whole data set was divided into
training and validating data in ten different ways. The ES-LiR
can be defined by introducing the indicator

c = (c1, c2,. . .,cN) C {0, 1}N (3)

where each variable ci is either 0 or 1. An indicator represents a
combination of non-zero explanatory variables, and using this
indicator the error in the ES-LiR can be written as

E ¼
X
m

zm �
X
i

wicix
m
i

 !
2: (4)

After making an exhaustive search of the 0–1 combinations in
ci, wi is found by minimizing the tenfold CV error.

The exhaustive search with Gaussian process (ES-GP) is also
an exhaustive search method, like ES-LiR.24 In ES-LiR, the
regression method is linear regression, while in ES-GP it is a
Gaussian process (GP).25 In the GP, the predicted value is
written as

E ¼
X
m

zm � kmðcÞT KðcÞ þ s2I
� ��1n oT

y

� �
2 (5)

where

km(c) = (k(x1,xm),. . .,k(xn,xm))T (6)

k(xn,xm) = exp(�b|xn(c) � xm(c)|)2 (7)

is a kernel function with hyperparameter b, (x1,. . .,xn) are
training data, n is a number of training data, xn(c) is a vector

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

8 
N

ov
em

be
r 

20
19

. D
ow

nl
oa

de
d 

on
 7

/1
9/

20
25

 2
:4

6:
00

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9cp03679b


This journal is© the Owner Societies 2019 Phys. Chem. Chem. Phys., 2019, 21, 26399--26405 | 26401

which is the only element with ci = 1 extracted from the nth
sample xn, eqn (8)

K(c) = {k(xn,xx)}n,x (1 r n, x r n) (8)

is the kernel matrix, s is a variance of noise, I is an identity
matrix and y = (y1,. . .,yn)T is a target variable of training data. By
minimizing E, optimal s, b, c are found.

Quantum chemistry calculation

For the electrolyte solvent database, we selected 70 solvents
taken from commercialized battery-grade materials from KISHIDA
Chemical Co., Ltd.26 The full list of electrolyte solvents examined is
shown in Table S1 (ESI†). The electrolyte database is close to the
one used in ref. 21. Some experimental data are included as
descriptors here, namely, the melting point, boiling point, and
density taken from ref. 26 The metal ions are described by their
experimental ionic radii.

In the present study, Ecoord was defined by the following
formula

Ecoord = Eion–solv � (Esolv + Eion) (9)

where Eion–solv, Esolv, and Eion are the total energies of the ion–
solvent system, the solvent energy, and the ion energy, respectively.
The total energy is defined as the sum of the electronic and
nuclear repulsion energies.

Density functional theory (DFT) was used in the electronic
structure calculation. M06-2X was used for the exchange–correlation
functional, since this functional is reported to accurately predict the
thermodynamic properties of main group elements.27,28 The
Def2-SVP basis set was used for all the elements, and the
pseudo-potential was used for K, Rb, and Cs.29 Another alkali
ion, Fr, is omitted in this work because it is unstable and
radioactive, thus not relevant for batteries. Atomic charges were
calculated by the natural population analysis method proposed
by Weinhold et al., using the NBO 6 program.30 All the calculations
were performed with Gaussian16.31

For the descriptors or explanatory variables, the following
were used as ‘computational’ descriptors: energies of the highest
occupied molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO), dipole moment, natural bond orbital
(NBO) charge of the O atom that coordinates to the metal ion,
total energy (i.e. electronic energy plus nuclear repulsion), and
total dipole moment. From an atomic/molecular perspective, the
ion–solvent interaction can be understood as an acid–base
interaction, since the ion works as a hard acid and the solvent
works as a hard or soft Lewis base. Common organic electrolyte
solvents have alkoxy or carbonyl groups, and in these cases the O
atom works as the Lewis base site. For this reason, we assumed
that the ion coordinated to this O atom. Also, the NBO charge on
the coordinating O atom was included in the descriptors. For the
optimized geometries of the cation-coordinated system, see Fig.
S1 in the ESI.† The computational properties of the solvent are
obtained by DFT calculation of the pure solvent, i.e. without ions.
All the experimental and computational descriptors for the
solvent molecules are shown in Table 1.

Results and discussion

First, we discuss the accuracy of the three methods to estimate
the true (i.e. DFT-calculated) Ecoord values. Here, the data set
includes all the Ecoord data (i.e. coordination of Li, Na, K, Rb,
and Cs to solvent molecule). In other words, solvent descriptors
and ion descriptors were independently made and combined to
form the whole data set. Since we have 70 solvents, the Ecoord

data set consists of 5 � 70 = 350 points.32

Our calculated Ecoord values for Li, Na, K, Rb, and Cs are
summarized in the bar chart in Fig. 1, and the selected
numerical values for Ecoord are shown in Table 2. The range
of Ecoord for the five ions are: Li �1.32 to �2.91 eV (mean value:
�2.20 eV), Na�0.88 to �2.18 (�1.60), K�0.61 to �1.73 (�1.20),
Rb �0.55 to �1.60 (�1.11), and Cs �0.46 to �1.44 eV (�0.98).
Thus, the Ecoord of metal ions can be ranked as Li 4 Na 4
K B Rb 4 Cs.

Next, we examined the regression of Ecoord from the solvent
and ion properties. Fig. 2 demonstrates a good correlation
between Ecoord values calculated by DFT and those estimated
by ES-LiR. The CV error for ES-LiR in Fig. 2 was 0.127 eV. This is
only 5.7% for the average Li coordination energy, indicating
that the regression formula from ES-LiR gives accurate results.
We also observe that the prediction accuracy tends to be lower
at Ecoord o �2.5 eV. As we shall see later, the important
descriptors are the O charge and the total dipole. The deviation
from this regression formula indicates other effects, for example,
large distortion of the ion–solvent complex would contribute to
large Ecoord values.

The accuracy of the estimation methods can be evaluated by
the CV errors. The smallest CV error calculated with the MLR,
LASSO, and ES-LiR methods was 0.1280, 0.1278, and 0.1271 eV,
respectively. These values are shown in Table 3, together with
selected combinations of descriptors. Values in Table 3 suggest
that ES-LiR gives the smallest CV error and thus the best
prediction accuracy, although the differences between the three

Table 1 Descriptors of solvents and ions used in the present study.
‘Experimental’ and ‘computational’ mean descriptors taken from experi-
mental values or calculated by DFT, respectively

Experimental Cations: ionic radius, electronegativity, atomic weight
Solvents: boiling point, melting point, flashing point,
density

Computational Solvents: NBO charge on coordinating O atom,
HOMO energy, LUMO energy, total dipole moment,
total energy, molecular weight

Fig. 1 Ecoord values of 70 solvents and five ions (Li, Na, K, Rb, and Cs).

PCCP Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

8 
N

ov
em

be
r 

20
19

. D
ow

nl
oa

de
d 

on
 7

/1
9/

20
25

 2
:4

6:
00

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9cp03679b


26402 | Phys. Chem. Chem. Phys., 2019, 21, 26399--26405 This journal is© the Owner Societies 2019

methods are moderate. It is well known that the CV error is
intimately related to the choice of descriptors. Since the ES-LiR
examines all combinations of descriptors, it is always guaranteed
to choose the best combination. In all three regression formulae,
the ionic radius of the metal ion has the largest coefficient and
thus it is the most important descriptor. This can be understood in
terms of Pearson’s hard–soft acid–base rule, which states that the
smaller ion has hard acid character. The positive coefficient of
ionic radius in Table 3 indicates that smaller ions give the smaller
Ecoord values (thus the stronger ion–solvent interaction). After the
ionic radius, the NBO charge on the O atom coordinating to the
ion has the second largest coefficient. Since the ion–solvent

interaction mainly has an electrostatic cationic–anionic char-
acter, a more negative O charge leads to a stronger interaction
and thus a larger Ecoord value. This conclusion is the same as in
our previous work, in which the O atomic charge is the most
important descriptor for the Li coordination on electrolyte
solvent molecules.21 We also found that the total dipole has a
relatively large coefficient. This adds to the charge–charge
electrostatic interaction via charge–dipole interaction, so this
also contributes to the ion–solvent interaction.

Another important difference among the three regression
methods is the sparseness of the regression formula. In MLR
and LASSO, all descriptors have some non-zero coefficients,
and thus these methods are the least sparse among the three.
Contrary to these two methods, ES-LiR gives a more sparse
regression formula because three descriptors (HOMO energy,
melting point, and density) have zero coefficients. This indicates
that the regression formula given by ES-LiR is the most accurate
of the three methods, and at the same time its physical and
chemical meanings are the easiest to interpret.

Up to now, our discussion is based on the optimal combination
of descriptors that minimize the CV error. Estimation accuracy for
other descriptor combinations can also be found using the ES-LiR,

Table 2 DFT-calculated Ecoord of Li, Na, K, Rb, and Cs for 23 selected
solvents

Solvent

Ecoord (eV)

Li Na K Rb Cs

Ethylene carbonate �2.343 �1.747 �1.365 �1.272 �1.135
Propylene carbonate �2.399 �1.789 �1.397 �1.307 �1.165
Vinylene carbonate �2.179 �1.610 �1.246 �1.157 �1.025
Fluoroethylene carbonate �2.128 �1.569 �1.210 �1.129 �1.001
Dimethyl carbonate �2.068 �1.454 �1.078 �0.968 �0.842
Diethyl carbonate �2.130 �1.492 �1.106 �1.010 �0.877
Ethyl methyl carbonate �2.114 �1.488 �1.108 �1.006 �0.878
Furan �1.320 �0.884 �0.605 �0.545 �0.461
Tetrahydrofuran �2.047 �1.454 �1.065 �0.978 �0.851
Ethyl acetate �2.206 �1.574 �1.185 �1.083 �0.950
Isopropyl acetate �2.222 �1.585 �1.187 �1.093 �0.958
Methyl propionate �2.138 �1.524 �1.133 �1.030 �0.896
Methyl formate �2.011 �1.444 �1.082 �0.981 �0.861
Vinyl acetate �2.052 �1.454 �1.076 �0.984 �0.857
Sulfolane �2.481 �1.879 �1.450 �1.350 �1.200
Dimethyl sulfoxide �2.905 �2.183 �1.725 �1.590 �1.427
Cyclohexanone �2.259 �1.654 �1.265 �1.158 �1.025
Benzaldehyde �2.177 �1.570 �1.188 �1.085 �0.958
Benzyl benzoate �2.758 �2.139 �1.682 �1.591 �1.441
Diphenyl ether �1.625 �1.120 �0.758 �0.738 �0.638
Acetone �2.190 �1.600 �1.219 �1.117 �0.987
Chloroacetone �1.938 �1.399 �1.047 �0.964 �0.845
Methyl acrylate �2.195 �1.570 �1.178 �1.069 �0.938

Fig. 2 Comparison between Ecoord calculated by DFT (x-axis) and that pre-
dicted by ES-LiR (y-axis). The diagonal line corresponds to a perfect match.

Table 3 Coefficient of descriptors in the three regression formulae (MLR,
LASSO, and ES-LiR) with the smallest CV error, and their CV errors

MLR LASSO ES-LiR

Ionic radius 0.6637 0.6542 0.6637
Electronegativity 0.1612 0.1569 0.1612
Atomic weight �0.0986 �0.0930 �0.0986
NBO charge of Oatom 0.1832 0.1751 0.1860
HOMO energy 0.0121 0.0111 0.0000
LUMO energy 0.0260 0.0248 0.0273
Total dipole �0.1467 �0.1420 �0.1475
Total energy �0.1384 �0.1261 �0.1476
Boiling point �0.0956 �0.0941 �0.0977
Flashing point 0.1154 0.1034 0.1182
Melting point �0.0202 �0.0151 0.0000
Molecular weight �0.1156 �0.1051 �0.1215
Density 0.0249 0.0270 0.0000
CV error 0.1280 0.1278 0.1271

Fig. 3 The number of counts for the CV error (i.e. histogram) for various
descriptor combinations. The orange, green, and red symbols show the
smallest CV errors for ES-LiR, LASSO, and MLR, respectively.
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because this method examines all combinations of descriptors.
The number of counts in the descriptor combination within a
fixed CV error range can be summarized by the histogram in Fig. 3,
where descriptor combinations that reduce CV error to below 0.14
are rather rare. From this, we can infer that the combination of
particular descriptors is important for achieving accuracy.

This issue can be analyzed with the linear coefficient of the
accurate regression formula. This is another important piece of
information obtained by ES-LiR. The plot of linear coefficients
for ten descriptor combinations that give low CV errors is
shown in Fig. 4. We call this the ‘weight diagram’, where each
color represents the magnitude of the fitted coefficient. Since
we can find the contribution of descriptors for several combinations
of them, the stability of the important descriptors can be found
from the weight diagram. We consider that analysis with several
regression formulae is important, because multicollinearity often
occurs in the linear regression model; inspecting the descriptor
weights for multiple combinations of regression models is more
robust than analysis based on a single regression model.

In the weight diagram, the ionic radius has the largest
contribution to the regression formula in all descriptor combi-
nations. Thus, this property is the most important and also
most stable descriptor in the Ecoord prediction, as stated above.
Since the ionic radius is the most important descriptor in all
top 20 descriptor combinations, it is also the most stable one in
the present descriptor set. The next important descriptor is the
NBO charge of the coordinating O atom, which is also a stable
descriptor among the 20 combinations. Other descriptors, such
as dipole moment, boiling point, and density, are also important,
but their stability is not as high as the ionic radius or the solvent O
NBO charge.

We also note that the atomic weights of cation species have
large weight. The atomic weight works as a secondary factor for
the ionic radius, as can be confirmed by carrying out the ES-LiR
without the ionic radius; in this case the atomic weights have
the largest weight in the regression formula. However, the calculated

CV error is considerably higher (0.2807 eV), indicating that the
ionic radius does much better in the linear regression model.

Finally, we applied the ES-GP method for Ecoord prediction.
The ES-GP method, like ES-LiR, examines all the possible
combinations of descriptors, while regression of the target value
is done with the Gaussian process. This includes the non-linear
terms of the descriptors, which were not taken into account in
the ES-LiR method. According to this feature, we can expect
higher prediction accuracy with ES-GP, which was already
shown in our previous study.24 Here, the same data set used
for ES-LiR was used for ES-GP. We used the following seven
descriptors in the ES-GP; ionic radius, NBO charge, total dipole
moment, total energy, boiling point, melting point, and density.
We selected these descriptors as they minimize the CV error of
the ES-GP prediction; the dependence of the CV error on the
number of descriptors is shown in Fig. S2 in the ESI.†

In Fig. 5, we compare the Ecoord values calculated by DFT
and predicted by ES-GP. The CV error for ES-GP was 0.016 eV,

Fig. 4 Weight diagram for the descriptors of top 20 combinations with small CV error in ES-LiR. Descriptors with coefficients smaller than 10�10 shown
in white box.

Fig. 5 Comparison between Ecoord calculated by DFT (x-axis) and pre-
dicted by ES-GP (y-axis). The diagonal line corresponds to a perfect match.
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which is significantly better than that for ES-LiR (0.127 eV). The
accuracy of the ES-GP method is 1.54 in kJ mol�1 unit, which is
sufficient for most purposes for battery-related study. From
these results, we can conclude that the combined use of ES-LiR
and ES-GP is advantageous in obtaining good physical or
chemical intuition and achieving high prediction accuracy.

Conclusions

Exploration of new electrolyte solvents is key for next-generation
batteries. To this end, data science-driven techniques combined
with computational chemistry are an up and coming powerful
tool. In the present study, the coordination energy (Ecoord) of
alkali metal ions to battery electrolyte solvent was calculated by
DFT for Li, Na, K, Rb, and Cs ions and 70 solvents. Additionally,
the calculated Ecoord was used as the target property in the regression
using MLR, LASSO, and ES-LiR methods. This enables the prediction
of Ecoord for various ion species using only the properties of the ion
and the solvent.

Ecoord calculated with DFT using M06-2X show that the ion–
solvent interaction is in the order of Li 4 Na 4 K B Rb 4 Cs,
with the mean Ecoord values of �2.20, �1.60, �1.20, �1.11, and
�0.98 eV. We then constructed regression models to predict
Ecoord from ion and solvent descriptors (melting point, flashing
point, HOMO energy, LUMO energy, NBO atomic charge, total
energy, total dipole moment, and metal ionic radius). We found
that the ES-LiR gives the best accuracy for Ecoord, since its cross-
validation error was 0.127 eV. Even higher accuracy (0.016 eV)
can be obtained with ES-GP. This suggests that accurate prediction
of Ecoord is possible even if solvent descriptors and ion descriptors
are independently formed. The ionic radius is the most important
descriptor since it has the largest coefficient in the regression
formula. Other descriptors, such as NBO charge on the solvent O
atom or total dipole, are also important. This result can be easily
understood as the ion–solvent interaction is mainly electrostatic in
nature. The weight diagram from ES-LiR revealed that the impor-
tance of the ionic radius and O atom NBO charge as descriptors is
stable over many regression formulae.

This study has shown that combined use of computational
chemistry and data-driven science can be an efficient and
accurate tool for coordination energy prediction. We succeeded
in showing that this approach can be applicable to any alkali
metal ion coordination. The constructed regression models are
accurate enough for practical use in the search for battery
electrolytes. These features will be important in developing
post-Li next-generation batteries.
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