Issue 24, 2019

Reply to the ‘Comment on ““Where does the fluorescing moiety reside in a carbon dot?” – Investigations based on fluorescence anisotropy decay and resonance energy transfer dynamics”’ by H. C. Joshi, Phys. Chem. Chem. Phys., 2019, 21, DOI: 10.1039/c9cp00136k

Abstract

The claim that the analysis regarding resonance energy transfer should have been made using different equations than those that we have used is negated based on the following points: (1) we are well aware of the equations the author has provided in his comment. The equation (eqn (3) mentioned below) that the author has written is undoubtedly too simple to describe the complex system delineated in our original paper. This particular equation is perhaps OK for simple dye (donor and acceptor) systems; however, such a simple equation is never enough for nanoparticle/quantum dot systems. (2) Another equation suggested by the author in his comment (eqn (2)) contains a parameter called donor concentration in excited state. We have categorically described in page 6–7 of our original paper why it is difficult to measure the donor concentration accurately even in the ground state. When the donor concentration can't be known accurately it can't be used in the suggested equation. (3) Donor–acceptor distance calculated by eqn (3)/Table 1 provided by the author deviates more than 100% from the distance that is physically feasible. Such kinds of problems are well documented in the literature. (4) One of the papers cited by the author in his comment and many other published papers clearly mention that in the case when all donor molecules/particles do not take part in the resonance energy transfer process or the stoichiometry of a donor–acceptor complex is not known or deviates strongly from 1 : 1, especially in quantum dots or any other nanomaterial system, it is not possible to extract accurate dynamical information related to RET from donor decay. Instead risetime of acceptor yields much more accurate information. Such situations do arise in our system as well.

Associated articles

Article information

Article type
Comment
Submitted
02 Apr 2019
Accepted
21 May 2019
First published
06 Jun 2019

Phys. Chem. Chem. Phys., 2019,21, 13370-13373

Reply to the ‘Comment on ““Where does the fluorescing moiety reside in a carbon dot?” – Investigations based on fluorescence anisotropy decay and resonance energy transfer dynamics”’ by H. C. Joshi, Phys. Chem. Chem. Phys., 2019, 21, DOI: 10.1039/c9cp00136k

A. Das, D. Roy, C. K. De and P. K. Mandal, Phys. Chem. Chem. Phys., 2019, 21, 13370 DOI: 10.1039/C9CP01668F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements