Issue 27, 2019

Physical origin underlying the prenucleation-cluster-mediated nonclassical nucleation pathways for calcium phosphate

Abstract

The involvement of prenucleation clusters (PNCs) in crystallization from a supersaturated solution has been recently admitted within the framework of nonclassical nucleation theory; however, little is known about PNCs, at the quantitative level, for their formation mechanism and stability, the new phase formed by them, as well as their impact on nucleation barriers. Herein, using the sophisticated free energy calculations with a cumulative simulation time of over 5 μs, we identify a thermodynamically favored pathway of the PNC-mediated nucleation for calcium phosphate, starting with the ion pair association in solution. We demonstrate that such an ion association occurs not only between cations and anions, but also for the polyatomic species with charges of the same sign, which, in fact, leads to PNC formation via the consecutive coordination of the phosphate ions to calcium. The free energy decomposition calculations illustrate that the water phase is capable to either hinder or promote ion association for the abovementioned processes, and its specific role is intricately related to the characteristics of the hydration shell around calcium ions. The favorable interactions between the highly charged species play a crucial role in stabilizing the PNC complexes and the aggregates formed by PNCs. Furthermore, our present work reveals that the uptake of an extra calcium ion is the first and mandatory step to trigger PNC aggregation into amorphous calcium phosphate (ACP) by eliminating the related free energy barriers. Our theoretical study successfully provides quantitative explanations to a large set of experimental data in the field, which is currently under intense discussions associated with the nonclassical nucleation mechanism. The combination of computational methods developed in our present work offers a feasible and general solution to quantitatively and systematically study ion associations and crystal nucleation/growth in an aqueous solution at the atomic level, which are normally inaccessible to most of the existing experimental acquisitions.

Graphical abstract: Physical origin underlying the prenucleation-cluster-mediated nonclassical nucleation pathways for calcium phosphate

Supplementary files

Article information

Article type
Paper
Submitted
15 Feb 2019
Accepted
02 Apr 2019
First published
03 Apr 2019

Phys. Chem. Chem. Phys., 2019,21, 14530-14540

Physical origin underlying the prenucleation-cluster-mediated nonclassical nucleation pathways for calcium phosphate

X. Yang, M. Wang, Y. Yang, B. Cui, Z. Xu and X. Yang, Phys. Chem. Chem. Phys., 2019, 21, 14530 DOI: 10.1039/C9CP00919A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements