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1 Introduction

One- (1D) and two-dimensional (2D) crystalline materials are
among the most popular topics in contemporary materials
science. While graphene and carbon nanotubes (NTs) have
become paradigms of these families, new members are being
continually proposed and experimentally characterized, and
the array of potential applications has not ceased to expand.

Among non-elemental compounds, transition-metal dichal-
cogenides (TMDs) have attracted significant attention. TMDs follow
the formula TX,, where T is a transition metal from groups IV-VI
(e.g Mo, Ti, Nb), and X is a chalcogen (S, Se, or Te). They crystallize
in several different bulk phases, all of which consist of covalently
bonded layers held together by weaker interactions. This fact opens
the door to exfoliation to obtain large-area single layers." In
particular, monolayer (ML) TMDs have been extensively studied
as direct-band-gap semiconductors.”> Even long before the
rediscovery of graphene, early observations of the polyhedral
and cylindrical structures of WSe, led to the proposal that it
could be unstable in a planar structure and spontaneously
assemble into a fullerene-like or NT form.®> MoS, NTs were
synthesized three years later.*

The properties of TMD NTs depend on their diameter and
chirality. Computational studies have shown that zigzag (Z2Z)
MoS, NTs, like the corresponding ML, are direct-band-gap
semiconductors, while armchair (AM) MoS, NTs show an
indirect gap like the bulk 2H phase.” The gap width varies
from almost 0 eV to 1.5 eV depending on the diameter and
strain.® The tunability has aroused interest for applications in
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transport, can be easily and successfully reconstructed by this procedure.

nano- and optoelectronics, where absorption could be shifted
from the near infrared (IR) range to the visible one. Further
applications include valleytronics, as 2D field-effect transistors
(FETs), logical circuits and amplifiers.”® The first actual device
based on MoS, NTs, with diameters of 20 nm to 100 nm
and lengths 1 um to 2 um, is a FET with mobilities up to
0.014 cm® V* s and an on/off ratio® of 60. General perspectives
on the challenges and opportunities for a number of potential
applications in the fields of lubrication, high-performance nano-
composites, sensors, renewable energy, energy storage, and
catalysis are discussed in recent reviews.>'°"?

A central question for the characterization of 1D and 2D
systems is their stability, and vibrational properties are one of
the key elements determining it. Not only is a fully real phonon
spectrum a requirement for mechanical stability, but the vibra-
tional free energy can also alter the order of thermodynamic
stability."® Furthermore, in addition to their singular electronic
features, 1D and 2D systems have attracted attention because of
their thermal transport properties, especially in connection with
the important problem of heat dissipation in nanodevices. Part
of this appeal is due to the extremely high thermal conductivity
of graphene'* " and carbon NTs."”° As in the case of stability,
characterizing the thermal transport properties of a material
requires a detailed understanding of its phonon physics.

The phonon spectrum of the MoS, ML has been characterized
both using semi-empirical potentials®® and from first principles,*
with the latter article also calculating its thermal conductivity. The
phonon spectra of MoS, NTs have also been studied using both
families of methods.®**** However, a significant stumbling block
for calculations comes from the particular features of the phonon
dispersions of 1D and 2D systems. Electronic structure programs
typically fall into one of two categories: those designed to work
on crystals, with periodic boundary conditions along every axis,
and those that focus on aperiodic systems like molecules.
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Regarding symmetry, the former typically implement space
groups and the latter point groups. Therefore, none of them
adequately supports the subperiodic groups required to deal
with systems that are only periodic in one or two dimensions.

Translational symmetry guarantees that, for long enough
wavelengths, phonons from any of the three acoustic branches in 3D
periodic systems have a linear dispersion relation. In contrast,
crystals that are only periodic along one spatial axis have four
acoustic branches: two linear ones and two quadratic ones. Likewise,
systems periodic along two axes have a single quadratic branch,
corresponding to vibrations along the non-periodic direction, and its
existence is guaranteed by rotational symmetry. Unfortunately, the
periodic boundary conditions employed in electronic structure
calculations introduce violations of this fundamental symmetry.
Typical manifestations of the problem are spurious imaginary
frequencies close to the I' point.”>? It is therefore important to
correct such artifacts, which can have a significant effect on derived
quantities like thermal conductivity or lead to a mischaracterization
of the mechanical stability of a system. To overcome this issue,
two very different approaches have been devised. A first possibility is
to exploit the fact that continuum theory can provide the long-
wavelength limit of the acoustic modes, and to use electronic-
structure software to estimate the elastic parameters defining
those.”®*” A second approach consists in finding the maximum
projection of the interatomic-force-constant (IFC) tensor on a sub-
space of internal coordinates that cannot express rigid translations
or rotations, hence removing the artifactual elements introduced
by periodic boundary conditions and recovering the phonon
dispersions that fulfill the physical constraints by construction.>

Here we apply a consistent, ab initio methodology to illus-
trate the connection between the phonon spectra of the MoS,
NTs and both the continuum limit and the spectrum of the
corresponding ML. We analyze the symmetry of the NT phonon
modes, both in terms of their chirality and their irreducible
representations (irreps), to associate them to those of the ML.
The agreement observed between the ML and large-radius NTs
makes it reasonable to reconstruct the ML acoustic bands
based on the phonon frequencies of the NTs at the I" point.
We exploit the connection between the phonon spectra of the
NTs and that of a ML to show that IR and Raman measure-
ments, which can only provide data about optical branches at
the I' point, on single-walled NTs can be used to extract key
features of the phonon spectrum of the ML. Thereby informa-
tion on the acoustic branches at q # 0 can be obtained which
would otherwise require data from more specialized measure-
ment methods like inelastic neutron scattering.?® Finally, we
calculate the thickness- and chirality-dependent ballistic pho-
non transmission and compare it to that of the ML.

2 Methods

2.1 Nanotube construction

We build NTs by “rolling up” a rectangular section of the
honeycomb lattice MoS, ML. This conceptual process is illu-
strated in the top panel of Fig. 1. The “rolling-up” operation
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Fig. 1 Top: Schematic description of how NTs are conceptually built from
an infinite monolayer of a honeycomb lattice. Cy, is the chiral vector and T
defines the tube axis. a; and a, are a particular choice of basis vectors for
the lattice. The atomic motif of MoS; is not represented. Bottom: Lateral
and top views of a monolayer of MoS,, along with a view of a (12,0) NT.

can more precisely be described as a conformal mapping between
coordinates on a plane and coordinates on a cylinder.”® A particular
MoS, NT is characterized by two orthogonal vectors: T, which
defines the axis of the tube, and the chiral vector Cj,, whose norm
determines the diameter. Either vector can be conveniently
expressed on the {a;,a,} basis represented in the figure. In
particular, an infinitely long NT is completely specified by the
pair of integers (n4,n,) required to define C;, = ma; + ma,.
Although NTs of any chirality can in principle be defined, the
most interesting families in practice are (1,0) (ZZ) and (n,n) (AM)
NTs. We restrict this study to those two classes. We built the
ZZ NTs with n € {6,9,12,24}. The (6,0) NT turns out to be
mechanically unstable as evidenced by abundant imaginary
modes in its phonon spectrum. Furthermore, we built the AM
NTs with n € {6,9,12,17}.
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2.2 First-principles calculations

We obtain the second-order IFCs for the MoS, ML and NTs using
density functional theory (DFT) calculations. Specifically, we employ
the VASP® implementation of the projector-augmented-wave
formalism,>* and the Perdew-Burke-Ernzerhof approximation to
the exchange and correlation energy.*> We choose 4p®5s'4d® and
3s”3p* as valence configurations for Mo and S, respectively, and a
plane-wave cutoff energy of 252 eV. For the MoS, ML we obtain
a relaxed lattice parameter of 3.18 A, only slightly higher than the
low-temperature experimental value of ~3.12 A.** We perform an
additional VASP run for the ML to estimate the elastic parameters
using density functional perturbation theory (DFPT).

The procedure for each system starts with an energetic
minimization to find the equilibrium ionic positions. We use
a 17 x 17 x 1 Monkhorst-Pack grid for the MLand a4 x 1 x 1
grid for the NTs. We add 10 A of empty space to the unit cell
along each of the non-periodic directions to reduce spurious
interactions between copies of the system, and we check that
the results are well converged with respect to this parameter by
repeating some selected calculations with 15 A of padding.
Once the minimume-energy coordinates are known, we use
Phonopy® to generate a symmetry-reduced set of displaced
configurations for supercells with sizes 8 x 8 x 1 (for the ML) or
4 x 1 x 1 (for the NTs). After using VASP again to obtain the
forces on atoms in each of those configurations, we rebuild the
matrix of IFCs with Phonopy. In the case of NTs, we post-
process that matrix to extract a minimal set of constants
corresponding to the reduced motif discussed in Section 3.1.
For the ML we use a force-constant projection scheme to
symmetrize the force constants.>® In 1D it is straightforward
to extrapolate the ZA branch quadratically towards the I" point
from points that are free from artifacts.

2.3 Symmetry analysis

We start from the Cartesian dynamical matrix for each value of
g and use projection operators to transform it to a block-
diagonal form where each block corresponds to a different
irreducible representation (irrep) of the symmetry group of the
NT.** Specifically, we build an unnormalized incomplete pro-
jection operator of irrep J as the following sum over all
symmetry operations (O) in the group:

Py = ZXJ(O)@v 1)
]

where ¢ is the linear operator performing the operation O on the
3N-dimensional space of atomic displacements of the NT unit cell,
and y/(0) is the character of O for irrep J. We then extract an
orthonormal basis for the columns of %, using a singular value
decomposition based on interpolative methods,*® and project the
dynamical matrix on that basis. The eigenvalues and eigenvectors
of the resulting block describe the vibrational modes transforming
according to irrep J.

2.4 The continuum limit

In the ¢ — 0 (or long-wavelength) limit, the phonon branches
of a NT enter the domain of validity of continuum theory, i.e.,
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the low-frequency branches become analogous to the vibrational
modes of a rod.?” In this long-wavelength limit, explicit disper-
sion relations can be obtained for the acoustic branches, as well
as a value for the the RBM frequency, taking only the energy of
the ML deformation into account:””

ot = qyfen(l =) /o (2a)
ot = 4v/ess/o (2b)

w2 = ¢/RROen [l + D/ (cn R /2 (2¢)
oram = Veii/o /R (2d)

Here, ¢y, is the in-plane diagonal element of the strain-stress
relationship, ce6 describes the elastic response to in-plane shear,
o is the surface mass density of the ML, f§ = 1-2c¢e6/c11 is the
in-plane Poisson’s ratio, D is the flexural rigidity of the ML, 4 is
the linear mass density of the NT, and R is its radius.

3 Results & discussion
3.1 Vibrational dynamics of NTs

When periodicity is only considered along the direction of T,
the normal modes of a NT can be indexed by a wave number g,
along the periodic direction and by a phonon branch index;. In
this description, a NT is obtained by translation of a large
atomic motif [Fig. 1] and hence there is a very large number of
phonon branches. A more compact description is obtained by
expressing the dynamical matrix in the planar coordinate
system [Fig. 1] where the NT is translationally symmetric in
two independent directions. In this revised description, the
helical symmetry of the NT is harnessed to reduce the motif to
three atoms, the same number as in the ML. The corresponding
vibrational modes are indexed by means of three numbers
(s, j, m).>® Here, g, is the continuous wave number along the
NT axis and the branch indexj runs from 1 to 9. m is a discrete
angular pseudo-wave-number running from —n to n and
describes how the phase of the vibration changes under appli-
cation of the helical transformation. It plays an important role
in the context of anharmonic phonon scattering, where selec-
tion rules link the values of m for three-phonon processes.>®
Fig. 2 shows the phonon band structure of the ML together
with those of the two largest-diameter NTs studied here. In the
simplest picture, the phonon band structure of the NTs can be
viewed as a projection of the slices of the 2D ML band structure
onto the 1D Brillouin zone (BZ) of the NTs. To see this, denote
the reciprocal basis of the ML by {b;,b,} and observe (see inset
in Fig. 2) that the phonon wave vectors parallel to the NT axis
are parallel to the b, and b, + 2b, vectors of the (n,0) and (n,n)
NTs respectively. In Fig. 2 we mark the m = 0 and m = n
branches of the two thickest NTs with bold lines and observe
a good correspondence with the corresponding branches of the
ML. The main exception is the quadratic ZA branch of the ML.
It is evident from the start that the ML ZA branch transforms
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Fig. 2 Phonon spectra of 1D and 2D MoS,. The left pane shows the spectrum of the (17,17) NT and the right pane shows that of the (24,0) NT, plotted
from the I' point to the edge of the Brillouin zone. Branches for the NT are colored according to the absolute value of m with dark blue corresponding to
m = 0 and red corresponding to m = n. Branches with m = 0 and m = n are highlighted in bold. The central figure shows the spectrum of the monolayer.
The states are colored according to the corresponding m value in the two NTs. The ML Raman and IR active modes are labeled by their irreps in blue and
red respectively. The Raman- and IR-active modes of the NTs are also marked with blue and red lines next to the I' points.

differently from the other acoustic branches. Perhaps most
notably, if one rolled up a piece of ML vibrating according to
the q — 0 limit of its ZA branch, the result would not be a NT
vibrating according to one of its ZA branches. Instead, all atoms
would vibrate in phase inwards or outwards. In other words,
one would obtain a NT vibrating according to its radial breathing
mode (RBM) with a non-zero frequency. In the continuum limit
this branch is expected to be flat around I" and converge slowly
towards o = 0 with the NT radius [eqn (5)]. One can identify this
branch around 4 meV for the two NTs.

3.2 Line groups of the NTs

While the “rolled-up sheet” view directly relates the NT band-
structure to that of the ML, more insight into the nature of each
quantum number is gained by an alternative method to arrive
at the (g, j, m) description. The method is based on the irreps
of the line groups formed by the symmetry operations of the
NTs,**™*! and presents several advantages. Most importantly, it
provides selection rules for Raman and IR activity.”>*> Further-
more, it reveals the parity of each mode with respect to inversions
across the symmetry planes containing the axis [in the (7,0) case] or
perpendicular to it [in the (n,n) case], a symmetry which had not
entered our analysis so far.

The (n,0) NTs belong to the L(2n),mc group and four one-
dimensional, ;A, 4A,, 4Bo, and (B, and 2n — 2 two-dimensional
irreps, 4E,, with 1 < |m| < n — 1, need to be considered for
each value of g in the BZ. Among the one-dimensional irreps,
modes belonging to A are even and modes belonging to B
are odd with respect to inversion across a symmetry plane
containing the NT axis. The subscript denotes the value of m in
each case. At the I" point, modes transforming according to (A,
and (E, are IR-active, while those transforming according to (B,

5218 | Phys. Chem. Chem. Phys., 2019, 21, 5215-5223

and (E, are Raman-active.*® Due to time-reversal symmetry, the
frequencies only depend on |m]|.

The (n,n) NTs belong to the L(2n),/m group. For a ¢ not at the
center or the edge of the BZ, all irreps are two-dimensional,
¢'E, with 0 < |m| < n. At I' each of those can be further
reduced according to parity with respect to inversion across the
plane perpendicular to the NT axis, giving rise to the one-
dimensional irreps oAy, and (A;,. Hence, IR and Raman activity
analyses must be performed in terms of one-dimensional
irreps. Modes transforming according to oA; and (A; are IR
active, while those transforming according to (Ag, ¢A; and (Aj
are Raman active.”® Table 1 summarizes this information for
both kinds of NTs.

The symmetry analysis makes it straightforward to identify
the acoustic branches which can be related to the continuum
limit and the modes of the ML. Specifically, the frequencies of
the two lowest-lying branches with m = 0 become linear func-
tions of g, as the LA and TA modes of a beam. In light of the
parities introduced above, for (,0) NTs the lowest-lying branch
in ,A, tends to the longitudinal acoustic branch, whereas the
lowest-lying branch in ;B, converges to the transverse acoustic
branch. For (n,n) NTs, in a neighborhood of I' the LA and TA
branches both emerge from ;7E,. Exactly at I' the LA branch

Table 1 Irreps of the infrared- and Raman-active modes of MoS, NTs
ZZ nanotubes AM nanotubes
m=0 IR oAo oo
Raman oBo oo
|m| = IR oE1 oA7
Raman %) oAy
|m| =2 IR %) %)
Raman oE> oA
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will connect to the zero-frequency vibrational mode in A, and
the TA branch will connect to the zero-frequency vibrational
mode in (A;. For both kinds of NT, the next m = 0 branch in
order of frequency has a nonzero horizontal asymptote in the
g — 0 limit, corresponding to the RBM of a beam, rod or tubule,
whereas the two degenerate lowest-lying branches with |m| = 1
converge to the quadratic ZA branches. In (n,0) NTs both ZA
branches belong to ,E;, whereas for (n,7) NTs one ZA branch
emerges from each of the ; 9E,. They are still degenerate because
of the time-reversal symmetry, which is not part of the line group.

To illustrate the advantages of this method for calculating the
phonon spectrum of a NT over the more usual approach that
only takes into consideration the space group of the three-
dimensional crystal formed by the NT and the simulation cell,
in Fig. 3 we compare the results of both techniques for the case
of the (17,17) MoS, NT, focusing on the low-energy part of the
spectrum. At least six kinds of artifacts can be identified, all of
which are avoided by the symmetry-based analysis. The 3D
calculation enforces the homogeneity but not the isotropy of
free space, meaning that one of the acoustic branches is mis-
identified as optical, with a non-zero frequency at I'. Further-
more, the two ZA branches are incorrectly described: in the case
shown, they contain “pockets” of imaginary frequencies in the
long-wavelength limits which mistakenly point to a mechanical
instability of the system. More generally, the basic parameters of
the acoustic branches, including the speed of sound, are grossly
mispredicted. Finally, branches which should be degenerate
because of the discrete rotational symmetries are split.

3.3 The continuum limit

We start by assessing how well the continuum model of ref. 27
describes the acoustic branches and the RBM for the NTs

1.50 4 I—
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Fig. 3 Detail of the vibrational spectrum of the (17,17) MoS, NT showing
the main types of artifacts introduced by a calculation that treats it as a 3D
crystal (gray lines) vs. our symmetry-adapted approach (colored lines):
(1) there are three acoustic branches instead of four, (2) artifactual pockets
of imaginary frequencies appear close to the I' point, (3) degeneracies
are spuriously broken, (4) crossings/avoided crossings are mispredicted,
(5) the ZA branches are not quadratic, and (6) large errors are introduced in
the predicted speeds of sound. Naturally, only with the symmetry-adapted
method can one assign a value of |m| to each branch.
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Table 2 Radii, group velocities of the LA and TA branches, second-order
coefficient of the ZA branch, and frequency of the radial breathing mode
near the I' point. The predictions of the “rolled-up sheet” model from
ref. 27 are included in parentheses

laz(/)ZA

2 og? q=0 WRrBM
(mn) RA) vea Aps™) ma@Bps™) (A2rad'ps™!) (rad ps™)
(9,00 53 323(39.1) 54.5(64.3) 249 (254) 14.2 (12.4)
(6,6) 5.8 29.9(39.1) 56.4(64.3) 270 (276) 11.7 (11.5)
(12,00 6.7 33.8(39.1) 589 (64.3) 313 (317) 10.6 (9.90)
(9,99 83 35.6(39.1) 56.7(64.3) 387 (390) 8.04 (8.00)
(12,12) 10.7 36.4 (39.1) 61.9 (64.3) 504 (508) 6.22 (6.13)
(24,0) 12.5 41.5(39.1) 63.0 (64.3) 530 (588) 5.25 (5.28)
(17,17) 15.1 36.1(39.1) 61.1(64.3) 310 (708) 4.42 (4.38)

studied here. The DFPT calculation yields elastic constants of
¢11 =135 Nm ' and ¢g = 51.6 N m™* for the ML. These are
corroborated from the values extracted from the LA and TA
speeds of sound in the ML, ¢;; =133 N m™ * and cg = 46.5 Nm .
The corresponding Poisson’s ratio f§ = 0.24 is very close to the
value of 0.25 reported by other authors.** Using the calculated
values for the ML, we evaluate the derivatives for the NTs in the
continuum limit [eqn (2)] and give the results in Table 2.

The decomposition in terms of irreps makes it possible to
identify the lowest m = 0 bands as the TA, LA and RBM and the
lowest m = 1 band as the ZA of the NTs. Consequently, the
group velocities and second-order coefficients can be extracted
directly from the phonon spectra and compared to the con-
tinuum predictions [Table 2]. For the thinner NTs, the devia-
tions are considerable and in general the agreement gets better
with increasing diameter. Two different types of circumstances
may contribute to this: local strain not completely captured by
elasticity theory, and nonlocal interactions with parts of the
sheet brought closer by the process of rolling up the NT.
Thinner NTs deviate the most from the cylindrical geometry
with uniform curvature, and have a shorter average interatomic
distance that promotes interactions between different seg-
ments. The effect is more noticeable in the case of the TA
branch, which involves displacements in the azimuthal direc-
tion, while the LA branch involves displacement along the z
direction, which is not affected by the rolling-up. The frequen-
cies of the RBM are predicted fairly accurately and their order is
perfectly aligned with the w oc R ' prediction of eqn (2¢). An
exception to the general trend of better agreement between the
continuum and atomistic predictions for thicker radii happens
for the parabolic ZA branches, whose second derivative seems
to be severely mispredicted for the (24,0) and (17,17) NTs.
However, this disagreement essentially reflects that the quad-
ratic part of the ZA branches covers only a small interval in the
neighborhood of I', after which they hybridize with the other
acoustic branches [Fig. 2].

3.4 Raman and IR activity

In Fig. 2 the Raman and IR active modes are marked. As can be
seen the highest optical branches of the NTs are predicted to be
Raman active. For the (24,0) NT they transform according to the
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oE, irrep, whereas for the (17,17) NT two modes near the band
edge transform according to (A and (A;. In the ML the highest
optical branch transforms as A,” and is Raman inactive [Fig. 2].
In this respect it is interesting that the Raman spectrum of
the related WS, NT shows a clear peak at around 420 cm ™"
(52 meV),*® corresponding to the highest optical branch (located
at 57 meV in MoS,). This illustrates how the ML does not
necessarily provide a good description of the symmetry and
spectroscopic behavior of the NT vibrations. The same experi-
mental data show what is presumably a combination mode
approximately 60 cm ™" (7 meV) above the band edge in the IR.*>
The symmetry analysis shows that both types of NTs have IR
active low-lying modes in the frequency range from 4-9 meV.
As will be discussed in the following, these correspond to the I"
point but m # 0 modes of the NTs and thus to off-I" point
modes in the ML.

The different IR and Raman activity, but overall agreement
between the ML and large-radius NT bands [Fig. 2] makes it
interesting to investigate the relation further. As mentioned
above, phonon wave vectors parallel to the NT axis are parallel
to the b, and to b, + 2b, vectors for the (n,0) and (n,n) NTs,
repectively. The m # 0 modes thus correspond to phonon

modes in the ML with a projection of 21 = — along an axis
Toon

perpendicular to the NT axis, which are defined by b, and b, +
2b, for the (n,n) and (n,0) NTs. In Fig. 4 we plot the frequencies
of all IR- and Raman-active modes at the I point of the NTs,
and compare them with the acoustic branches of the MoS, ML
plotted along the corresponding directions, with the relevant
wave number (m, or the corresponding component of q)
reduced to the same scale. Given the values of |m| < 3 of all
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o m
Raman- and IR-active irreps, the 21 = u value of the detect-
T n

able modes depends fundamentally on the value of n and
thereby on the NT radius. This explains why points towards
the right of both panels in Fig. 4 deviate more clearly from the
bulk phonon bands. They correspond to NTs with smaller
diameters, and thus are more affected by the curvature and
inter-segment interactions. For smaller values of g the active
vibrational modes of the NTs trace the linear acoustic branches
of the bulk very closely. This is, however, not the case for the ZA
branch of the ML, whose curvature is much higher than what a
naive reading of the NT results would suggest, even if restricted
to the same range of g values that give good results for the
linear branches. Hence, understanding and accounting for this
deviation is the crucial step missing if one wants to reconstruct
the most relevant features of the acoustic branches of ML MoS,.

We have already mentioned how the RBM has full rotational
symmetry (m = 0) while the ZA branches of the NT belong to
irreps with m = 1. Hence, the approximation to the ZA branch of
the ML reconstructed from a single NT by sampling the corres-

ponding modes at I" and taking % :% will not have a mini-

mum at m = 0, but two minima at m = £1, making it a poor
estimate of the actual ML phonon branch. Moreover, the fre-
quency of the RBM at ¢ = 0 does not depend on the flexural
rigidity of the ML [eqn (2d)], which determines the curvature of
the ZA branch of the ML [eqn (2¢)], but on the speed of sound of
the linear branches. This suggests the possibility of devising a
scheme to eliminate that effect and extract a corrected curvature.

For each of the low-lying triangles in Fig. 4 corresponding to
the NT branches with |m| = 2 that we would like to use to
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IR- (red) and Raman- (blue) active modes at I' for all the NTs studied. The phonon branches of the bulk monolayer along the corresponding

direction in reciprocal space (see the main text) are plotted for comparison. The horizontal axis represents a dimensionless wave number:|m|/n for the
NTs and a projection between 0 and 1 along the reciprocal lattice vector perpendicular to the NT axis for the monolayer. For modes with m = 0 we only

show the points obtained for the thickest NTs.
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reconstruct the ZA branch of the bulk, we define a “corrected g”
as Q = 2n(|m| — my) fin. Here, f is a predefined factor with the

values 1 and /3 for the AM and ZZ NTs, respectively, and m, €
(0,1) is a uniform offset. The f prefactor ensures that all wave
numbers are measured in the same units, in keeping with the
reciprocal-space basis discussed above. m, accounts for the
nonzero RBM frequency, and becomes less relevant with
increased n, consistent with the continuum limit [eqn (2d)].
We then fit the frequencies of those points to a parabola of the

2m

result is shown in Fig. 5. The fitted value of m, is 0.69, and the
curvature of the ZA branch close to I' is in excellent agreement
with the actual calculation. It is important to emphasize that
the curve is not fitted to the ML data, but to the Raman-active
frequencies of the NTs. The introduction of fallows us to obtain
better statistics for the fit by including both types of NTs in the
same plot, and is consistent with the prediction of an isotropic
curvature in eqn (2c).

An interesting question when trying to apply this set of
techniques to obtain information about the spectrum of other
2D crystals is which NTs to choose. Is it likely that some
preexisting constraints exist: for instance, NTs of a particular
chirality might be easier to synthesize. However, some general
guidelines can be formulated. Firstly, although large NTs should,
in principle, provide a better approximation of bulk-like beha-
vior, and sample the monolayer dispersions at points closer to I',
our example shows that NTs with diameters in the nm scale can
afford very good results. Using smaller NTs has the advantage
that the frequencies to be measured are larger and more spaced.
Moreover, the isotropy predicted by eqn (2c¢) can be exploited by
combining data from NTs with different chiralities to obtain
more points in the same range of frequencies and therefore a
better characterization of the ZA branch of the monolayer.

2
form w = k(g> , with k and m, as fitting parameters. The

—— Monolayer ZA branch
—— Reconstruction

010 015 020  0.25

Corrected q / (2m)

0.05

Fig. 5 Reconstruction of the ZA branch of monolayer MoS; based on the
low-lying points with |m| = 2 from Fig. 4, after applying the correction
described in the main text. Note that the blue curve is fitted to the orange
points and not to the reference bulk band (gray) but manages to reproduce
the curvature of the latter.
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3.5 Phonon transmission

In order to perform a more global comparison between the
spectrum of the NTs and that of the bulk, we compute the
ballistic phonon transmission in the Landauer formalism,
T(w). This is both a count of the number of phonon modes
available to transfer energy at a particular frequency, and an
upper bound to the transmission in a defect-laden NT.***”
Hence it is also an important variable in assessing the suit-
ability of the NTs for heat transport. In 1D systems the ballistic
transmission can be computed directly from the definition:
each branch wj(g;) is evaluated on a dense g-point grid and split
into monotonic segments that can be inverted to give g(w); the
number of such functions available at a particular frequency is
the transmission. For the ML one can only define a number of
phonon transmission channels per unit of length in the direc-
tion perpendicular to transport. This transmission per unit
length is easily reformulated as:

1 1

110 =33 | oo - ol viola 6)

Here, v;(q) is the group velocity of phonons of branch j at the
point q in the Brillouin zone, and u is a unit vector determining
the direction under study. We use a 250 x 250 grid for sampling
the bands, and regularize each Dirac ¢ to a I distribution using
the same adaptive broadening scheme described in ref. 48. To
make the ballistic transmissions of the MoS, ML and the NTs of
any diameter more readily comparable, we reduce the latter by
the perimeter of the NT.

Fig. 6 shows the result for all transmissions per unit length.
The NTs with the largest diameters show an almost perfect ML-
like transmission in the part of the spectrum below ~30 meV
(corresponding to the acoustic branches of the bulk ML) thanks
to the contributions of higher values of |m|. This is to be
expected since thicker NTs are locally closer to a planar
structure and also less affected by the discretization of m, but
it is still remarkable that the (9,9) is already close to the bulk
in this region. In contrast, even for those thicker NTs the high-
energy region of the phonon spectrum has marked discrepan-
cies with the ML and a clear dependence on size and chirality.
This phenomenon is most clearly observable by focusing on the
region from 30 meV to 36 meV, a gap devoid of allowed phonon
modes in the ML: in the (12,12) NT the gap is shifted to the left,
while in the (12,0) NT it appears shifted to the right, with a
second gap at a slightly lower frequency, and in the (9,9) NT it
almost disappears due to the appearance of a new bundle of
branches in that region of the spectrum.

The pieces of information obtained above (speeds of sound
of the TA and LA branches, and second derivative of the ZA
branch) can be used to build a Debye-like model to obtain a
first approximation to the phonon transmission. The contribu-
tion to the density of states per unit cell from a phonon branch
whose dispersion follows a power law of the form o = «g" is

2
Aye wn”!
_ e 4
8(0) =5 "~ (4)

on
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Fig. 6 Ballistic phonon transmission of all stable NTs studied in this work, normalized to the perimeter of each NT and decomposed in contributions
from each value of [m|. The ballistic phonon transmission per unit length of the monolayer and an approximation based on a Debye-like model (dashed
red line) using the first nonzero derivative of each branch at I' are included for comparison.

where A, is the area of the 2D unit cell, and its contribution to
the transmission can be obtained from eqn (3):

()

We drop the subscript since for MoS, the transmission is the same
in the zigzag and armchair directions. We obtain a Debye frequency
wp for each of the three acoustic branches such that the integral of
eqn (4) over [0,wp] is equal to 1, with the results Zwr, = 30.8 meV,
hwza = 55.2 meV and w4 = 77.0 meV. The approximation to the
bulk transmission thus obtained is shown in the last panel of
Fig. 6. The low-frequency behavior is clearly dominated by the ZA
branch and the approximation is of reasonable quality in the range
of the acoustic bands. However, the fact that this Debye-like model
neglects the change towards a zero derivative of the branches as
they approach the Brillouin zone boundary leads to a clear over-
estimation of the band edges, with the acoustic contribution to the
transmission encroaching into the optical region.

4 Conclusions

We have performed ab initio calculations for the phonon
dispersions of the MoS, monolayer, and for a set of zigzag
and armchair MoS, nanotubes with different radii. We have
employed a method based on symmetry-adapted projection
operators that clearly splits the numerous phonon branches
among irreducible representations of the line group of each NT
and determine which of them are infrared- or Raman-active.
Based on these results and on the connections between the
phonon branches of quasi-2D materials and the continuum
theory of elastic waves, we have proposed a method to recon-
struct the slopes of the two linear branches and the second
derivative of the quadratic acoustic branch of a 2D ML based on
measurements of the corresponding NTs. The proposed
method has the advantage of relying only on Raman and
infrared measurements of modes at the I' point, which are
more easily accessible than specialized techniques like inelastic

5222 | Phys. Chem. Chem. Phys., 2019, 21, 5215-5223

neutron scattering that can offer a more comprehensive picture
of the ML phonon bands. We have tested the proposed method
on MoS,, showing a very good agreement with direct ab initio
calculations. Finally, we have used the reconstructed branches
to create an estimate of the phonon transmission of single-layer
MoS,, which provides a reasonable level of accuracy in the low-
energy region.

Our method and results provide an alternative method to
access information about the low-frequency vibrational modes
of 2D materials that is difficult to measure directly. Those
pieces of information act as a first fundamental building block
and a way to test models of their thermal transport properties,
which are crucial in several applications. Furthermore, we have
provided a detailed example of a symmetry-based approach for
the phonon spectrum of a relatively complex family of nano-
tubes, which significantly reduces the complexity of the pro-
blem and provides important additional information about the
results.
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