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Hybrid QSPR models for the prediction of the free
energy of solvation of organic solute/solvent
pairs†

Tohid N. Borhani, a Salvador Garcı́a-Muñoz, b Carla Vanesa Luciani,b

Amparo Galindo a and Claire S. Adjiman *a

Due to the importance of the Gibbs free energy of solvation in understanding many physicochemical

phenomena, including lipophilicity, phase equilibria and liquid-phase reaction equilibrium and kinetics,

there is a need for predictive models that can be applied across large sets of solvents and solutes. In this

paper, we propose two quantitative structure property relationships (QSPRs) to predict the Gibbs free

energy of solvation, developed using partial least squares (PLS) and multivariate linear regression (MLR)

methods for 295 solutes in 210 solvents with total number of data points of 1777. Unlike other QSPR

models, the proposed models are not restricted to a specific solvent or solute. Furthermore, while most

QSPR models include either experimental or quantum mechanical descriptors, the proposed models

combine both, using experimental descriptors to represent the solvent and quantum mechanical

descriptors to represent the solute. Up to twelve experimental descriptors and nine quantum mechanical

descriptors are considered in the proposed models. Extensive internal and external validation is

undertaken to assess model accuracy in predicting the Gibbs free energy of solvation for a large number

of solute/solvent pairs. The best MLR model, which includes three solute descriptors and two solvent

properties, yields a coefficient of determination (R2) of 0.88 and a root mean squared error (RMSE) of

0.59 kcal mol�1 for the training set. The best PLS model includes six latent variables, and has an R2 value

of 0.91 and a RMSE of 0.52 kcal mol�1. The proposed models are compared to selected results based on

continuum solvation quantum chemistry calculations. They enable the fast prediction of the Gibbs free

energy of solvation of a wide range of solutes in different solvents.

Introduction

The Gibbs free energy of solvation is a fundamental thermo-
dynamic property relevant in chemical, biological, pharmaco-
logical and environmental processes due to its relation to a
variety of physical properties such as Henry’s law constants,
infinite dilution activity coefficients, solubility, and distribution of
species in demixed solvents. In solution chemistry, the Gibbs free
energy of solvation influences reaction equilibrium constants and
reaction rates.1 Consequently, it has been the focus of many
studies, from the creation of extensive databases2–5 to the
development of predictive methods and their assessment (e.g.,
Klamt,6 Lin and Hsieh,7 Nicholls et al.,8 and Fingerhut et al.9).

The Gibbs free energy of solvation of a solute i in a solvent j
is defined as the difference between the free energy of solute i

in solvent j at temperature T and pressure P and its free energy
in the gas phase at the same temperature and pressure, where
care needs to be taken in defining the standard states in the gas
and liquid phases.10 Here, we focus on the Gibbs free energy of
solvation at infinite dilution, DGs

ij(T,P), which corresponds to
the limit of one molecule of i (i.e., infinite dilution), as is most
commonly reported in the literature,11 and which can be
calculated as a residual chemical potential or in terms of the
liquid-phase fugacity coefficient.12 Note that in the remainder
of this paper, the term ‘‘infinite dilution’’ is sometimes omitted
when referring to the free energy of solvation, but this is always
implied.

Given the central role of DGs
ij in understanding solvation

phenomena, the need often arises to obtain the Gibbs free
energy of solvation of compounds for which no experimental
data are available, simply because measurements have not yet
been carried out or because the compound of interest has not
been synthesized, is transient in nature (e.g., reaction inter-
mediates and transition states) or difficult or dangerous to
handle. As a result, considerable effort has been devoted to the
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development of reliable predictive models. Existing methods to
predicting solvation free energies can be classified into three
main categories: (i) quantum mechanical (QM) methods (explicit,
implicit, hybrid); (ii) classical methods (molecular simulations,
equations of state and activity coefficient models); and (iii) empirical
methods (quantitative structure property relations (QSPR)/group
contribution method (GCM), linear solvation energy relationships
(LSER)/linear free energy relationships (LFER)/theoretical linear
solvation energy relationships (TLSER)). While it is beyond the
scope of this article to review the literature on free energy of
solvation prediction, we highlight a few key contributions in which
the predictive accuracy of available methods has been investigated
for a range of solute/solvent systems.

Continuum solvation (or implicit) QM models incorporate a
detailed treatment of the electronic structure of the solute and
make it possible to account, via a bulk electrostatic term, for
the polarization and conformational changes that can arise in a
solute due to the presence of a field induced by the solvent
dielectric. Given the ab initio nature of at least part of the
calculation, continuum solvation models are applicable to a
wide variety of solutes, including neutral and ionic compounds,
and even transient species such as reaction intermediates and
transition states. Among implicit QM methods, the polarizable
continuum model (PCM),7,13 the solvation models (SM),11,14–17

and the conductor-like screening model for realistic solvation
(COSMO-RS)4,7,18 and related approaches9,19 have been used
extensively for the prediction of free energies of solvation.

The SM series of methods consists in continuum (implicit)
solvation models that have been parameterized based on an
extensive set of experimental data of free energies of solvation.15

The most recent version of the SM models, SMD,11 was reported
to have a mean unsigned error (MUE) of 0.6–1.0 kcal mol�1 in
the free energy of solvation based on a study of 2346 solute/
solvent pairs involving 318 neutral solutes and 91 solvents.
Zanith and Pliego20 have recently investigated the predictive
capabilities of SMD and its precursor SM8 for 77 data points
corresponding to the Gibbs free energy of solvation of a number
of solutes in methanol, DMSO (dimethyl sulfoxide), and aceto-
nitrile, three common solvents. They reported a root mean squared
error (RMSE) of 0.53 kcal mol�1 in acetonitrile, 0.83 kcal mol�1

in methanol and 1.22 kcal mol�1 in DMSO for SMD and
0.69 kcal mol�1 in acetonitrile, 0.71 kcal mol�1 in methanol
and 1.05 kcal mol�1 in DMSO for SM8. It is worth noting that not
all the data considered in the comparison had been included in
the parameterization of SMD; in particular, no data in methanol
had been used by Marenich et al.11 in its development.

Several studies of the prediction of Gibbs free energies of
solvation with COSMO-RS have also been carried out. Klamt
and Diedenhofen21 reported an RMSE of 1.56 kcal mol�1 for the
prediction of the free energies of hydration of 23 compounds,
while Reinisch et al.22 predicted the free energies of hydration
of 36 components including chlorinated alkanes, biphenyls
and dioxins. They obtained an overall RMSE of 1.05 kcal mol�1.
Reinisch and Klamt23 investigated 47 complex multifunctional
compounds and reported an overall RMSE of 1.46 kcal mol�1

(and 1.18 kcal mol�1 when removing the dominant outlier).

In a broader study, Klamt et al.24 predicted the free energies of
solvation for the SM8 test set of 2346 solute/solvent pairs,
reporting a MUE of 0.48 kcal mol�1. Klamt and Diedenhofen25

proposed an alternative approach, direct COSMO-RS (DCOSMO-
RS), and evaluated it for the same data set, obtaining an overall
MUE of 0.7 kcal mol�1. In addition, Fingerhut et al.9 investigated
the predictive capabilities of COSMO-SAC 2010 26 and COSMO-
SAC-dsp27 for over 29 000 infinite dilution activity coefficients,
reporting mean absolute relative deviations of 96% and 85% for
the two methods, respectively. While the metrics of model perfor-
mance considered in these various studies differ, it appears that an
average error of approximately 1 kcal mol�1 or less can be expected
in the calculation of the Gibbs free energy of solvation when using
continuum solvation QM models.

There are several approximations that arise when developing
or applying continuum solvation models.28 These vary from
model to model but may include: the arbitrary partitioning of
the free energy of solvation; the use of a simplified representation
of the solvent that makes it difficult to account for specific
interactions; the reliance on the user to identify specific con-
formations of the solute as input, making it difficult to account
reliably for the multiple solute conformations that occur in
solution. Overcoming these limitations within a QM framework
often requires the use of explicit methods,29 where a finite number
of solvent molecules are modelled explicitly; this approach is
associated with a significant increase in computational cost. As a
less demanding strategy, hybrid QM/MM methods have attracted
considerable attention recently; the reader is referred to Wood
et al.,30 and König et al.31,32 for further information on these
methods.

Many authors have studied the use of classical molecular
simulation methods for the prediction of free energies of solvation.
With molecular simulation methods, the computational cost of
treating the solvent molecules explicitly is more tractable than
when using an explicit QM representation of the system. The
accuracy of these calculations is however reliant on the availability
of an accurate force field for the system of interest. The accuracy
that can be achieved has been explored in a few systematic studies.
Thus, McDonald et al.33 applied Monte Carlo simulations/free
energy perturbation (FEP) to obtain absolute Gibbs free energies
of solvation in chloroform for 16 organic molecules, reporting
an average error in predicted free energies of solvation of
0.8 kcal mol�1. Monte Carlo simulations have also been carried
out by Duffy and Jorgensen34 for more than 200 organic solutes
in aqueous solution, using the OPLS-AA force field augmented
with CM1P partial charges. They also derived descriptors such
as solute-water Coulomb and Lennard-Jones interaction energies,
solvent-accessible surface area and numbers of donor and acceptor
hydrogen bonds, and correlated these to Gibbs free energies
of solvation in hexadecane, octanol and water. The RMSEs for
the predicted Gibbs free energies of solvation of 68 solutes in
hexadecane, 85 solutes in octanol and 85 solutes in water were
0.43, 0.64, and 0.87 kcal mol�1, respectively. Gonçalves and
Stassen35 used a molecular dynamics approach that combines an
explicit model of the solution with an implicit solvation model to
compute the Gibbs free energies of solvation of different small
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molecules in three solvents. They reported a mean unsigned error
of 0.50 kcal mol�1 for 23 solutes in chloroform, 0.49 kcal mol�1

for 21 solutes in carbon tetrachloride and 0.78 kcal mol�1 for
17 solutes in benzene. Mobley et al.36 computed the Gibbs free
energies of hydration of 504 small organic molecules using an
all-atom force field in explicit water, obtained a RMSE of
1.24 kcal mol�1. Shivakumar et al.37 used molecular dynamics
free energy perturbation simulations with explicit water molecules
to compute the absolute hydration free energies of a set of
239 small molecule, finding a high coefficient of determination
(R2 = 0.94) and a mean unsigned error of 1.10 kcal mol�1. The
FreeSolv database,4,38 which contains, in version 0.5 (Duarte
Ramos Matos et al.4), experimental hydration free energy values
for 643 small neutral molecules, has been used to assess the
suitability of the alchemical method MBAR39 to predict hydration
free energies, finding a RMSE of 1.4 kcal mol�1. In principle,
molecular simulation methods can provide a more accurate
representation of solvation than continuum solvation QM models,
because specific interactions are considered and sufficiently large
numbers of molecules are used to enable an explicit statistical
mechanical treatment of the mixture thermodynamics. However,
the force fields employed may have limited transferability and
often do not incorporate a treatment of polarizability, which may
be an important contribution to the Gibbs free energy of solvation.
It is also challenging to model certain solutes of interest such as
transition states. Furthermore, the computational cost of these
methods can often be much greater than that of continuum
solvation QM calculations.

A further alternative for the calculation of the Gibbs free
energy of solvation is the class of group contribution (GC)
models, which consists of GC equations of state (e.g., SAFT-g
Mie12,40,41) and GC activity coefficient models (e.g., UNIFAC,42

modified UNIFAC43). These models can be used to predict
solvation properties provided the relevant group parameters
have been parameterized. Computations with such models are
extremely fast and are applicable over the entire composition
range. As a result, model accuracy has largely been evaluated
based on entire phase diagrams rather than based on infinite
dilution properties, and there are few extensive studies of the
prediction error in Gibbs free energies of solvation. Voutsas
and Tassios44 evaluated several versions of UNIFAC using 600
data points for infinite dilution activity coefficients at various
temperatures and found that the best performance was
achieved with the modified UNIFAC of Gmehling et al.,43 with
average absolute relative errors (AARE) ranging between 3%
and 23.6% depending on the class of compounds. In their
comprehensive study, Fingerhut et al.9 also investigated the
predictive capability of original UNIFAC42 and modified UNI-
FAC (Dortmund).43 They found better overall performance than
with the COSMO-based approaches studied, with AAREs in
the infinite dilution activity coefficients of 73% and 58% for
UNIFAC and modified UNIFAC, respectively. While GC methods
are computationally inexpensive, their applicability is limited by
the need to obtain group–group interaction parameters from
experimental data and by the inability to model transient
species such as transition states.

Finally, data-driven methods have also received attention
due to their simplicity and ease of application.45 In QSPR
approaches, the relationship between molecular properties (or
descriptors) and the Gibbs free energy of solvation is expressed
in the form of a linear or nonlinear expression46 of the following
general form:

Property = f (solvent or/and solute parameters/descriptors).

There are two main types of QSPR models, namely theory- and
experiment-based. Theory-based QSPR models can be developed
using molecular descriptors such as topological indices, geometric,
quantum mechanical, and thermodynamic quantities.47,48 The
importance of QM descriptors in chemometric studies and
their applications have been reviewed and discussed by several
authors.49–52 Certain group contribution methods (GCMs), in
which the equations do not have any physical basis (in contrast
to the equation of state/activity coefficient methods described
earlier), can also be classed as theory-based QSPR methods, by
postulating that any property can be expressed as a function
of some predefined structural features such as atoms, bonds,
chemically relevant groups, and larger fragments of the molecules.53

Well-known experiment-based QSPR models are the linear solvation
energy relationships (LSER models) in which the descriptors are
physical properties, such as solvatochromic parameters and
Hildebrand solubility parameters, and are usually obtained
from experimental measurements. This can limit the predictive
capability of the approach, although it has been shown that
the relevant properties in LSER can sometimes be derived
from GCMs.54,55 Furthermore, a theoretical version of linear
solvation energy relationships, TLSER, in which theoretical
quantum mechanical descriptors replace empirical ones has
been presented.46

Different statistical and regression methods (linear and non-
linear approaches), such as multivariate linear regression
(MLR), partial least squares (PLS), principal component regression
(PCR), genetic programming (GP), and artificial neural network
(ANN) can be used to derive QSPR/LSER models.56,57 In addition,
several algorithms such as genetic algorithm (GA), stepwise
forward selection, and particle swarm optimization (PSO) can be
employed in these studies to reduce the number of descriptors.58

There have been a number of attempts to develop the empirical
models for the prediction of Gibbs free energies of solvation.
The vast majority of the studies to date have been focused on
developing models for a range of solutes in a given solvent
(usually water) or for a given solute in a range of solvents.
Models that are applicable to a single solvent are by far the most
common. For example, using water as a solvent, Michielan et al.59

combined autocorrelation molecular electrostatic potential (auto
MEP) descriptors with a response surface analysis (RSA) to develop
their model. They used 271 organic molecules as solutes and
divided the dataset into a training set of 248 data points and a
testing set of 23 data points. For the training set, their model was
found to have a determination coefficient of 0.99 and a RMSE
equal to 0.069 kcal mol�1. For the test set (23 data points) the
determination coefficient found was 0.92. Bernazzani et al.60 used
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a recursive neural network (RNN) to predict the Gibbs free energy
of hydration of 339 solutes from 16 different chemical classes.
They obtained an absolute residual of about 0.24 kcal mol�1 and a
standard deviation of 0.43 kcal mol�1. Delgado and Jaña61 focused
on octanol as the solvent, and modelled the Gibbs free energy of
solvation of 147 components using a QSPR approach. They
used the MLR method to develop their model based on three
descriptors and obtained a determination coefficient of 0.93
and with a standard deviation of 0.57 kcal mol�1.

In what is perhaps the broadest QSPR study so far, Katritzky
et al.53,62 derived QSPR models of solubility for different solutes
and solvents, and then related the solubility to the free energy
of solvation. Their first approach was based on calculations of
the Ostwald solubility of a series of solutes in a single solvent,
for 69 different solvents, therefore obtaining 69 solvent-specific
equations (MLR models). The number of solutes included in
the regression for any given solvent varied from 14 to 226. Since
the solvent was constant in each model, only solutes descriptors
were used in each MLR model. The authors calculated the
natural logarithm of the Ostwald solubility coefficient, ln L,
and then related this to the Gibbs free energy of solvation.
The standard deviations for the 69 models ranged from 0.06 to
0.80 kcal mol�1. In their second paper,62 new models were
developed to predict ln L (and subsequently the Gibbs free
energy of solvation) for a single solute in a series of solvents.
Eighty solutes were found to have experimental data across a
sufficiently large range of solvents (14 or more solvents) to

enable model regression and thus 80 MLR equations were
derived. Since the solute was constant in each model, only
solvent descriptors were used in this case. The standard deviations
for the 80 models ranged from 0.02 kcal mol�1 to 0.60 kcal mol�1.

The systematic studies reported here and the corresponding
performance indicators are summarized in Table 1. Although a
range of data sets were used to derive error metrics and the
scope of the various methods differs, QSPR approaches appear
promising in terms of their predictive capability and relatively
low computational cost. In principle, theory-based QSPR
approaches can be applied to a wide range of compounds since
they rely on the calculation of molecular descriptors at the
quantum mechanical level. However, the QSPR methods proposed
to date are limited by the imposition of a fixed solvent or a fixed
solute. In the current study, we propose a new methodology to
construct QSPR models that can be used to predict the free energy
of solvation for any solute/solvent pair for which the relevant
descriptors are available. The methodology is a hybrid between
theory-based and experiment-based QSPR methods. The effects
of both solute and solvent on the Gibbs free energy of solvation
for the pair are accounted for by adopting several quantum-
mechanical descriptors for the solute and several experimental
descriptors for the solvent, and combining these in an additive
way. The use of quantum mechanical descriptors for the solute
thus makes it possible to model a very wide range of solutes,
including those for which no experimental data are available.
On the other hand, experimental descriptors (bulk thermo-

Table 1 Selected systematic studies of methods for the prediction of Gibbs free energies of solvation. RMSE refers to root mean squared error (defined
in eqn (5)), AARE% to percentage average absolute relative error (eqn (6)), MUE to mean unsigned error (eqn (8)), and SD to standard deviation. AARE%*
indicates that the AARE% was calculated with respect to the infinite dilution activity coefficient rather than the Gibbs free energy of solvation

Method Source Solutes Solvents
Data
points

Error
measure

Error
(kcal mol�1

or %)

SMD Marenich et al.11 318 91 (including water) 2346 MUE 0.6–1
SMD Zanith and Pliego20 51 methanol, DMSO,

acetonitrile
77 RMSE 0.53–1.22

COSMO-RS Klamt et al.24 318 91 (including water) 2346 MUE 0.48
COSMO-RS Klamt and Diedenhofen21 23 Water 23 RMSE 1.56
COSMO-RS Reinisch et al.22 36 Water 36 RMSE 1.05
DCOSMO-RS Klamt and Diedenhofen25 318 91 (including water) 2346 MUE 0.7
COSMO-SAC 2010 Fingerhut et al.9 — — 429 000 AARE%* 96%
COSMO-SAC-dsp Fingerhut et al.9 — — 429 000 AARE%* 85%
Monte Carlo simulations/free
energy perturbation

McDonald et al.33 16 Chloroform 16 MUE 0.8

Monte Carlo simulations Duffy and Jorgensen34 68–85 3 238 RMSE 0.43–0.87
Molecular dynamics simulations
with implicit solvation

Gonçalves and Stassen35 17–23 3 RMSE 0.49–0.78

Alchemical molecular dynamics Mobley et al.36 504 Water 504 RMSE 1.24
Molecular dynamics free energy
perturbation

Shivakumar et al.37 239 Water 239 MUE 1.10

MBAR Duarte Ramos Matos et al.4 643 Water 643 RMSE 1.4
Modified UNIFAC (Dortmund) Voutsas and Tassios44 — — 600 AARE%* 3–23.6%
UNIFAC Fingerhut et al.9 — — 429 000 AARE%* 73%
Modified UNIFAC (Dortmund) Fingerhut et al.9 — — 429 000 AARE%* 58%
QSPR Michielan et al.59 248

(test set: 23)
Water 248 RMSE 0.069

Recursive neural net Bernazzani et al.60 339
(test set: 60)

Water 339 MUE
(test set)

0.24

QSPR Delgado and Jaña61 147 Octanol 147 SD 0.57
QSPR Katritzky et al.53 69 14–226 3208 SD 0.06–0.80
QSPR Katritzky et al.62 80 14–82 2409 SD 0.02–0.61
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dynamic properties) are chosen for the solvents, recognising
that the range of solvents that are typically of interest is smaller
than that for solutes and that experimental properties account
for condensed phase behaviour in a way that is not achievable
with QM descriptors. Correlation analysis is first applied to
identify relationships between the descriptors. QSPR models
are then developed using the PLS and MLR methods. Validation
techniques are applied to check the validity and reliability of the
presented models. The results are compared to experimental
data and to the results of other methods from literature.

The remainder of the paper is organised as follows. First, the
methodology adopted in this study is described, including the
datasets, resources and methods used to obtain the solvent and
solute descriptors are discussed. The analysis and modelling
methods (PLS and MLR) used in the study are also introduced
briefly. In the next section, the results of the PLS and MLR
methods are presented and analysed based on the use of
different validation methods. Subsequently, selected model
predictions are compared with those of other methods reported
in the literature to provide a broader basis for analysis. The
findings of this study are summarised in the final section.

Methodology

The methodology typically used in QSPR/QSAR studies consists of the
following steps: the collection or measurement of property data
points (here, the free energy of solvation), the collection or computa-
tion of descriptor data, the analysis of the data to ensure its suitability
(e.g., the application of methods such as correlation analysis), the
training and development of the model and finally, its validation.

Datasets

In order to develop QSPR models to predict a given property,
two types of data are required: data for the property to be
modelled (here, the Gibbs free energy of solvation) and descriptor
values for a range of compounds.

Free energy of solvation data. In this study, we focus on
infinite dilution Gibbs free energies of solvation measured at
298 K and 1 atm using a standard state of 1 mol L�1. Values of
the free energy of solvation for neutral solutes were selected
from several sources and classified into two main categories:

(i) The first category consists of self Gibbs free energies of
solvation, i.e., the Gibbs free energy of solvation of a solute dissolved
in itself, for example, DGs

benzene,benzene, the Gibbs free energy of
solvation of benzene in benzene. An initial data set consisting of
254 points was collected from Marcus63 and Marenich et al.11

(ii) The second category consists of Gibbs free energies of
solvation where the solute and solvent are different compounds.
A total of 2149 initial data points were collected from Marenich
et al.,11 who presented 2072 data points for 310 neutral solutes
in 90 organic solvents, and from Zanith and Pliego,20 who
presented 77 data points for different solutes in methanol,
DMSO, and acetonitrile.

Duplicate data points were removed. The Gibbs free energies
of solvation of hydrogen, ammonia, any inorganic materials

other than water, and racemic components were removed from
the database. Gibbs free energies of solvation for water as a
solute were included but Gibbs free energies of hydration were
not included in the database as aqueous solutions exhibit
unusual behaviour as a result of the extremely high dielectric
constant of water and its unique hydrogen-bonding structure.
Moreover, solutes contain bromine (Br) and iodine (I) atoms
were discarded due to the low number of solutes containing
these atoms. Principal component analysis (PCA) was applied
to the remaining data points to detect and remove outliers. This
resulted in a set of 1777 Gibbs free energy of solvation values to
be used in the development of the models in this study. The
overall dataset contains 295 solutes and 210 solvents. The list
of solutes and solvents in the database is presented in ESI,†
Table S1, where all free energies of solvation are reported in
kcal mol�1.

Solvent and solute descriptors. The approach followed to
choose solvent and solute descriptors is presented in this section.

Solvent descriptors. In this study, twelve experimental
descriptors, or properties, were selected to represent the solvents.
The properties were selected from a longer list based on the
availability of extensive data sets, their ease of calculation/
prediction, their common use in other models of solvent effects
(e.g., SMD,11 the solvatochromic equation64), and finally by
giving preference to well-defined bulk thermodynamic properties.
The use of bulk thermodynamic properties brings two advantages
relative to QM descriptors obtained from isolated-molecule
calculations: first, they take into account solvent–solvent inter-
actions, which play an important role in solvation phenomena;
second, they make it easier to account for the variation in the
properties of the solvent with thermodynamic conditions, i.e.,
temperature, pressure and composition, and could thus be used
to extend the scope of the model in the future. In this work, we
take advantage of the fact that many solvents have been well
studied in the literature and choose to collect experimental
values of the thermodynamic properties, rather than computing
them from predictive models.65

The selected experimental solvent descriptors are listed in
Table 2. Experimental values for the selected properties for all
210 solvents in the database were collected from different sources
such as DETHERM,2 ChemSpider,66 DIPPR,67 PubChem,68

National Institute of Standards and Technology,69 the Minnesota
solvent descriptor database,70 and other sources.63,71–73

Solute descriptors. QM descriptors are used for the solutes in
this study. One of the advantages of these descriptors in the
context of the solute is that they are calculated using only the
theoretical gas phase structure of the molecule, and therefore
they can be obtained for compounds that have never been
synthesized before or whose properties cannot be measured,
with the caveat that a specific molecular conformation must be
computed/chosen and that it is difficult to account for entropic
and temperature effects. There are numerous types of QM
descriptors that can be used, based on atomic charges, mole-
cular orbitals, frontier orbital densities, superdelocalizabilities,
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atom–atom polarizability, molecular polarizability, dipole moment
and polarity indices, energy, atomic orbital electron populations,
overlap populations, vectors of lone pair densities, partitioning of
energy data into one-centre and two-centre terms, and free valence
of atoms.74 QM descriptors have been used in QSPR/QSAR
studies extensively75,76 and have typically been calculated using
semi-empirical or density functional theory (DFT) methods.51

DFT descriptors have been found to offer a good balance between
computational cost and accuracy.77,78 In particular, the B3LYP
functional79,80 has been reported to be suitable for the calculation
of molecular properties and descriptors81 and is adopted here.

Previous QSPR and LSER studies of free energy of solvation,
solubility, octanol/water partition coefficient and other related
properties have led to a better understanding of the descriptors
that should be considered. In their review, Karelson et al.51

identify the most commonly used classes of descriptors as those
relating to charges, highest occupied molecular orbital (HOMO) and
lowest unoccupied molecular orbital (LUMO) energies, orbital
electron densities, superdelocalizabilities, atom–atom polariz-
abilities, molecular polarizabilities, dipole moments and polarity
indices, and energies. Wilson and Famini82 and Famini and
Wilson46 investigated the relationship between some QM descriptors
and empirical LSER methods83–85 in order to propose a theoretical
linear solvation energy relationship (TLSER) in which QM
descriptors replace empirical ones. They used the most negative
atomic partial charge in the molecule or electrostatic basicity
(q�), the most positive partial charge on a hydrogen atom in the
molecule or electrostatic acidity (q+), the molecular van der
Waals volume (Vmc),86 the polarizability (p1), which is obtained
by dividing the polarization volume by the molecular volume,87

the covalent acidity (ea), defined as the energy difference
between the HOMO of water and the LUMO of the solute, and
the covalent basicity (eb), defined as the energy difference between
the LUMO of water and the HOMO of the solute. The relevance of
these descriptors was later confirmed by Abraham et al.88

On the basis of these previous studies, the nine QM descriptors
listed in Table 3 were chosen in our work. DFT calculations were
carried out at the B3LYP/6-31G(d,p) level of theory using Gaussian
09 89 for all 295 solutes: the structures were optimized starting
from 3D molecular structures obtained from PubChem68 and
ChemSpider66 and frequency calculations were performed to
obtain the entropy.

Overall database. The database consists of a matrix, in which
each row corresponds to a solute/solvent pair and the columns
contain the solute and solvent descriptors. There are a total of
37 317 entries in the matrix. The solvent properties can be
found in the data sources listed in the Solvent Descriptors
section. Values of the Gibbs free energies of solvation are
collected in ESI,† Table S1. The computed solute descriptors
are listed in ESI,† Table S2.

Correlation analysis. By using correlation analysis, important
descriptors can be identified and the relationship between differ-
ent descriptors and the target property (i.e., the Gibbs free energy
of solvation) can be investigated. The analysis can be focused on
assessing pairwise correlation (between two descriptors at a time)
or can be based on multiple linear correlation between one
descriptor and several others.90 Descriptors x and y can be deemed
essentially independent of each other when the absolute value of
the binary correlation coefficient between them is less than 0.2.
An absolute value near unity indicates that descriptors x and y
describe the same characteristics.

Model development

Two types of models were developed: a linear PLS model, in
which all descriptors play a role, and an MLR model, which may
be nonlinear or linear, in which a trade-off is struck between
the number of descriptors and the performance and validity of
the model. This latter model is less demanding to use as it
requires fewer descriptors to be computed and measured.

In order to develop the models, 80% of the solute/solvent
pairs (ntrain = 1421) were selected for training from the 1777 pairs

Table 2 Solvent properties used in this work

Property Symbol Units

Boiling point at 1 atm Tb K
Molecular weight Mw g mol�1

Relative permittivity at 298 K and 1 atm er —
Surface tension at 298 K and 1 atm s mN m�1

Refractive index at 298 K and 1 atm nD —
Enthalpy of vaporization at the normal boiling point DHv kJ mol�1

Molar volume at 298 K and 1 atm Vm m3 kmol�1

Octanol–water partition coefficient at 298 K and 1 atm and infinite dilution log P —
Critical temperature Tc K
Critical pressure Pc MPa
Critical volume Vc m3 kmol�1

Dipole moment at 298 K and 1 atm m j Debye

Table 3 Solute descriptors used in this work

Property Symbol Units

Electronic basicitya q� —
Electronic aciditya q+ —
Energy of the HOMO eH a.u.
Energy of the LUMO eL a.u.
Molecular van der Waals volume Vmc Å3

Electronic energy E a.u.
Isotropic polarizability p Bohr3

Ideal gas entropy at 298 K S cal mol�1 K�1

Dipole moment mi Debye

a As calculated using the approach of Famini and Wilson.46
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in the database and the remaining pairs (ntest = 356) were set
aside for testing the model. The dataset was split such that the
maximum, minimum, and mean unsigned errors, and the
standard deviation of the unsigned errors were consistent
across the training and testing data sets. Furthermore, when
sufficient data were available, representative solutes and sol-
vents from each chemical family in the database were included
in the training and testing sets. For example, the training set
contains 1,4-dichlorobenzene in heptane and 1,4-dioxane in
isopropanol, while the test set contains 1,4-dichlorobenzene in
cyclohexane and 1,4-dioxane in ethanol. The numbers of data
points in the training and test sets for different types of solute–
solvent pairs are presented in ESI,† Table S6.

The partitioning of solute/solvent pairs into the training or
testing set is shown in ESI,† Table S1. The same partitioning
was used to develop the PLS and MLR models.

Partial least square (PLS) model. Partial least squares, or
projection to latent structures, relates the set of descriptors X
and the properties of interest Y through their latent spaces.91

This method extracts a linear function of the predictor dataset
that has maximum covariance with the dependent variable. The
dataset was partitioned into two matrices: X, the matrix of indepen-
dent variables (solvent and solute descriptors) of dimension
1777 � 21 and Y, the response or dependent variable vector
(Gibbs free energies of solvation) of dimension 1777 � 1. The
general form of a PLS model can be expressed as follows:

X = TPT + Ex (1)

Y = UQT + Ey (2)

T = XW* (3)

where Y is an n � m matrix (here n = 1777 and m = 1), X is an
n � k (here k = 21) matrix, T and U are latent variable matrices
(score matrices) with dimension n � a, where a is the number
of latent variables, P, Q and W* are loading matrices with
dimensions k � a, m � a, and k � a respectively, Ex and Ey are
residual matrices with dimensions n � k and n � m, respectively.
The Nonlinear Iterative Partial Least Squares (NIPALS) algorithm,91

as implemented in Matlab (in-house toolbox phi v1.72)), was used to
obtain the scores and loadings matrices.

Multivariate linear regression (MLR) model. The general
form of the MLR model for a solute/solvent pair (i, j) is given by:

DGs,0
ij = aTxi + bTx j (4)

where xi is a vector of descriptors for solute i, of dimension 1 to
9 and x j is a vector of descriptors for solvent j of dimension 1 to
12. The vectors a and b are coefficient vectors, with dimensions
matching those of xi and x j. The number of elements in the
vectors xi and x j, and the values of the coefficients, are to be
determined in order to minimise the error in the calculation
of the Gibbs free energies of solvation in the training while
achieving high statistical significance.

A genetic algorithm (GA) was used for the selection of the
best descriptors (feature selection) and functional form, by
optimising with respect to the RQK fitness function.47,74 a con-
strained multi-criteria fitness function based on leave-one-out cross

validation variance (QLoo
2) and four simultaneous constraints.92

This ensures that the final model is valid and has good predictive
capability, with limited correlation between the descriptors.

Model validation and analysis. In QSPR and LSER studies,
model validation and error analysis are significant steps to
explore the strength of the proposed model. The approach
followed in this work is outlined in this section, highlighting
the differences in the methods used to validate the PLS and
MLR models. In the following, it is assumed that there are n
solute i/solvent j pairs, that the set of pairs (i, j) is denoted by D,
that the subset of D that contains the testing points is denoted
by Dtest, that the experimental and predicted Gibbs free energies
of solvation for solute i in solvent j are denoted by DGs,exp

ij and
DGs,pred

ij , respectively.
In order to validate the PLS model, the following criteria and

statistical parameters are computed:93

� the determination coefficients for X (RX
2) and Y (RY

2);
� the cross-validation coefficient (Q2), which shows the

predictivity of the PLS model;
� the variable importance in the projection score (VIP),

which summarises the influence of individual X variables on
the Y variance;94

� the root mean square error (RMSE), given by:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i; jð Þ2D

DGs;exp
ij � DGs;pred

ij

� �2s

n
; (5)

� the percentage average absolute relative error (AARE%):

AARE% ¼ 100�

P
i; jð Þ2D

AREij

n
; (6)

where AREij, the individual absolute relative error are given by:

AREij ¼
DGs;exp

ij � DGs;pred
ij

DGs;exp
ij

�����
�����; for all i; jð Þ 2 D (7)

� the mean unsigned error (MUE), which is also known as
average absolute error (AAE):

MUE ðAAEÞ ¼

P
i; jð Þ2D

DGs;exp
ij � DGs;pred

ij

��� ���
n

(8)

� the mean signed error (MSE):

MSE ¼

P
i; jð Þ2D

DGs;pred
ij � DGs;exp

ij

� �
n

(9)

For MLR models, internal and external validation tests are
used. Thus, in addition to the tests described for the PLS
model, the following are applied:
� the bootstrapping test, in which a high average QBoot

2

indicates model robustness and internal ability in prediction
(internal);
� y-scrambling, to assess robustness and chance correlation95

(internal);
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� leave-one-out cross-validation (LOOCV), which indicates
the stability of the model96 and requires a value of QLoo

2 greater
than 0.5 (internal);
� the external cross-validation coefficient, QExt

2, defined as:

QExt
2 ¼ 1�

P
i; jð Þ2Dtest

DGs;exp
ij � DGs;pred

ij

� �2
P

i; jð Þ2Dtest

DGs;exp
ij � DGs;pred

� �2 (10)

where DGs,pred is the average value of the predicted free energies
of solvation over the training set.

Several statistical tests are also applied to the descriptors in
the MLR model, as follows:
� the t-test or t-ratio, to assess the significance of a descriptor

in the regression model;
� the standard error for selected descriptors in the MLR model;
� the F-ratio (Fisher Value) to check the significance of

independent variables on the dependent variable. Larger F-
ratios indicate higher significance.
� the Prob(t) value, which is the probability of obtaining the

estimated value of the parameter if the actual parameter value is
zero, and for which values close to zero are desirable.

Results and discussion

A correlation analysis was first carried out on the set of Gibbs
free energies of solvation for 1777 solute/solvent pairs. This was
followed by the derivation and analysis of two hybrid models
for the prediction of free energies of solvation, that combine
experimental descriptors for the solvents and QM descriptors
for the solutes: a PLS model and a MLR model.

Correlation analysis results

A correlation analysis was performed for all descriptors. We
highlight the key findings here, while the full correlation matrix
can be found in ESI,† Table S3. Among the (experimental)
solvent descriptors, the normal boiling point is found to have
a high degree of correlation with the molecular weight, critical
temperature and enthalpy of vaporization, with absolute correlation
coefficients of 0.53 to 0.87. The critical properties exhibit some
degree of correlation with the molecular weight, as expected.65 The
octanol–water partition coefficient is found to correlate to some
extent with critical pressure, the dipole moment of the solvent, its
relative permittivity and its heat of vaporization. The surface tension
and refractive index are found to be strongly correlated, with a
coefficient of 0.77. Finally, there is a correlation between the relative
permittivity and the dipole moment (0.65); this dependence has
been used previously to relate these two properties.54 Overall,
however, many of the solvent descriptors reveal weak correlations
with each other.

In terms of solute descriptors, the molecular van der Waals
volume is found to have a very high degree of correlation (greater
than 0.9) with polarizability and entropy and a correlation
coefficient of 0.79 is found between entropy and polarizability,
indicating that these three descriptors are correlated.

Interestingly, the Gibbs free energies of solvation correlate
most strongly with solute properties. In decreasing order
of strength, there is a negative correlation with polarizability,
molecular van der Waals volume, entropy and, to a lesser
extent, eH. Weak positive correlations are observed for eL and
E. The solvent properties correlate only weakly with the Gibbs
free energy of solvation, with the dipole moment and octanol–
water partition coefficient showing the largest absolute correlation
coefficients of about 0.3. The relative permittivity/Gibbs free energy
of solvation pair has a correlation coefficient of only �0.15.

PLS model results

Using the 1421 points in the training set, the statistics of PLS
models with up to six latent variables (LVs) are reported in
Table 4. Beyond six latent variables, the changes in the deter-
mination coefficient (R2) and cross-validation coefficient (Q2)
are not significant and all LVs from LV #7 onwards have
eigenvalues less than one. The graph of captured variance for
each variable (Fig. 1) also indicates that six latent variables are
appropriate. According to the figure, LV #5 and LV #6 play a
considerable role in explaining the variance in several descriptors,
such as the critical temperature of the solvent and LUMO energy
for the solute, and show proper variance per variable. Therefore,
these two latent variables are included in the PLS model. We note
that the variance of some solvent properties (specifically the critical
volume and the molar volume) remains poorly characterised even
when six latent variables are included.

Table 4 Statistics for PLS models with up to six latent variables, based on
the training set of 1421 data points. Eigenvalue denotes the importance of
the latent variable, RX

2 and RY
2 are the determination coefficients

explained by each latent variable for X and Y, respectively, RXc
2 and RYc

2

are the cumulative determination coefficients explained by all latent
variables, for X and Y, respectively, Q2 is the cross-validation coefficient
per latent variable, and Qc

2 is the cumulative cross-validation coefficient
for all components

LV # Eigenvalue RX
2 (%) RXc

2 (%) RY
2 (%) RYc (%) Q2 (%) Qc

2 (%)

1 2.61 13.17 13.17 76.34 76.34 75.98 75.98
2 1.44 10.22 23.39 8.08 84.43 8.03 84.01
3 1.51 10.15 33.54 3.77 88.19 3.97 87.97
4 1.50 10.74 44.28 1.56 89.76 1.56 89.53
5 2.12 14.99 59.27 0.56 90.32 0.72 90.26
6 1.36 7.84 67.11 0.43 90.75 0.40 90.66

Fig. 1 Percentage of the variance in the descriptors captured by each
variable, for the first six latent variables. The reader is referred to Tables 2
and 3 for the definitions of the variables shown here.
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As can be seen in Table 4, the six selected components have
high eigenvalues. The six latent variables selected explain
67.11% of the variance of the descriptors and 90.75% of the
variance of the free energy of solvation. It should be noted that
Qc

2 is equal to 90.66%, which is considerably higher than the 50%
recommended as a good predictivity parameter.74 The scores and
loadings matrix for the PLS model are shown in Table S4 of ESI.†
An Excel implementation of the model is provided as ESI.†

When applying this model to the 356 solute/solvent pairs in
the test set, the determination coefficient between the experi-
mental and predicted DGs

ij is found to be 88.10%. The results of
the error analysis for the PLS model are presented in Table 5. As
can be seen, the RMSEs across all data sets are of the order of
0.5 kcal mol�1. The AARE% for the test set is slightly less than
that for the training set, and indicates that the PLS model can
be used to predict the Gibbs free energy of solvation to within
approximately 9–10%. The RMSE of 0.55 kcal mol�1 for the
testing set is very encouraging.

The values of the Gibbs free energy of solvation predicted by
the PLS model are compared with the experimental data in
Fig. 2, which includes the training and test sets. The training
and test sets can be seen to be distributed throughout the range
of Gibbs free energy of solvation values and visual inspection
indicates that the external testing of the model (prediction of
the testing set) yields similar outcomes to the training set, as
expected based on model statistics.

The contributions of the descriptors to the first three latent
variables are shown in Fig. 3 using a loading plot with the most
important variables highlighted with circles/ovals. Component
1 is dominated by solute variables that include the molecular
van der Waals volume (Vmc), the polarizability (p), and entropy
(S). These were found to be highly correlated in the initial
analysis of the data set, and it is thus not surprising that they are
found to contribute in similar ways. Component 2 is dominated
by different solute descriptors, namely the electrostatic basicity
(q�) and the electrostatic acidity (q+). Component 3 is dominated
by several solvent descriptors such as molecular weight, octanol–
water partition coefficient, and heat of vaporization, as well as
surface tension (s) and relative permittivity (er).

The VIP plot presented in Fig. 4 for the PLS model reveals
that the polarizability, molecular van der Waals volume, and
entropy of the solute are most important in the model, in order of
decreasing relevance. As far as solvent properties are concerned,
the dipole moment, octanol–water partition coefficient and
surface tension appear to carry the greatest weight. On the other

Table 5 Error analysis results for the PLS model. The corresponding
expressions for the calculation of RMSE, AARE% and MUE can be found
in eqn (5), (6), and (8), respectively

Whole data set Training set Testing set

Number of data points 1777 1421 356
RMSE (kcal mol�1) 0.52 0.52 0.55
MUE (kcal mol�1) 0.43 0.43 0.44
AARE% 10.0 10.18 9.33

Fig. 2 Scatter plot of predicted against experimental Gibbs free energy of
solvation at 298 K and 1 atm for the PLS model.

Fig. 3 Selected loading (W*) plots for the PLS model (a) Loading vector of
the second latent variable versus that of the first latent variable. (b) Loading
vector of the third latent variable versus that of the first latent variable.
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hand, the heat of vaporization and molar volume of the solvent
appear to be of limited importance in the model. While the VIP
analysis is consistent with the findings of the correlation analysis
presented at the beginning of the Results and discussion section,
the lack of importance of the solvent heat of vaporization and
molar volume is surprising given the frequent use, in LSERs such
as the solvatochromic equation,83 of the Hildebrand solubility
parameter or cohesive energy density, which depends on the heat
of vaporization and, inversely, on the molar volume.

MLR model results

Following the development of the PLS model, the same training
and testing sets were used to develop an MLR model, which
involves fewer descriptors and can thus be simpler to use. As
mentioned before, a genetic algorithm was used for feature
selection, i.e., to identify a small set of descriptors. It was found
that for more than five descriptors, the precision of the MLR
model did not significantly improve and therefore the following
model was selected:

DGs,0
ij = �0.4404 � 0.0446p + 10.9051eL � 8.1461q+

� 0.0216DHv + 0.3348 log P (11)

The proposed model thus depends on three solute descriptors,
polarizability (p), LUMO energy (eL), and electrostatic acidity (q+)
and two solvent descriptors, the heat of vaporization (DHv) and the
octanol–water partition coefficient (log P).

The statistics of this MLR model are presented in Table 6:
the values of the determination coefficients (R2) for the training
and testing sets are high, around 0.88, which shows a strong
correlative capacity for the model. The R2 values for both sets
are similar, and this is a positive attribute of the proposed model.
In addition, the Radj

2 values indicate an acceptable agreement
between correlation and variation within the DGs

ij dataset. Further
tests of the model’s validity yield consistently positive results.
Leave-one-out cross validation (QLoo

2) along with the four RQK
constraints reveals good internal robustness and predictive
ability of the model. Considering that a large data set was used,
and that the differences between QBoot

2, QLoo
2, QExt

2 and R2

are small, it can be concluded that the model can be used to
predict DGs

ij with good accuracy. In addition, based on several
hundreds of y-scrambling runs, the intercept values of the
y-scrambling technique were found to yield low values of a(R2)
and a(Q2), of around 0.5, which provides further validation of
the model. External validation and the large value of the F ratio
also confirm that the MLR model is statistically sound. The MLR
model has large value of F ratio.

In order to compare the performance of the MLR and PLS
models, the error analysis for the MLR model is presented in
Table 7. The MUE values for all sets are very similar to each
other, and to the values obtained with the PLS model, despite
the much smaller set of descriptors used. The RMSE values
obtained show a small deterioration (of 0.07 kcal mol�1) for the
training set, relative to the PLS model but the same performance
for the testing set. The spread of values is narrow and below
0.60 kcal mol�1, which suggests that the proposed model has
both a good predictive ability (low value of RMSE) and a good
generalization performance (similar values of RMSE across
sets). Similar observations can be made based on the AARE%
values. The correlation matrix for the descriptors in the MLR
model is presented in Table 8.

The descriptors of the MLR model are presented in Table 9
along with their standard error, t-test and Prob(t) values.

Fig. 4 Variable importance in the projection (VIP) scores for the PLS
model. The reader is referred to Tables 2 and 3 for the definition of the
variables shown here.

Table 6 Statistics of the MLR model with five descriptors (eqn (11))

Whole data set Training set Testing set

Number of data points 1777 1421 356
R2 88.05 88.01 88.15
Radj

2 88.04 88.01 88.12
DQ 0.000 — —
DK 0.058 — —
RN 0.001 — —
RP 0.067 — —
QLoo

2 — 87.99 —
QBoot

2 — 88.76 —
QExt

2 — — 96.29
a(R2) 0.517 — —
a(Q2) 0.515 — —
F ratio 2655 — —

Table 7 Error analysis results for the MLR model. The definitions of RMSE,
AARE% and MUE can be found in eqn (5), (6) and (8), respectively

Whole data set Training set Testing set

Number of data points 1777 1421 356
RMSE (kcal mol�1) 0.58 0.59 0.55
MUE (kcal mol�1) 0.44 0.45 0.42
AARE% 10.32 11.50 9.02

Table 8 Correlation matrix for the descriptors in the MLR model. The
definition of the variables can be found in Tables 2 and 3

DHv (kJ mol�1) log P (�) p (Bohr3) eL (a.u.) q+ (�)

DHv (kJ mol�1) 1
log P (�) 0.51 1
p (Bohr3) 0.05 0.10 1
eL (a.u.) 0.03 �0.04 �0.23 1
q+ (�) �0.04 �0.13 �0.23 0.40 1
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A larger value of the t-test indicates the greater importance of
the corresponding descriptor in the regression model. All Prob(t)
values are found to be zero, as is desirable. The extensive suite of
validation techniques applied to the model highlights that the
proposed model is statistically valid and can be utilized to
estimate DGs

ij for a wide range of solute i/solvent j pairs. The
predicted values of Gibbs free energy of solvation are shown
against experimental values in Fig. 5 for both the training and
test sets. As can be seen in this figure, there is an appropriate
distribution of errors for the training and test data. A visual
comparison of Fig. 2 and 5 suggests that the maximum absolute
deviation obtained with the MLR model is greater than that
obtained with the PLS model, and this contributes to the slightly
higher values of RMSE and AARE% in the MLR model.

The MLR model exhibits large errors for a small number of
solute–solvent pairs. The solvent exhibiting the largest number
of data points with an error greater than 1 kcal mol�1 is octanol,
which is well-represented in both training and test sets. The largest
error is found for p-hydroxybenzoic acid (ethylparaben)–octanol at
3.46 kcal mol�1, against an average error of 0.44 kcal mol�1. Other
solutes or solvents with a large error do not follow any pattern. For
instance, for butanone in mixed xylenes, an error of 3.20 kcal mol�1

is observed. For all other ketones in mixed xylenes, a mean
unsigned error of 0.31 kcal mol�1 is observed. Of these data points,
only butanone in mixed xylenes appears in the test set, indicating
poor predictive capability in this instance. Such a deviation is not
observed for other pairs containing mixed xylenes, regardless of
whether the data are in the training or test set. For butanone, the

only other large error is observed for a data point in the training
set (butanone–tetrahydrothiophenedioxide), with an error of
2.09 kcal mol�1. This compares to an average error for butanone
as a solute of 0.30 kcal mol�1 and for tetrahydrothiophenedioxide
as a solvent of 0.28 kcal mol�1. Given the lack of systematic error,
it is likely that the few large deviations observed are an inherent
limitation of a model which contains very few parameters.

Comparison with other methods

Selected Gibbs free energy of solvation values obtained with the
models proposed in our study are compared with other studies
in the literature. As mentioned in the Introduction, there are no
other QSPR models that can be applied to such a varied set of
solute/solvent pairs. Thus, the most relevant model for comparison
is the SM series of models developed at Minnesota, including the
SMD model.11 The overall MUE of the SMD model for neutral
solutes was reported11 to vary from 0.64 to 0.79 kcal mol�1,
depending on the level of theory used for the electronic structure

Table 9 Descriptors in the MLR model and their statistics

Descriptor Standard error t-test Prob(t)

DHv (kJ mol�1) 0.0010 �18.23 0.0000
log P (�) 0.0081 40.25 0.0000
p (Bohr3) 0.0005 �85.25 0.0000
eL (a.u.) 0.3296 33.34 0.0000
q+ (�) 0.1895 �44.58 0.0000

Fig. 5 Scatter plot of predicted against experimental free energy of
solvation at 298 K and 1 atm for the MLR model.

Table 10 Comparison between PLS and MLR models (developed in this
study) with SMD/X3LYP/6-31G(d) and SM8/B3LYP/6-31G(d) predictions by
Zanith and Pliego20 and experimental (EXP.) data

Solute/solvent

Gibbs free energy of solvation at
298 K and 1 atm (kcal mol�1)

EXP. MLR PLS

SMD/
X3LYP/
6-31G(d)

SM8/
B3LYP/
6-31G(d)

p-Cresol/acetonitrile �8.08 �7.75 �8.09 �7.08 �6.59
m-Toluidine/acetonitrile �8.04 �7.46 �7.77 �7.16 �7.39
o-Cresol/acetonitrile �7.92 �7.69 �7.95 �6.95 �6.55
m-Cresol/acetonitrile �7.90 �7.73 �8.01 �7.31 �6.69
o-Toluidine/acetonitrile �7.85 �7.42 �7.69 �7.11 �7.20
p-Cresol/methanol �7.84 �7.20 �8.78 �6.13 �7.48
m-Toluidine/methanol �7.75 �7.68 �8.46 �6.35 �6.97
o-Cresol/methanol �7.72 �8.46 �8.64 �5.61 �7.16
m-Cresol/methanol �7.68 �8.50 �8.70 �6.10 �7.58
o-Toluidine/methanol �7.54 �8.19 �8.38 �6.26 �6.76
Gama-picoline/acetonitrile �5.75 �5.78 �5.85 �5.81 �6.62
1-Propanol/DMSO �5.68 �4.88 �5.03 �3.45 �4.05
Gama-picoline/methanol �5.60 �6.55 �6.54 �5.03 �6.28
o-Xylene/acetonitrile �5.43 �6.37 �6.34 �4.89 �5.09
Ethylbenzene/acetonitrile �5.36 �6.22 �6.17 �4.94 �5.03
1-Butanol/methanol �5.31 �5.50 �6.09 �6.03 �6.45
m-Xylene/acetonitrile �5.28 �5.20 �6.49 �4.76 �5.11
p-Xylene/acetonitrile �5.27 �5.44 �6.51 �4.96 �5.08
Butanol/acetonitrile �5.20 �5.30 �5.40 �4.68 �4.65
2-Propanol/DMSO �5.14 �4.88 �5.01 �4.52 �5.33
1-Propanol/methanol �4.75 �4.89 �5.42 �5.39 �5.96
1-Propanol/acetonitrile �4.65 �4.49 �4.73 �4.38 �4.15
2-Propanol/methanol �4.53 �5.21 �5.40 �5.21 �5.39
Ethanol/methanol �4.41 �4.62 �4.76 �5.04 �5.57
2-Propanol/acetonitrile �4.39 �4.44 �4.71 �3.98 �3.76
Benzene/acetonitrile �4.25 �3.95 �4.62 �4.66 �4.47
Dichloromethane/DMSO �4.10 �4.10 �4.98 �4.11 �2.49
Benzene/DMSO �3.96 �5.23 �4.93 �2.92 �3.91
Acetone/DMSO �3.76 �4.35 �4.61 �4.29 �5.11
Tetrahydrofuran/DMSO �3.64 �3.97 �3.67 �3.00 �4.36
Dimethylether/methanol �2.31 �2.87 �3.01 �1.80 �2.28
n-Pentane/acetonitrile �2.08 �3.64 �3.43 �2.17 �2.38
1,1-Difluorethane/methanol �1.90 �2.58 �2.45 �2.60 �3.28

RMSE (kcal mol�1) 0.59 0.71 1.11 1.08
MUE (kcal mol�1) 0.46 0.59 0.83 0.79
MSE (kcal mol�1) �0.22 �0.52 0.61 0.27
AARE% 10.77 13.13 15.36 16.21
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calculations, compared to the values of 0.43 and 0.44 kcal mol�1

reported here for the PLS and MLR models respectively. However,
the SMD model was developed to be applicable to a broader range
of solutes, including charged solutes, and the overall MUE values
for SMD are based on a larger set of 2346 data points (compared to
the 1777 data points used in the current study), which makes a
thorough comparison difficult.

For a more detailed comparison, we use the study of Zanith
and Pliego20 who presented calculations for 77 Gibbs free
energies of solvation of different solutes in methanol, DMSO,
and acetonitrile. They used the SMD/X3LYP/6-31G(d) and SM8/
B3LYP/6-31G(d) methods to predict the Gibbs free energies of
solvation. Of the 77 data points, only 33 data points passed the
outlier detection test when building the database used in the
current study. All 33 points have been used in the training set to
develop the MLR and PLS models, although we have found
similar results when testing different training sets that did not
include all 33 points. The results of these 33 data points are
compared with the SMD and SM8 calculations presented by
Zanith and Pliego20 in Table 10.

As can be seen in Table 10, the MLR method presented in
this work yields the best results for these 33 data points. This
model has the lowest RMSE, MUE, MSE and AARE% values. In
addition, the PLS model shows better performance than the
SMD/X3LYP/6-31G(d) and SM8/B3LYP/6-31G(d) models. While
the MLR model has poorer statistics than the PLS model overall
(cf. Tables 4 and 6), it performs better for this small set of
compounds. The MLR model may thus be preferred for certain
applications, especially as it requires fewer descriptors. One
should also note that methanol was not included as a solvent in
the training set used to develop the SMD and SM8 models by
Marenich et al.,11 which explains the larger errors found for those
systems with the SMD and SM8 models. Excluding methanol, the
RMSE obtained for the MLR, PLS, SMD, and SM8 models are
0.47, 0.53, 0.60, 0.69 kcal mol�1, respectively. Finally, we note that
this comparison does not explore the full capabilities of the SMD
models in terms of levels of theory or range of solutes.

To date and to the best of our knowledge no similar QSPR
based study for such a wide range of solutes in solvents has been
reported, and a comparison between the current study and the
most recent previous QSPR works is presented in Table 11. In

many, but not all, cases, the use of a different model per solute
or a different model per solvent leads to slightly improved
performance. However, our more comprehensive models display
comparable performance to that of the more specific models,
with a significant increase in applicability.

Conclusions

We have presented MLR and PLS models for the prediction of
the Gibbs free energy of solvation of a wide range of neutral
organic solutes in organic solvents. The dataset used to develop
the models contains 1777 free energies of solvation, derived
from a set of 295 neutral organic solutes and 210 organic
solvents. The models are hybrid in nature, combining QM
descriptors for the solutes with bulk thermodynamic properties
for the solvents. This differs from standard practice in QSPR
model development, in which only QM descriptors are typically
used and either the solvent or the solute is held constant. The
experimental descriptors selected in our work provide a good
description of the bulk properties of the solvent, while the QM
descriptors ensure the applicability of the model to a broad
range of compounds including short-lived intermediates and
transition states. A thorough statistical analysis of both models
has been carried out, including external validation; MUEs over
the entire dataset of 0.44 kcal mol�1 and 0.43 kcal mol�1 were
obtained for the MLR and PLS models, respectively.

Detailed comparisons with other models are difficult to carry
out given the different training sets used but a comparison of
MUEs or RMSEs across the training and testing sets of different
models provides a useful indicator. The average performance
obtained with the proposed models is comparable to that
obtained with models developed for specific solvents or solutes.
The proposed models also compare favourably to the average
performance of the SMD model, although we note that the SMD
model is broader in scope since it extends to charged solutes,
which have not been considered in the present study. The two
models proposed display similar performance statistics. The PLS
model appears to be slightly better overall, but relies on more
descriptors than the MLR model, making it more difficult to apply
for solvents which have been less well studied experimentally.

Table 11 Comparison between the proposed models and existing QSPR models of Gibbs free energy of solvation

Studies R2 or R Error Method Dataset size

Katritzky et al.53 Rall
2 = 0.8370 to 0.998

for 69 equations
squared standard errors: 0.1 to
0.02 kcal mol�1 for 69 equations

MLR 500 solutes in 69 solvents

Katritzky et al.62 Rall
2 = 0.604 to 0.996

for 80 equations
squared standard errors: 0.368 to
0.0006 kcal mol�1 for 80 equations

MLR 80 solutes in 15 to 82 solvents

Michielan et al.59 Rtrain = 0.9900 RMSE = 0.069 kcal mol�1 RSA 271 solutes in water as solvent
Rtest = 0.9200

Delgado and Jaña61 Rall
2 = 0.9300 Standard deviation = 0.57 kcal mol�1 MLR 147 solutes in octanol as solvent

Bernazzani et al.60 Rtrain = 0.9990 MUE = 0.24 kcal mol�1 RNN 339 solutes in water
Rtest = 0.9820 Standard deviation = 0.43 kcal mol�1

Current study (MLR) Rtrain
2 = 0.8801 RMSE = 0.58 kcal mol�1 GA-MLR 1777 solute/solvent pairs

Rtest
2 = 0.8815 MUE = 0.44 kcal mol�1

Current study (PLS) Rtrain
2 = 0.9075 RMSE = 0.52 kcal mol�1 PLS 1777 solute/solvent pairs

Rtest
2 = 0.8810 MUE = 0.43 kcal mol�1
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Due to the interpolative nature of the proposed models, they
should only be applied to the calculation of the Gibbs free
energy of solvation of neutral organic solutes in organic solvents
(i.e., they should not be applied to charged solutes or aqueous
solutions). Nevertheless, the applicability of both models could
be extended to novel solvents by predicting the relevant solvent
properties using group contribution methods40,42,54,97,98 or
other structure–property relations, rather than relying on experi-
mental solvent properties. There is also scope to increase the
accuracy of the models by developing nonlinear versions of the
PLS and MLR models. In both models, it is assumed that solvent
and solute have an additive effect on the overall Gibbs free
energy of solvation. This is in effect a first-order representation
of solvation. This approximation may be lifted by incorporating
second-order terms that depend on both solute and solvent in
the models – for instance, the product or ratio of a solvent
descriptor and a solute descriptor – enabling a better representation
of the available data.

Data statement

Data underlying this article and not available in the references
cited are available in ESI.†

Nomenclature

AAE Average absolute error
ARE Absolute relative error
AARE% Average absolute relative error
ANN Artificial neural network
GCM Group contribution method
MLR Multivariate linear regression
MSE Mean signed error
MUE Mean unsigned error
PLS Partial least square or projection to latent structures
GA Genetic algorithm
QSPR Quantitative structure–property relationship
Q2 Cross validation coefficient
QLoo

2 Leave-one-out cross validation coefficient
QBoot

2 Bootstrapping validation coefficient
QExt

2 External validation coefficient
R2 Squared correlation coefficient
RMSE Root mean square error
VIF Variance inflation factors
VIP Variables importance in the projection
DGs

ij Free energy of solvation of solute i in solvent j

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

Financial support from Eli Lilly via the Lilly Research Award
Program (LRAP) and from the UK Engineering and Physical

Sciences Research Council (EPSRC) of the UK via a Leadership
Fellowship (EP/J003840/1) is gratefully acknowledged. Access to
computational resources and support from the High Performance
Computing Cluster at Imperial College London are gratefully
acknowledged. We wish to acknowledge the use of the EPSRC
funded National Chemical Database Service hosted by the Royal
Society of Chemistry.

Notes and references

1 A. Jalan, R. W. Ashcraft, R. H. West and W. H. Green, Annu.
Rep. Prog. Chem., Sect. A: Inorg. Chem., 2010, 106, 211–258.
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55 M. Folić, C. S. Adjiman and E. N. Pistikopoulos, AIChE J.,
2007, 53, 1240–1256.

56 M. Dehmer, K. Varmuza, D. Bonchev and F. Emmert-Streib,
Statistical Modelling of Molecular Descriptors in QSAR/QSPR,
Wiley, 2012.

57 K. Roy, S. Kar and R. N. Das, A Primer on QSAR/QSPR
Modeling: Fundamental Concepts, Springer International
Publishing, 2015.

58 T. N. G. Borhani, A. Afzali and M. Bagheri, Process Saf.
Environ. Prot., 2016, 103(pt A), 115–125.

59 L. Michielan, M. Bacilieri, C. Kaseda and S. Moro, Bioorg.
Med. Chem., 2008, 16, 5733–5742.

60 L. Bernazzani, C. Duce, A. Micheli, V. Mollica and
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