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Anharmonic excited state frequencies
of para-difluorobenzene, toluene and catechol
using analytic RI-CC2 second derivatives†

David P. Tew, *a Christof Hättig b and Nora K. Grafb

Analytic second nuclear derivatives for excited electronic state energies have been implemented for the

resolution-of-the-identity accelerated CC2, CIS(DN) and ADC(2) models. Our efficient implementation

with O(N2) memory demands enables the treatment of medium sized molecules with large basis sets and

high numerical precision and thereby paves the way for semi-numerical evaluation of the higher-order

derivatives required for anharmonic corrections to excited state vibrational frequencies. We compare CC2

harmonic and anharmonic excited state frequencies with experimental values for para-difluorobenzene,

toluene and catechol. Basis set problems occur for out-of-plane bending vibrations due to intramolecular

basis set superposition error. For non-planar molecules and in plane modes of planar molecules, the

agreement between theory and experiment is better than 30 cm�1 on average and we reassign a number

of experimental bands on the basis of the ab initio predictions.

1 Introduction

The characterisation of molecules in excited electronic states
remains a challenge, both for experimental and theoretical
chemistry. Electronic excitation is often accompanied by
significant structural change and complex intramolecular vibra-
tional energy redistribution processes,1–3 resulting in rich spectra
that are sometimes difficult to interpret. Better theoretical treat-
ments of electronic excited states are key to understanding photo-
chemical phenomena and ultimately to harnessing photochemistry
as a route to controlling molecular bond fission processes.4–7

Coupled cluster methods are among the most accurate
ab initio electronic structure methods.8 Coupled cluster methods
for excited state properties have been developed extensively by
Stanton and Gauss in the framework of equation of motion
coupled cluster (EOM-CC) theory.9–11 Benchmark studies,12–15

found that EOM-CCSD ground and excited state harmonic
frequencies agree with values derived from experiment with a
root mean squared deviation (RMSD) of 20–30 cm�1.

CC2 was designed16 as approximation to CCSD with an
O(N5) scaling of the computational costs with system size N

instead of O(N6). CC2 conserves the order in the fluctuation

potential through which single excitation dominated transitions
are described correctly in CCSD theory. In the original imple-
mentations with exact four-index electron repulsion integrals the
high prefactor of the computational costs and the high memory
demands for transforming and storing the two-electron integrals
severely limited system and basis set sizes for which calculations
could be performed on commonly available computer hardware.
This bottleneck is removed by combining CC2 with the resolu-
tion of the identity (RI) approximation for the two electron
integrals.17,18 The RI approximation accelerates the calculations
by one to two orders of magnitude, depending on the basis set,
reduces memory demands to O(N2) and reduces disc storage
demands to O(N3). These computational savings make it possi-
ble to study large molecules such as chlorophylls,19 which
previously could only be studied with CIS or TDDFT.

The same technique can be used to accelerate other second-
order methods for excited states, e.g. configuration interaction
singles with a perturbative doubles correction,20 CIS(D), and its
iterative variant21 CIS(DN), and the algebraic diagrammatic
construction through second-order,22 ADC(2), with similarly
pivotal efficiency savings. Compared to the non-iterative per-
turbative CIS(D) approximation, the iterative methods CIS(DN),
ADC(2), and CC2 have the advantage that they provide a
consistent description of excited state potential energy surfaces
(PES), even in the region of avoided crossings, and can thus be
used more straightforwardly for searching and characterizing
stationary points on the excited state PES.

Implementations of analytic excited state gradients of these
approximate second order methods have been reported in
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ref. 23 and 24, where it is demonstrated that memory demands
for first derivatives scale at most as O(N2) when using the RI
approximation. Recently, second-order electronic response
properties for ground and excited states and ground state
nuclear Hessians as analytic second derivatives of the energy
have been implemented.25–27 To preserve both the high com-
putational efficiency and the low storage demands for second
derivatives the RI approximation is combined with a numerical
Laplace transformation of orbital energy denominators28

for the contribution of double excitation amplitudes to first
derivatives of the density matrices.

In the current work, we extend the theory and implementa-
tion to analytic geometrical second derivatives for CC2,
CIS(DN) and ADC(2) excited state energies. Analytic second
derivatives are particularly important for obtaining the high
numerical accuracy required to calculate semi-numerical third
and fourth derivatives for polyatomic molecules. Only recently
has a similar route has been pursued for TDDFT.29,30 With the
implementation of analytic Hessians for CC2 and ADC(2) it
becomes possible to compute anharmonic vibrational spectra
of polyatomic molecules with a correlated ab initio wavefunction
method. We demonstrate the applicability of our implementa-
tion by computing harmonic and anharmonic excited state
frequencies for medium sized molecules, which we compare to
experimentally observed band centres.

2 Theory
2.1 Excited state Hessian for RI-CC2

The theory and implementation of orbital-relaxed electric
second-order response properties for excited states at the RI-CC2
level has been presented in ref. 26. In the current work we focus on
the additional theory required for geometric second derivatives.
We use identical notation to that of ref. 26 and 27 and, rather than
repeat them here, refer the reader to that work for the full
definition of all of the terms and intermediates.

In coupled cluster theory, properties of an excited state f can
be obtained as derivatives of the excited state quasienergy
Lagrangian26

LCC;rel;f ¼ ECC þ
X
m

�t fmOm þ
X
mn

Lf
mAmnR

f
n

þ
X
m0

�kfm0Fm0 þ �of 1�
X
m

Lf
mR

f
m

 !

þ �lf
X
m

Lf
mR

f ;ð0Þ
m �

X
m

Lf ;ð0Þ
m Rf

m

 !
:

(1)

The Lagrangian is composed of the ground state energy ECC, the
vector functions Om for the ground state cluster amplitudes tm,
with Lagrange multipliers %tf

m, and the excitation energies

of ¼
P
mn

Lf
mAmnR

f
n . The fourth term is the orbital-rotation con-

straint, which imposes vanishing Fock matrix elements Fpq for
the relevant orbital pairs pq A m0. The last and second last
terms determine the phase and normalisation of the left and

right eigenvectors of the Jacobi matrix A, by coupling them to
the eigenvectors Lf,(0) and Rf,(0) of the unperturbed limit.26

The hessian of the excited state is obtained by differentiating
the Lagrangian twice with respect to the nuclear positions. The
result can be obtained in the same way as for excited state
polarisabilities, presented in ref. 26:

dLCC;rel;f

dexdey

� �
e¼0
¼ Ĵxy
� �

ex þ P̂xy
X
pq

DF;ex;y
pq Fx

pq

þ P̂xy1

2

X
pqrs

d̂
nsep;ex;y

pqrs pq ĵ rs
� �x

þ
X
mn

F ex
mnt

x
mt

y
n þ P̂xy

X
mnk

Lf ;ð0Þ
m Bmnkt

x
kR

f ;y
n :

(2)

h Ĵxyiex is the expectation value of an effective second order
Hamiltonian (vide infra) evaluated with the density for the
excited state. The second and third terms depend on first
derivatives of integrals and first derivatives of the cluster ampli-
tudes (t y

n) and right eigenvectors Rf, y
n contained in the derivative

one- and two-particle densities. The final two terms collect
contributions that are bilinear in first derivatives of the cluster
amplitudes and eigenvectors.

The only difference to polarizabilities are that for derivatives
with respect to nuclear coordinates the AO basis and conse-
quently all AO one- and two-electron integrals depend on the
perturbation. This also gives rise to additional contributions to
the derivatives of the MO coefficients related to the changes in the
AO overlap. We write the first derivative of the molecular orbital
(MO) coefficients with respect to nuclear displacements as

Cx = C0Ux (3)

where Ux contains the derivative of the orbital rotation para-
meters jx and the derivative of the overlap matrix S[x] in the
basis of the unmodified molecular orbitals (UMOs).

Ux ¼ kx � 1

2
S½x� (4)

Here and throughout, a square bracket indicates a derivative of
the UMO integrals, which includes the derivative of the AO
integrals, but not the derivative of the MO coefficients.31,32 The
first term in eqn (2) is the expectation value of an effective
second-order Hamiltonian which collects several contributions
to the second geometric derivatives of the Hamiltonian in the
MO basis:

Ĵxy ¼ H xy½ � þ P̂xy Ux; Ĥ ½y�
� �

þ Ux;Uy; Ĥ
� 	

� 1

2
P̂xy Uy;S x½ �

� �
; Ĥ

� �
� 1

2
ðS xy½ �; ĤÞ

(5)

For electric response properties only the second and third
terms are present and H[ y] has no two-electron part. The round
brackets indicate a one-index transformation of the integrals.32

The evaluation of the expectation value h Ĵxyiex with O(N2)
memory demands will be described below.
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The last two terms in eqn (2) depend only indirectly on the
derivatives of the one- and two-electron integrals, through the
derivatives of the cluster amplitudes, tx

m, and right eigenvectors,
Rf,y
n . These are evaluated as described in ref. 26 for electronic

derivatives, with the difference that now the first derivatives of
the AO two-electron integrals have to be included in the
calculation of the amplitude and eigenvector derivatives.
Detailed expressions for the derivatives of the cluster amplitudes
are given in ref. 27 and the changes to the expressions for the
derivatives of the eigenvectors are obtained in an analogous way.

The second and third terms in eqn (2) combine (via the
densities) first derivatives of the amplitudes ty

n and eigenvectors
Rf,y
n for a coordinate y with first derivatives of the MO Fock

matrix Fx
pq and two-electron integrals (pq|̂rs)x for a coordinate x.

Here, as for all two-electron integrals in the correlation treat-
ment, we employ the RI approximation

ðpqjrsÞ � ðpqjrsÞRI ¼
X
Q

BQ;pqBQ;rs; (6)

with three index intermediates BQ;pq ¼
P
P

ðpqjPÞ V�
1
2


 �
PQ

composed of two-index VPQ = (P|Q) and three-index ( pq|P)
electron repulsion integrals. The indices P and Q denote func-
tions from an auxiliary basis set. For an efficient evaluation we
rewrite the two-particle term as:X

pqrs

d̂
nsep;ex;y

pqrs ðpq̂jjrsÞx ¼
X
abQ

DQ;y
ab ðabjQÞ

½x�

�
X
PQ

gyPQV
½x�
PQ þ

X
pq

Feff ;y
pq Ux

pq

(7)

where Feff,y
pq is an effective Fock matrix (cf. ref. 26 and 27) and

DQ,y
ab and gy

PQ are, respectively, a three-index two-particle density
in the AO basis (indices a, b) and a two-index two-particle
density:

DQ;y
ab ¼

X
pq

Lp
apL

h
bq

X
rsQ

d̂
nsep;y

pqrs ðrŝjQÞ V�1
� 


PQ
; (8)

gyPQ ¼
1

2

X
abR

DP;y
ab ðabjRÞ V

�1� 

RQ
: (9)

We highlight that DQ,y
ab is evaluated without ever building the

four-index two-particle density d̂nsep,y
pqrs . Full working expressions

for the effective Fock matrix and for the two- and three-index
densities are provided in the ESI.†

The one-electron densities DF,ex,y require contractions of the
doubles parts of the left eigenvectors and the derivatives of the

right eigenvectors of the form
P
abk

Lf
jakbR

f ;y
iakb and

P
ijc

Lf
iajcR

f ;y
ibjc. For

undifferentiated eigenvectors and amplitudes the RI approxi-
mation is sufficient to implement these contractions efficiently
with only O(N2) memory demands and without storing doubles
vectors as four-index quantities on disc. For differentiated
eigenvectors, however, this is not the case. There are additional
terms that are not simply dressed two-electron integrals, but

come from contractions of the undifferentiated eigenvectors
with derivatives of the Fock matrix:

Rf ;x
aibj ¼

1

ea � ei þ eb � ej þ of
P̂
ij

ab

�
X
Q

��B
f ;x

Q;aiB̂Q;bj þ
X
Q

�BQ;ai R
f

� 

�BQ;bj t

x½ � þ B̂
x

Q;bj

� � 

þ
X
c

Rf
aicjF

x
bc �

X
k

Rf
aibkF

x
kj � �xfRf

aibj

!

(10)

For full definitions of the intermediates see ref. 26. To convert
the last three terms into an expression that is separable in the
index pairs ai and bj we apply a numerical Laplace transforma-
tion of the orbital energy denominators

1

ea � ei þ eb � ej þ of
�
XNm

m

wme
ei�eað Þyme ej�ebþofð Þym (11)

where ym and wm are the integration points and weights,
respectively. With this approximation the eigenvector elements
can be written as

Rf
aibj ¼ �P̂

ij

ab

X
Qm

wmKQm;ai
�KQm;bj; (12)

with

KQm,ai = B̂Q,aie
(ei�ea)ym, (13)

%KQm,ai = %BQ,ai[R
f]e(ei�ea+of)ym, (14)

and the transformations with the derivatives of the Fock matrix
can be performed on the three-index intermediates. This makes
it possible to evaluate the contributions from Rf to the right
hand side of Rf,y within the same loops as the contributions
from the dressed integrals, just with an additional summation
over the Laplace grid points.

We now turn to the evaluation of the expectation value Ĵxy of
the second order Hamiltonian for an excited state. The con-
tributions to Ĵxy are grouped into three terms. The first term
contains the second derivatives of the AO integrals for the
Hamiltonian. It is evaluated in the same manner in the AO
basis as the respective contribution from H[x] to the gradient
described in ref. 23:

H ½xy�
D E

ex ¼
X
ab

Deff ;ex
ab h

½xy�
ab þ

1

4

X
ab

Deff;ex
ab � 1

8
DSCF

ab

� �

�
X
gd

A
CPHF;½xy�
abgd DSCF

gd

þ
X
abQ

DQ
abðabjQÞ

½xy� �
X
PQ

gPQV
½xy�
PQ

þ 1

2
P̂xy

X
abQ

DQ;½x�
ab ðabjQÞ

½y� �
X
PQ

g½x�PQV
½y�
PQ

 !
(15)

Deff,ex is the effective orbital-relaxed excited state and DSCF

the SCF one-particle density. h[xy]
pq and ACPHF,[xy]

pqrs are, respectively,
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the core Hamiltonian and CPHF matrices computed from the
second derivatives of the AO integrals. DQ

ab and DQ,[x]
ab are

auxiliary three-index and gPQ and g[x]
PQ two-index two-particle

densities defined in the ESI.†
All other contributions to hĴxyiex are rewritten as contractions

of effective Fock matrices with derivatives of the overlap
matrices and Ux. This is done to avoid the evaluations of two-
electron integrals in the MO basis and with this any O(N5)
scaling steps that depend on two perturbations.

The second and third contribution to Ĵxy are combined
by introducing a modified first-order Hamiltonian,27

Ĵx ¼ Ĥ ½x� þ 1

2
Ux; Ĥ
� 	

, to:

P̂xy Ux; Ĥy
� 	� �

ex þ 1

2
Ux; Uy; Ĥ

� 	� 	� �
ex

� �
¼ P̂xy Ux; Ĵy

� �D E
ex:

(16)

Such expectation values of one-index transformed Hamilto-
nians can be evaluated as contraction of the transformation
matrices Ux with effective Fock matrices:

Ux; Ĵy
� �D E

ex ¼
X
pq

Ux
pqF

eff
pq Ĵy
h i

(17)

The definition and calculation of the effective Fock matrices for

the modified first-order Hamiltonian Feff
pq Ĵy
h i

have been given

in ref. 26 and 27. The last two contributions to Ĵxy are combined
by introducing the second derivative of the overlap matrix
Sxy = S[xy] + P̂xy(Uy,S[x]) to

(S[xy],Ĥ) + P̂xy((Uy,S[x]),Ĥ) = (Sxy,Ĥ) (18)

and is evaluated as:

�1
2

Sxy; Ĥ
� 	� �

ex ¼ �1
2

X
pq

Sxy
pqF

eff ;ex
pq (19)

where Feff,ex
pq is the (unperturbed) excited state effective Fock

matrix, also known as energy weighted density matrix. Its
implementation for RI-CC2 has been described in ref. 23.

The above formulas have been implemented in the devel-
opment version of the ricc2 program of the TURBOMOLE
package.33 All contributions are evaluated using integral-
direct algorithms in the AO basis with O(N2) memory demands
and strictly avoiding any operations that scale as O(N5) with
the basis set size and at the same time quadratically with the
number of perturbations, so that the computation of the full
Hessian still scales only as O(N6) with the system size. The
time-determining steps are the solution of the linear equations
for the first derivatives of the amplitudes and eigenvectors and
the calculation of the first-order density matrices that have to
be done for each perturbation.

The implementation of the excited state hessians and the
excited state polarizabilities enables also the calculation of the
derivatives of the (excited state) dipole moment as mixed
derivatives by differentiating once with respect to the strength
of an electric field and once with respect to the nuclear
coordinates.

2.2 CIS(DN) and ADC(2)

With only few modifications the implementation is easily
adapted to CIS(DN) and ADC(2).21,22 In both methods the
coupled cluster ground state amplitudes are replaced by the
amplitudes from first-order Møller–Plesset perturbation theory
(MPPT). We assume that the Brillouin condition is fulfilled and
thus the singles ground state amplitudes t(0) and their deriva-
tives tx vanish in first order MPPT, as do the singles Lagrange
multipliers %tf,(0). Discarding all contributions from these singles
parameters turns the CC2 code into a CIS(DN) code. As a side
effect, the equations for the derivatives of the cluster ampli-
tudes can be inverted directly, in the canonical implementa-
tion, bypassing the iterative solution procedure.

The implementation for ADC(2) is closely related to the
implementation CIS(DN). Here the secular matrix is sym-
metrised:22,24

AADCð2Þ ¼ 1

2
ACIS D1ð Þ þ ACIS D1ð Þ

� �y� �
(20)

This only requires some small modifications in the singles-
singles block of the Jacobian to symmetrise the contributions
from hm1|[[H,T(1)

2 ],tn1
]|HFi and the corresponding contributions

to the right hand side of the equation for Rf,y and to the
derivatives of the Jacobian. Due to the symmetric secular
matrix, the left eigenvectors are identical with the right eigen-
vectors and only one set of eigenvalue equations has to be
solved.

2.3 Thresholds and numerical accuracy

The numerical accuracy of the excited state Hessians, and also
the computational costs, depend mainly on two thresholds:
TLap and TLRE. TLap controls the numerical Laplace transforma-
tion such that

ffiffiffiffiffiffiffiffiffi
FLap

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðemax

emin

1

x
�
XNm

a

wme�xYm

 !2

dx

vuut � TLap (21)

TLRE is the threshold for the residual of the equations for the
first derivatives of the cluster amplitudes and eigenvectors. The
grid points for the Laplace transformation were optimised for
the interval from emin = 2(eLUMO � eHOMO) � of and emax =
2(evir,max � eocc,max), where of is the excitation energy, by
minimizing FLap with respect to ym and wm.

We investigated the dependence of the results on the thresh-
olds for a test set composed of the lowest excited states of
glyoxal, methanethial, propinal, benzene and naphthalene at
their equilibrium structures, the lowest two excited states of
water and formaldehyde at the ground and the excited state
equilibrium structure, and the third excited state of formaldehyde
and the lowest two excited states of thiophene again at their
equilibrium structures. For all 16 cases we computed the Hessian
for the cc-pVDZ and the aug-cc-pVDZ basis sets with different
values for both thresholds, TLap and TLRE, and evaluated the
deviations in the elements of the Hessian from a reference
calculation with very tight thresholds. For the aug-cc-pVDZ result
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the mean absolute deviations of the Hessian elements follow
roughly the relation

DMAD
Hess,CC2 r 5TLap + 10TLRE (22)

with the maximum deviations 20–50 times larger. For the
cc-pVDZ basis set the deviations are between one and two
orders of magnitude smaller. In general, we observe that, not
unexpectedly, the thresholds have to be set about two orders of
magnitude tighter than for ground state calculations and that
tighter thresholds are needed if other states are close by.

In this work we used a tight threshold for the response
equations TLRE = 10�10 and 11 grid points for the numerical Laplace
integration, which corresponds to TLap between 2 � 10�5 and 2 �
10�10. These tight values were required because the third and
fourth derivatives for VPT2 theory are obtained by numerical
differentiation of the hessian. We kept the number of Laplace
points the same for all hessians used in a finite difference formula
to prevent any numerical noise from changes of the grid points.

2.4 Calculation of anharmonic corrections and frequencies

The analytical implementation of the hessians enables a semi-
numerical evaluation of third and fourth derivatives of the
energy, which are sufficiently accurate to be used as cubic
and quartic force constants for the calculation of anharmonic
frequencies. The third and fourth derivatives are calculated by
central finite differences of hessians. Since only semi-diagonal
quartic derivatives are required for VPT2 theory, the total
number of hessians required is Nacc�(3N � 6) + 1, where Nacc

is either two or four. Nacc = 4 is required when four- and five-
point formulas are used for cubic and quartic derivatives to
reduce the error to O(d4) in the displacement d.34

We did not use the normal coordinates
-

lm of the equilibrium
structure for the displacement vectors since they are normal-
ized in the mass weighted coordinate system, which leads to
unbalanced step sizes. Instead, we used rescaled coordinates

~nm ¼ ffiffiffiffiffiffi
mm
p

M
�1
2~lm; (23)

which ensures that the displacements become nearly indepen-

dent of the atomic masses. Here, the vector
-

lm denotes the mth
eigenvector of the mass weighted hessian M�1/2FM�1/2 and M is

the diagonal matrix of the atomic masses, and mm ¼

~l T
mM

�1~lm

� ��1
is the reduced mass of the normal mode m.

The anharmonic force constants are used for the calculation
of anharmonic frequencies, by setting up the vibrational
Hamiltonian as:35

Hvib = H0
vib + H1

vib + H2
vib (24)

Hvib ¼
1

2

X
r

or pr
2 þ qr

2
� 	

þ 1

6

X
rst

frstqrqsqt

þ 1

24

X
rstu

frstuqrqsqtqu þ
X
a

Be
aja

2

(25)

The zeroth order term H0
vib is a quantum harmonic oscillator in

reduced normal coordinates. The first-order correction H1
vib

consists of the cubic force constants frst. The second-order
correction H2

vib contains the quartic force constants frstu and a
Coriolos term that depends on the equilibrium rotational
constants Be

a and the vibrational angular momenta ja.

The anharmonic frequencies are calculated using second
order vibrational perturbation theory (VPT2), as it is implemen-
ted in the program DYNAMOL.36 Therein, the VPT2 equations
and treatment of resonance effects follow the formulation
described in the paper of Amos et al.37

3 Results

We have used our new efficient CC2 excited state hessian
implementation to construct harmonic and quartic force fields
of toluene, para-difluorobenzene and catechol in their first
excited electronic state, from which we obtain the band centres
of vibrational transitions using VPT2. These medium sized
molecules have been studied experimentally and we compare
the computed and experimental wavenumbers, assessing the
accuracy of the CC2 predictions and correcting assignments
where appropriate. The nomenclature of the normal modes is
adopted from the systematic studies of the Wright group for
substituted benzenes,38–40 which provides a more unique
assignment than the Mulliken41 or Wilson42 nomenclature.
For modes localised on the substituents, the common spectro-
scopic notation for stretches (n), bends (d) and torsions (t) is
used. Outputs from all of our VPT2 calculations are provided in
the ESI.† These contain a full list of fundamentals, overtones,
combination bands, all Fermi and Darling–Dennyson reso-
nances, and all effective Hamiltonians for the polyads used to
treat these resonances variationally.

3.1 para-Difluorobenzene

The molecule para-difluorobenzene has been the focus of a
considerable number of spectroscopic explorations to deter-
mine its ground and excited state structure and dynamics43–48

including the intramolecular vibrational redistribution pathways
in the excited state, which are mediated by rotational coupling
and through Fermi resonance.49,50 Here we examine the funda-
mental vibrational transitions of para-difluorobenzene in its first
excited state 11B2u using CC2 theory.

Spectroscopic studies reveal that para-difluorobenzene exhi-
bits D2h symmetry in both its ground and first excited state,45

and the CC2/cc-pVTZ optimised geometries indeed retain D2h

symmetry. The optimised structures are listed in the ESI.† The
computed 0–0 transition is 4.67 eV, which is close to the
experimentally determined energy of 4.57 eV.46

Table 1 reports harmonic and anharmonic wavenumbers for
the fundamental vibrational transitions of para-difluorobenzene
in its first excited state, computed using CC2/cc-pVTZ and CC2/
cc-pVQZ levels of theory using the optimised CC2/cc-pVTZ
excited state geometry. The harmonic wavenumbers computed
using the cc-pV5Z basis set are also listed. Using the normal
mode vectors, each transition has been assigned using the Di

labeling convention of ref. 39 for para-di-substituted benzenes.
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For ease of reference, the irreducible representation, Mulliken
labeling and ground state experimental wavenumbers have also
been included.

Examining the basis set convergence of the harmonic fre-
quencies, we find that while the in plane modes converge
rapidly with the basis set, the out of plane modes (au, b1g, b2g

and b3u) converge slowly, with deviations of more than 10 cm�1

between cc-pVTZ and cc-pV5Z values for the low frequency
vibrations. As highlighted by Martin, Taylor and Lee for benzene
and acetylene,51,52 modes that break planarity suffer from basis
set inconsistency errors that artificially lower the frequency and
overestimate anharmonic terms in the quartic force field.

This artificial enhancement of the anharmonic couplings to
out-of-plane vibrations complicates ab initio assignment the
experimental bands. These difficulties notwithstanding, our
calculations confirm the majority of the assignments of the
24 fundamental bands observed experimentally. The rightmost
two columns of Table 1 list the previous assignment as collated
in ref. 47 and our own ab initio assignment, respectively.

The fundamentals D6 and D27 were tentatively assigned to a
b1u band at 1015 cm�1 and a b2u band at 1100 cm�1, respec-
tively, in gas phase two-photon spectroscopy measurements.48

These assignments can be confidently discarded on the basis of
our calculations and it is likely that these bands do not
correspond to fundamental transitions. Similarly, Knight and
Kable’s tentative assignment of the b3g band at 933 to the D26

fundamental can also be discarded. There is a somewhat larger

than expected discrepancy between the predicted and observed
D4 fundamental, which we cannot explain. Finally, we make a
reassignment of the b2u band at 1591 cm�1 to D24. The problems
encountered with the low frequency out of plane modes prevent
meaningful comment of the assignments of modes D12, D13, D16

and D17, which is indicated by an asterix in the table. For the
in plane modes, the overall agreement between anharmonic
CC2/cc-pVQZ and experimentally observed transitions is very
good, with an RMSD of 26 cm�1.

3.2 Toluene

The excited state vibrational frequencies of toluene have been
studied using dispersed fluorescence spectroscopy,53 UV-IR double
resonance spectroscopy,54 one-colour resonance-enhanced multi-
photon ionization and two-colour zero kinetic energy spectro-
scopy.55,56 21 of the 39 fundaments have been assigned, as have
the methyl group internal rotor bands, five further overtone bands
and several combination bands in the range 200–1500 cm�1.

The CC2/cc-pVTZ optimised structures have Cs symmetry in
both the ground and first (1B2) excited states. In the ground state
the carbon atoms fall in a plane, one hydrogen of the methyl
group orientated perpendicular to the plane. In the excited state,
the methyl group moves slightly out of plane and has a dihedral
angle of 4 degrees with the benzene ring. The 0–0 transition
energy for the first excited state is at 4.65 eV,53 which is closely
reproduced by CC2/cc-pVTZ theory, which yields 4.86 eV.

Table 2 summarises the calculated and experimental fre-
quencies of toluene in its first excited state. We list harmonic
frequencies in cc-pVTZ, cc-pVQZ and cc-pV5Z basis sets, com-
puted at the optimised cc-pVTZ structure, and VPT2 anharmo-
nic frequencies using the cc-pVTZ basis set. The normal mode
vectors were analysed and classified using the Mi nomenclature
of Gardner and Wright38 for the ring modes, and given pseudo
C2v symmetry labels, where the methyl group is treated as a
single pseudo-atom.

Concerning the basis set convergence of the harmonic wave-
numbers, we find a similar pattern as for para-difluorobenzene.
The in plane modes are converged to within 10 cm�1 with the
cc-pVTZ basis, which is well below the intrinsic error bar of
30 cm�1 commonly ascribed to CC2 theory (for ground state
frequencies) due to missing higher order correlation effects. As
for para-difluorobenzene, the out-of-plane modes display a
much slower basis set convergence, with differences of more
than 30 cm�1 between cc-pVTZ and cc-pV5Z values for the
torsion and for modes M12, M15 and M16.

Overall, the CC2/cc-pVTZ anharmonic frequencies agree very
well with the experimental band centres for the fundamental
transitions. The only outlier is mode M16, which appears to
have artificially enhanced positive anharmonic corrections due
to the basis set incompleteness errors. By the same token, we
expect the predicted fundamentals for modes M12 and M15 to
also lie above the experimental bands, should they be measured
in the future. The methyl internal rotation is not expected to be
well described through VPT2 theory and requires a more
advanced vibrational treatment using a potential energy surface
that exhibits the three equivalent minima, see ref. 57–59 for

Table 1 CC2 excited state vibrational wavenumbers for para-
difluorobenzene

pDi Sym.

Exp. Harm. VPT2 Exp.

S0 TZ QZ 5Z TZ QZ S1 S1

20 30(b3u) 158 120 121 126 120 121 12047 120
14 8(au) 422 148 147 161 169 168 17547 175
19 17(b2g) 374 271 276 280 307 305 27447 274
30 22(b2u) 348 352 353 352 349 350 35247 352
29 27(b3g) 446 388 388 392 380 381 40347 403
13 9(b1g) 800 404 406 411 453 476 58846 *
11 6(ag) 450 411 412 423 407 408 41047 410
18 29(b3u) 505 472 471 473 466 466 43847 438
12 7(au) 945 486 490 503 612 676 58347 *
17 16(b2g) 692 527 546 539 651 647 52847 *
28 26(b3g) 635 558 558 558 541 542 55847 558
15 15(b2g) 838 610 616 623 700 658 67047 670
16 28(b3u) 928 614 621 624 636 813 61947 *
10 14(b1u) 740 716 716 713 702 703 66646 666
9 5(ag) 859 824 825 819 812 811 81847 818
8 13(b1u) 1014 960 962 961 949 951 93747 937
27 21(b2u) 1085 1025 1025 1022 1014 1006 110048

7 4(ag) 1140 1119 1117 1116 1100 1102 111646 1116
6 12(b1u) 1228 1228 1222 1218 1203 1195 101546

26 25(b3g) 1285 1254 1257 1256 1241 1244 93346

5 3(ag) 1257 1273 1265 1260 1241 1234 125147 1251
25 20(b2u) 1306 1317 1319 1315 1297 1298 159148

4 11(b1u) 1514 1449 1444 1439 1412 1408 133546 1335
23 24(b3g) 1595 1510 1509 1497 1475 1475 151648 1516
3 2(ag) 1615 1557 1552 1540 1507 1503
24 19(b2u) 1437 1680 1677 1664 1635 1632 1591
22 23(b3g) 3085 3253 3252 3246 3118 3116
2 10(b1u) 3073 3257 3255 3249 3118 3116
21 18(b2u) 3091 3267 3265 3258 3107 3103
1 1(ag) 3088 3271 3268 3261 3125 3123
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examples of such theories. The experimental assignment of the
five aromatic C–H stretching frequencies M1, M2, M3, M21 and

M22, is complicated by the presence of Fermi resonances, which
have not yet been untangled. Our calculations predict that M21

is in resonance with M4M25 and that both M1 and M2 are in
resonance with M23M25. The computed M4M25 and M23M25

combination bands are listed in Table 2 and lie at higher
frequency than the principle C–H stretches. Since we lack
predicted intensities or experimental band shape information,
we pragmatically assign the experimental bands in order of
increasing frequency, which results in excellent agreement
between computed and experimental values.

In Table 2 we also list selected overtones and combination
bands for comparison with those determined experimentally,
collected from ref. 53, 54 and 56. The overtone and combination
bands agree with experiment to within the error bar expected
from the agreement found for the fundamentals. Some Fermi
resonances observed in the spectra are not reproduced by our
VPT2 calculations. Specifically, we do not find a resonance
between M11 and M19M20 and we find no indication that mode
M6 is in resonance with other states. Others, however, are
identified by our calculations. The resonance between M10 and
M18M19 is found in both theory and experiment, but our calcula-
tions predict the fundamental M10 to be lower in energy than
M18M19, which if reliable would interchanging Garderner et al.’s
assignment of the resonant pair, which has M18M19 lower in
energy than M10. Our calculations also verify the resonance
between M10M29 and M18M19M29.

Overall, the RMSD between observed and predicted band centres
using VPT2 theory with a CC2/cc-pVTZ force field is 16 cm�1 for
the fundamental transitions in the excited electronic state.

3.3 Catechol

Catechol (l,2-dihydroxybenzene) is biochemically important
since the catecholamines adrenaline, noradrenaline, and dopamine
are active in neurotransmission. It has been the subject of extensive
spectroscopic studies, many of which have focused on the structure
and dynamics of the low energy rotamers formed through changing
the relative orientations of the hydroxyl groups, and the resulting
differing levels of intra- and intermolecular hydrogen bonding.60 The
vibrational frequencies of the excited state have been probed using
resonant two-photon ionization, fluorescence emission techniques,
and molecular-beam hole-burning experiments.61,62

Catechol is planar in the lowest energy isomer of the ground
electronic state and the hydroxyl groups form an intermolecu-
lar hydrogen bond, but the structure of the excited state is
assumed to be slightly distorted out of plane.62 Our structural
investigations, using CC2/cc-pVTZ theory to optimise geome-
tries of the ground and excited states, confirm that the ground
state is planar with an intermolecular hydrogen bond. We find
that the excited state retains the intermolecular hydrogen bond,
but is significantly distorted from planarity, puckering at the
carbons with the hydroxyl groups. The optimised structures are
reported in the ESI.† CC2/cc-pVTZ predicts the 0–0 transition
at 4.53 eV which is in line with the experimentally determined
0–0 excitation energy of 4.42 eV.62

The calculated and experimental frequencies of the ground
and excited states are compiled in Table 3. Only 16 fundamentals

Table 2 CC2 excited state vibrational wavenumbers for toluene

Mi Sym.

Harm. VPT2 Exp.

TZ QZ 5Z TZ S1

t 86 118 122 28
20 b1 141 148 151 140 145
14 a2 234 238 238 236 226
19 b1 319 325 325 331 314
30 b2 323 328 329 325 331
18 b1 432 441 445 460
11 a1 449 450 451 442 457
29 b2 524 524 526 512 532
13 a2 539 544 560 563
17 b1 556 560 566 552
16 b1 639 651 669 734 697
12 a2 658 667 686 736
15 b1 717 733 747 839
10 a1 751 749 749 737 753
28 b2 932 932 932 915
8 a1 943 939 938 928 934
9 a1 969 969 972 957 966
das
� 1003 1003 1002 972

das
� 1048 1047 1047 1024 1021

27 b2 1157 1155 1156 1137
7 a1 1162 1160 1160 1143
6 a1 1220 1214 1214 1196 1193
26 b2 1302 1304 1305 1281
24 b2 1386 1385 1386 1364
ds

+ 1393 1394 1395 1358
5 a1 1426 1423 1424 1394
das

+ 1474 1472 1472 1432
das

+ 1485 1484 1483 1443
23 b2 1534 1526 1524 1482
4 a1 1557 1547 1545 1505
25 b2 1685 1668 1661 1635
ns 3024 3015 3013 2921 2893
nas 3098 3091 3088 2956 2956
nas 3142 3135 3133 3013 2988
22 b2 3209 3203 3202 3076 3048
3 a1 3209 3204 3203 3077 3063
2 a1 3218 3212 3210 3079 3077
21 b2 3231 3224 3222 3087 3087
1 a1 3240 3233 3231 3098 3097

Overtones
20 a1 281 296 302 281 290
14 a1 469 476 476 471 452
19 a1 638 650 650 666 629
8 a1 1885 1878 1876 1854 1868
9 a1 1939 1939 1945 1914 1929

Combination bands
14 + 20 b2 375 386 389 374 371
19 + 20 a1 460 473 476 473 462
14 + 19 b2 553 563 563 566 539
18 + 19 a1 751 766 770 796 734
29 + 30 a1 847 852 855 837 864
11 + 29 b2 973 974 977 956 988
12 + 14 a1 892 905 924 975 916
10 + 29 b2 1275 1273 1275 1248 1263
8 + 11 a1 1392 1389 1389 1370 1390
8 + 29 b2 1467 1463 1464 1439 1463
9 + 11 a1 1418 1419 1423 1399 1426
9 + 29 b2 1493 1493 1498 1468 1494
8 + 9 a1 1912 1908 1910 1885 1900
6 + 29 b2 1743 1738 1740 1706 1727
23 + 25 a1 3219 3194 3185 3121 3101
4 + 25 b2 3241 3215 3206 3140
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of the excited state have been reported. The previous assignment
was predicated on the assumption that the selection rules and
band shapes for the planar S0 state can be transferred to guide
assignment of the S1 state.62,63 Our calculations indicate that
this assumption was flawed and we report a completely fresh
assignment for the observed S1 vibrational bands. We therefore
present frequencies also for the ground state, comparing our
purely ab initio assignment procedure to the more comprehensive
experimental assignments available for this state.64–67 We use the
oDi labeling for ortho-di-substituted benzene rings of ref. 40 and,
following the convention of earlier works,64 use n1, d1, t1 to refer to
the motions of the hydrogen donating OH group, and n2, d2, t2 to
refer to the motions of the hydrogen accepting OH group.

The procedure adopted for assigning the vibrational modes
of the S0 state was as follows: first the normal modes were
analysed and categorised according to the oDi nomenclature,
resulting in approximate C2v symmetry labels a1, b2, b1, a2 with
corresponding type A, B, C line shapes for the IR active bands
a1, b2, b1, respectively; these were then assigned in frequency
order in effective C2v symmetry blocks to the bands observed by
Wilson for vapour phase catechol;64 the only exception to this
are the four a(CH) bending modes, where the a1 and b2 labels
are swapped compared to Wilson’s and where recent work casts
doubt on the original assignment.40 Where additional or more
precise measurements are available, Wilson’s band centres are
replaced or supplemented by the modern values and the
Raman active a2 modes are assigned in frequency order using
measurements from solid state catechol; the bands assigned to
the OH bending (d), stretching (n) and torsional (t) modes are
identified from examination of the normal mode coordinates.

The overall agreement with experiment and CC2/cc-pVTZ theory
is excellent, with an RMSD of 29 cm�1. The difficulties associated
with out-of-plane vibrations are much less pronounced here and
there is only one outlier of this type, the ring puckering mode D26.
The only other significant outlier is mode D9, which is the mode
distorting from a aromatic ring to three localised double bonds.

Turning now to the S1 state, comparison with experiment is
problematic. Only 16 frequencies have been assigned and the
assignment appears flawed. A vibronic progression with a
spacing of 113 cm�1 was observed in resonant two-photon
ionisation spectra of catechol and was assigned to OH torsional
overtones.62 Our calculations do not predict low frequency
torsional modes, but in fact predict a significant redshift of
the torsional frequencies upon electronic excitation. The more
tetrahedral arrangement at the oxygen centres in the excited
state structure leads to a stronger intermolecular hydrogen
bond, higher torsional frequencies and lower OH stretching
frequencies. Instead, our calculations suggest assigning the
progression of 113 cm�1 to the low frequency D29 ring bend.
Note that the selection rules based on spatial symmetry do not
rigorously apply since the excited state structure is significantly
distorted out of plane. Having discounted the presence of low-
frequency torsional modes, many of the spectral features
observed in the experimental works must be reassigned. Pro-
ceeding to match computed and experimental values, account-
ing for band shape information where available, we report a

fresh ab initio assignment in Table 3. The RMSD between VPT2
fundamentals using a CC2/cc-pVTZ force field and the observed
bands with our fresh assignment is 22 cm�1.

4 Conclusion

Excited state hessians have been implemented for CC2, with a
focus on keeping the scaling of the main memory demands to
at most O(N2). This has been realized by exploiting the RI
approximation for the two electron integrals and by choosing a
Laplace decomposition of orbital energy denominators in the
calculation of the first-order density matrices. The implementation
is an extension of that for excited state polarizabilities and was
extended straightforwardly to excited state hessians for the CIS(DN)
and ADC(2) methods. The code is parallelized with OpenMP and
MPI to make use of modern computer hardware. The analytic
implementation enables the semi-numerical calculation of third
and fourth derivatives for anharmonic corrections.

We applied VPT2 theory based on CC2 quartic force fields to
para-difluorobenzene, toluene and catechol and compared the
computed frequencies to experimentally observed vibrational
bands of the first excited states. In contrast to previous

Table 3 CC2/cc-pVTZ vibrational wavenumbers for catechol in the S0

and S1 states

oDi C2v

S0 S1

Harm. VPT2 Exp. Harm. VPT2 Exp.

30 a2 178 220 199 148 145
t2 a2 209 254 475 425 461
29 b1 293 295 299 130 127 113
21 a1 303 300 320 295 293 299
t1 b1 432 433 585 576 607
20 b2 438 434 449 399 390 395
28 b1 456 454 456 369 348 317
19 b2 552 545 542 517 486 472
27 a2 561 590 582 342 347
18 a1 578 569 564 544 495 488
26 a2 674 802 721 444 420
25 b1 743 744 741 495 508 502
17 a1 772 760 768 732 714 735
24 a2 820 846 851 595 560 588
16 b2 854 840 859 829 812 840
23 b1 897 924 916 761 732 746
22 a2 930 988 963 837 836 863
15 a1 1043 1028 1030 968 950 950
14 b2 1098 1079 1092 1044 1028 1061
13/d2 a1 1163 1143 1151 1149 1122
13/d2 a1 1168 1150 1151 1166 1159
12 b2 1210 1190 1195 1122 1104
11 b2 1268 1240 1251 1254 1220
10 a1 1309 1278 1263 1286 1252
d1 b2 1367 1338 1365 1343 1312
9 a1 1458 1419 1324 1402 1368
8 b2 1494 1455 1479 1450 1415
7 a1 1540 1502 1504 1635 1581
6 b2 1646 1601 1607 1511 1466
5 a1 1651 1609 1616 1566 1517
4 b2 3186 3048 3051 3177 3046
3 a1 3211 3092 3051 3250 3102
2 b2 3224 3101 3060 3190 3065
1 a1 3235 3105 3081 3204 3065
n1 b1 3750 3553 3605 3612 3390
n2 a1 3813 3626 3663 3542 3252
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benchmark studies, we find that the accuracy of CC2 frequen-
cies for excited electronic states is comparable to MP2 or CC2
frequencies for the ground electronic state, with typical average
deviations between theory and experiment of less than 30 cm�1

for fundamental transitions when using a cc-pVTZ basis. How-
ever, we find that out-of-plane modes carry a much larger
uncertainty due to internal basis set superposition errors,
which leads to a strong basis set dependence of the force field
terms, and unphysically large anharmonic corrections to typi-
cally underestimated harmonic frequencies.

In addition to assessing the accuracy of CC2 theory, our
calculations have revealed some anomalies in the assignment
of some of the experimentally observed bands. Our calculations
discount some of the more tentative assignments in the spec-
trum of para-difluorobenzene. More significantly, our calcula-
tions indicate that the assignment of the lowest frequency
features in the vibrational bands of catechol to OH torsions is
incorrect, and that these lie much higher in energy due to the
stronger hydrogen bond in the distorted S1 excited state than in
the planar S0 state. Instead, we assign these features to ring
modes, which become symmetry allowed transitions due to the
low symmetry of the relaxed excited state structure. Due to this
re-interpretation of the experimental bands it was necessary
to perform a completely fresh assignment, and our new assign-
ment can be considered a pure ab initio assignment.
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