A density functional theory study of the hydrogenation and reduction of the thio-spinel Fe₃S₄{111} surface†

Alberto Roldan a,b and Nora H. de Leeuw c, d

The mineral greigite, Fe₃S₄, shows promising electro-reduction activity, especially towards carbon dioxide conversion to small organic molecules. We have employed density functional theory calculations with correction for the long-range dispersion forces to investigate the behavior of hydrogen on the greigite{111} surface. We have studied the adsorption, diffusion, surface reduction and associative (i.e. Volmer–Tafel mechanism) and molecular desorption of hydrogen as a function of its coverage. We found that (i) the H ad-atoms adsorb on S sites far from metallic centres in the topmost surface layer; (ii) the reduction of greigite by hydrogen is energetically unfavorable at any surface coverage; and (iii) molecular hydrogen evolution has a transition state at ~ 0.5 eV above the energy of the reactants on Fe₃S₄{111}, which is very similar to the barrier found experimentally on Pt{111}. We have also determined the electrode potential under room conditions at which the H₂ evolution reaction becomes energetically barrierless.

1. Introduction

Sulfides of iron, the most abundant transition metal element in the Earth’s crust, frequently contain Fe and S in different oxidation states, yielding various types of natural iron sulfides. Among them, greigite is isomorphic with magnetite (Fe₃O₄)¹ and has been associated as a catalyst in a number of biochemical reactions, for example those associated with the “iron–sulfur world” hypothesis for the origin of life.²–⁵ Thio-spinel crystal structures, such as greigite, resemble the reactive cubane structures (Fe₃S₄) found in enzymes but linked through terminal sulfides.⁶–⁸ Although most biomimetic catalysts lack the protection and long-range interactions of the protein backbone, they show interesting catalytic activity.⁹ Fe₃S₄ also has promising applications in spintronic devices,¹⁰ electrodes for lithium-ion batteries,¹¹ drug delivery and hydrogen storage,¹²–¹⁴ and it has been used as a catalyst in electro-reductive experiments.¹⁵ Understanding the redox properties of this material is therefore crucial for optimising its performance, while mitigating, for example, its corrosion. The early oxidation stages of the Fe₃S₄ surface indicate the formation of oxide shell structures (Fe₂O₄), although the inner material remains a sulfide (Fe₃S₄).¹⁶,¹⁷ Nevertheless, the behaviour of the greigite surface under anodic potentials remains unreported. Generally, transition metal sulfides (TMS) have gained scientific interest as catalysts, in part due to their similitude to important enzymatic catalytic centres, e.g. in the H₂–CO₂ reaction couple.¹⁸–²⁰ TMS such as MoS₂, Ni₃S₂, RuS₂ and spinel-type Mo₃S₄ have been tested, concluding that the TMS redox character depends on the nature of the metal atom and the sulfur coordination environment.²¹–²⁵ More sophisticated catalysts such as chalcogels enhance the evolution of H₂ but at very low turnover, even when doping the inorganic structure with other metals such as Ni, Co or Mo.²⁶ Accurate simulations of electrochemical processes, however, are a challenging task due to the presence of a solid–solvent interface, and multiple species dynamically interacting with the surface, e.g. ions, solvent, reactive species and the flow of electrons.²⁷ We have therefore followed a simple approximation in which the reaction energies are plotted as a function of the variation in the work-function under a fixed external potential.²⁸ Thus, the electronic structure calculations are related to the surface potential by the variations of the dipole.²⁹

Based on previous research and the fact that H binds on top of low-coordinated S atoms on TMS surfaces,³¹–³³ we have used density functional theory with a correction for the long-range dispersion forces to focus on the Fe₃S₄{111} surface, which has been shown to be exposed in Fe₃S₄ crystallites. In particular, we have analysed the H ad-atom migration, the surface reduction by either H-incorporation or by H₂S formation, and the catalytic activity towards the hydrogen evolution reaction (HER) via the Tafel reaction.¹⁴
2. Computational methods

Periodic plane-wave DFT-D calculations were carried out to study the hydrogen interaction and reactivity on the greigite \(\text{Fe}_3\text{S}_4 \{111 \} \) surface. All calculations were performed using the Vienna Ab initio Simulation Package (VASP)35,36 with the computational details that accurately describe greigite, in full agreement with recent synchrotron radiation measurements and catalytic experiments.15,37 Hence, the ion–electron interactions were represented by the projector-augmented wave (PAW) method48 within the generalized gradient approximation (GGA) with the Perdew–Wang 91 functional39 and employing the spin interpolation formula of Vosko et al.49 All calculations included the D2 long-range dispersion correction approach by Grimme (\(s_n = 0.75 \)),44 as this correction has been shown to reproduce well the interaction of the sulfides with molecules.32,33,42,43 The PBE functional and D3 long-range dispersion showed no difference with the setup used here.44 The Kohn–Sham valence states were calculated with the slab, \(E_{\text{Fe3S4}} \), as the energy required to pass over the potential energy barrier characteristic of the transition state. We defined this barrier energy as the difference between the initial state and the transition state for the forward process. In the same way, we defined the reaction energy \((E_R) \) as the total energy difference between the final state (products) and the initial state (reactants).

We carried out charge analyses using AIMS,50,59 as implemented in the Henkelman algorithm.61 Within this approach, the electron and spin) density associated with each atom is integrated over the Bader volume of the atom in question. We can use this method to monitor changes in charges, for example as an effect of surface adsorption.

3. Results and discussion

Synthetic greigite particles mainly express the \{001\} and \{111\} surfaces,15,62 which contain two types of terminal Fe atoms derived from the tetrahedral (\(\text{Fe}_A \)) and the octahedral (\(\text{Fe}_B \)) bulk positions.63 Upon relaxation of these surfaces, cations tend to move inwards into the bulk and anions outwards, i.e. the top \(\text{Fe}_A \) and \(\text{Fe}_B \) move underneath the sulfur layer.32 Here, we have focused on the \{111\} surface as it has shown interesting redox properties towards the reduction of \(\text{CO}_2 \).15,42,64 This surface exposes in the uppermost atomic layer an \(\text{Fe}_B \) and two \(\text{Fe}_A \) surrounded by eight S atoms per unit cell. At the surface, both \(\text{Fe}_A \) and \(\text{Fe}_B \) atoms have a formal charge of +3.
3.1 Hydrogen adsorption and diffusion on Fe₃S₄{111}

We have approached a single H atom on non-equivalent adsorption sites on the Fe₃S₄{111} surface to study its binding characteristics and found that H prefers to adsorb on S far from any surface FeB. Although the S–H distances are very similar on the different adsorption sites (d_{S-H} \sim 1.36 \text{ Å}), the most exothermic location (E_B = -0.4 eV) corresponds to sites 3 and 4 in Fig. 1, whereas site 1 on top of FeB leads to the least favourable adsorption. There, the distance FeB–H is 0.14 Å longer than the main d_{S-H}, and its E_B is endothermic by +0.7 eV. We did not find any minimum for H adsorbed on top of FeA. The S sites directly connected to FeA, i.e., 3 and 4, present a stronger basic character than the average, which is due to the distortion created by the FeA reconstruction upon relaxation of the naked surface that slightly modifies the local electronic structure. In fact, the H binding energy has a linear relation with the S electronic structure, see Fig. S2 (ESI†). Hence, the surface basicity is associated with the external electrons of the S-bands, and the more negatively charged is S, the weaker is the bond with the H atoms.

We have analysed the S–H bond by charge analysis and charge density difference flux. The latter, depicted in Fig. S3 (ESI†), shows charge density accumulation between S and H, i.e. 3 and 4, which may drive the diffusion process. Once on the S sites, H can migrate to another S by overcoming an average energy barrier of 0.7 eV via a transition state on top of a subsurface FeB.

We have derived the H diffusion coefficient (D) on the Fe₃S₄{111} surface by evaluating the changes in the vibrational contribution to the energies within the limits of validity of the transition state theory.65 We used eqn (2) considering that a single displacement occurred when an H atom moved from one site to the next.

\[
D = \frac{k_B T m d^2}{6 \pi \eta} \exp\left\{\frac{-\Delta E_{ZPE}}{k_B T}\right\}
\]

where \(\Delta E_{ZPE}\) is the activation energy corrected by the vibrational contribution at the ground state and the saddle point, and \(nd^2/2\eta\) is the Einstein relation for a random walk; \(n\) is the number of jumps to reach the next site (in this case \(n = 1\)), \(d\) is the distance between the initial and final adsorption sites, which ranges between 1.66 and 3.27 Å depending on the process, and \(z\) indicates the dimensions of the jump, which, according to the symmetry of the surface, is one.66 The results are in line with the adsorption energies and local electronic structures and agree with the variation in acid–base character of the top S atoms on the Fe₃S₄{111}, discussed above. In summary, the H movements over the surface avoid the S-sites directly connected to FeB, which may be available for the adsorption of other species such as CO₂.

The resulting diffusion coefficients indicate a hindered movement of the H ad-atom in comparison to values on transition metals, e.g. the diffusion coefficients range from \(3.35 \times 10^{-4}\) to \(2.2 \times 10^{-3}\ \text{cm}^2 \text{s}^{-1}\) on body cubic centered Fe at 233 K.68 Nevertheless, our values are in the range of diffusion on oxide surfaces with variations in acid–base character,69,70 showing the localization of the electron and the varying character of the sulfur sites according to their local electronic structure.

3.2 Hydrogen coverage on Fe₃S₄{111}

Table 1. Barrier (E_d) and reaction energies (E_R) for H movement over Fe₃S₄{111} between initial and final sites in Fig. 1. Note that binding energies (E_B) are for products and the energy values are not corrected by ZPE. The diffusion coefficients (D) are calculated at a temperature of 300 K.

Actual surfaces are dynamic systems whose properties and processes depend on the concentration and types of adsorbents. The H coverage (θH) is, therefore, a factor to consider when developing a general picture of the surface character. We defined...
\(\theta_H \) as the number of H atoms per S site on the surface but note that H may also adsorb on Fe\(_B\) only under strong conditions, i.e. high hydrogen chemical potentials. We increased \(\theta_H \) by adding pairs of H atoms on the surface and compared the energies with a reference system: the naked slab and a number of isolated H\(_2\) molecules in the gas phase. Fig. 2 represents the \(E_B \) per atom as a function of \(\theta_H \) starting from 1 up to 8 H atoms per cell, i.e. \(\theta_H = 0.125 \) to 1 ML. We tested the effect of increasing up to 10 H by placing the extra H on Fe\(_A\) and Fe\(_B\), but this resulted in an endothermic step by 0.44 eV. A similar energy increment was found experimentally on Pt\{111\}. We will focus on system 5, i.e. molecular desorption and dissociation, and the association of both H ad-atoms along the desorption process, i.e. associative desorption.

Molecular desorption takes place only when both H atoms are adsorbed on Fe\(_B\), e.g. process 1 in Table 2, which is very unlikely due to the instability of H adsorption on Fe\(_B\). Examples of thermodynamically favorable associative desorption are: (i) two hydrogens on S and Fe\(_A\) and (ii) two hydrogens on neighbouring sulfurs, listed as processes 3 and 5 in Table 2, respectively. This latter process is exothermic by 0.48 eV, and its energy barrier (\(E_A \)) is only 0.5 eV, which is similar to the barrier found experimentally on Pt\{111\}. We will focus on system 5, as it has the lowest activation barrier for the association of two H sited on the preferred S sites.

Under low H chemical potentials, i.e. low coverages, the H ad-atoms are located on top of S sites surrounding Fe\(_A\), i.e. 3 and 4 in Fig. 1. While the hydrogen associative desorption on these sites is endothermic by 0.63 eV (process 7 in Table 2) an increase in the hydrogen coverage (\(\theta_H \)) may lead to the more feasible process 5 (see Fig. S5, ESI†).

We have approximated our DFT energies (\(E \)) to the Gibbs free energies (\(G \)) by adding the zero-point energy (ZPE) and including the energy contribution from the configurational (\(S_{\text{conf}} \) in eqn (3)) and the vibrational (\(S_{\text{vb}} \) in eqn (4)) entropies. The differential configurational entropy, \(dS_{\text{conf}}/d\theta_H \), has been found to compare well with Monte Carlo simulations on hexagonal surfaces, such as the S site distributions, whereas the vibrational entropy is commonly described by a Boltzmann distribution. For the gas phase product (H\(_2\)), we have introduced the energy variation with temperature using the specific heat (\(C_p \)) and the rotational, translational, and vibrational energy contributions from the entropy (\(S \)) derived from the DFT partition functions. We have considered the electronic partition function as the ground state. This approach led to a relative error between the resulting H\(_2\) free energy (\(G \)) and the thermochemistry data from ref. 79, which is processes from ad-atoms on S, Fe\(_A\) and Fe\(_B\). In the first mode, the two H ad-atoms recombine as they leave the surface – the inverse process to dissociative adsorption. Commonly, H\(_2\) is adsorbed dissociatively, and its desorption may follow a similar trajectory. In the latter, the H\(_2\) molecule is formed on the surface prior to desorption – the inverse process to molecular adsorption and dissociation. We have summarised in Table 2, and schematically represented in Fig. S5 (ESI†), the H\(_2\) formation on the surface before desorption, i.e. molecular desorption, and the association of both H ad-atoms along the desorption process, i.e. associative desorption.

3.3 Hydrogen evolution on Fe\(_3\)S\(_4\{111\}

As the hydrogen coverage increases on the surface, so does the probability of their recombination into molecular hydrogen. We have studied the H\(_2\) associative and molecular desorption

<table>
<thead>
<tr>
<th>Process</th>
<th>Site</th>
<th>(E_A) (eV)</th>
<th>(E_B) (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MD</td>
<td>0.09</td>
<td>-0.79</td>
</tr>
<tr>
<td>2</td>
<td>AD</td>
<td>1.36</td>
<td>-0.63</td>
</tr>
<tr>
<td>3</td>
<td>AD</td>
<td>0.17</td>
<td>-0.98</td>
</tr>
<tr>
<td>4</td>
<td>AD</td>
<td>1.52</td>
<td>0.17</td>
</tr>
<tr>
<td>5</td>
<td>AD</td>
<td>0.46</td>
<td>-0.48</td>
</tr>
<tr>
<td>6</td>
<td>AD</td>
<td>1.41</td>
<td>0.63</td>
</tr>
<tr>
<td>7</td>
<td>AD</td>
<td>2.09</td>
<td>0.63</td>
</tr>
</tbody>
</table>
smaller than 0.09% in a range of temperatures from 250 to 700 K, see Fig. S6 (ESI†).

\[S_{\text{conf}} = -k_B(\theta_{H1} \ln(\theta_{H1}) + (1 - \theta_{H1}) \ln(1 - \theta_{H1})) \]
\[S_{\text{vib}} = k_B \ln \left(\prod_{j} \left(1 - e^{-\frac{\Delta U_j}{k_B T}} \right)^{-1} \right) \]

As general trends, the thermodynamic saturation of the Fe₃S₄(111) takes place at the coverage of ~0.35 ML as the adsorption of H beyond this \(\theta_{H1} \) is endo-thermic, see Fig. 3A. Next, we studied process 5 in Table 2 to consider the evolution of \(\text{H}_2 \) as a function of the coverage; this process initiates from hydrosgens adsorbed on favorable S-sites and has the lowest activation energy. We found that the evolution of \(\text{H}_2 \) is exo-thermic before reaching \(\theta_{H1} = 0.35 \) ML—the \(\text{H}_2 \) evolution process is lower in energy than the H adsorption—although it is hindered by the large activation energy (\(\Delta G^\text{TS} \)). According to the Tafel reaction mechanism for the evolution of \(\text{H}_2 \), the activation and stability (\(\Delta G_R \)) are almost unaffected by the presence of water, electric potentials, or electric fields, which are, however, important to simulate an electrochemical environment.\(^{28}\) Hence, \(\theta_{H1} \) may go beyond 0.35 ML, e.g., as a result of electric potentials, until the activation energy is small enough to allow the \(\text{H}_2 \) evolution. It is at \(\theta_{H1} = 1 \) ML that the barrier is smaller than 0.2 eV (the difference between \(\Delta G^\text{TS} \) and \(\Delta G_R \)) leading to an exo-thermic associative desorption of \(\text{H}_2 \) by 0.88 eV (the difference between \(\Delta G_R \) and \(\Delta G_H \)).

As described in the hydrogen coverage section, an increment of \(\theta_{H1} \) polarises the surface, which affects the surface work function (\(\phi \))—the minimum work required to extract an electron from the top of the valence band of the uncharged surface and place it in a vacuum. We have related the changes in the work function upon evolution of \(\text{H}_2 \) (final states) to an electrode potential at zero-charge (\(U = \phi - \phi_{\text{NHE}} \)) relative to a normal hydrogen electrode (NHE) of 4.5 V,\(^{28,30}\) which is within the range found in the literature, 4.4–4.9 V.\(^{78}\) We have derived a Tafel transfer coefficient of 0.62, which expresses the fraction of the overpotential that helps to lower the activation energy of the homolytic \(\text{H}_2 \) formation and the potential affecting the current density. Fig. 3B indicates how the H ad-atoms on the Fe₃S₄(111) surface accumulate under cathodic potentials—solid line in Fig. 3. Although the \(\text{H}_2 \) evolution becomes thermodynamically favourable below 0.35 V (vs. NHE)—the \(\text{H}_2 \) evolution is lower in energy than adsorption—, it is kinetically hindered—big difference between \(\Delta G^\text{TS} \) and \(\Delta G_R \)—until \(U = -0.4 \) V (vs. NHE), where the process becomes barrierless. Indeed, bubbling has been observed at potentials of 0.6 V (vs. NHE) at room pressure and temperature.\(^{15}\)

3.4 Fe₃S₄(111) surface reduction

Sequestration of H. The small size of the H atoms may allow them to penetrate inside the greigite structure. We have evaluated the thermodynamic viability of this process by placing one H in the centre of the cavity created between Fe₈ atoms and the S in the uppermost layer. During the geometry optimisation, the intrusive H moved aside to bind a sub-surface Fe₈, see Fig. S7 (ESI†). This structure increased the surface work function in comparison with the H adsorbed on the surface. However, the charge analysis shows a negligible variation of only 0.1 e in the H atom. We have studied the same process at different surface coverages, i.e. \(\theta_{H1} = 0.25 \) ML and \(\theta_{H1} = 1 \) ML, and found that the intercalation processes remains largely endo-thermic compared with the H adsorbed on the surface, +0.83 and +1.62 eV respectively. These high energies indicate that H sequestration into greigite would not take place under normal conditions.

Formation of \(\text{H}_2\text{S} \). Another way to reduce Fe₃S₄(111) is by removing sulfur from the surface, for example as \(\text{H}_2\text{S} \). We have studied hydrogen sulfide (\(\text{H}_2\text{S} \)) formation when two H ad-atoms are adsorbed onto the same S-site. This surface configuration weakens the Fe–S bond and forms \(\text{H}_2\text{S} \) (\(E_R = 0.09 \) eV), see Fig. 4. Once formed, the molecule hovers at ~1.6 Å above its initial position. However, the energy barrier to place both H on the same S-site is 2.35 eV under low \(\theta_{H1} \) is 2.35 eV, which prevents the process from being kinetically accessible. At a \(\theta_{H1} \) of 1 ML, the reaction energy is almost the same (\(E_R = 0.07 \) eV), but the energy barrier is even higher than at low coverage (\(E_A = 2.65 \) eV). Thus, although \(\text{H}_2\text{S} \) formation is thermodynamically possible, it is kinetically inaccessible under conditions of both low and high hydrogen coverage.

4. Conclusions

We have performed a systematic study of common processes involving hydrogen on greigite. We have used DFT-based
calculations with the PW91 exchange–correlation potential, including dispersion through the Grimme’s D2 approach and the on-site Hubbard correction \(U_{\text{eff}} \), to evaluate H adsorption and diffusion, \(\text{H}_2 \) evolution by ad-atoms recombination, and reduction of the surface by either H-incorporation or \(\text{H}_2 \text{S} \) formation on the \(\text{Fe}_4\text{S}_4\{111\} \). We found that H adsorbs preferentially on surface S-sites far from the top surface \(\text{Fe}_\text{S} \), which distorts the nearby electronic structure, making the S-sites more acidic. Thus, the H ad-atoms diffuse across the \(\{111\} \) surface along paths that avoid low-coordinated \(\text{Fe}_\text{S} \). On the \(\text{Fe}_4\text{S}_4\{111\} \) surface, the strongest mono-atomic binding energy is \(-0.4 \text{ eV}\), which becomes weaker with coverage, following a logarithmic trend up to a \(\theta_1 \) of 1 ML: above this coverage, there is a trend discontinuity, not only due to the H–H interaction \((<0.1 \text{ eV})\) but because of changes in the surface polarisation. The reduction of the \(\text{Fe}_4\text{S}_4\{111\} \) surface by incorporation of H into the thio-spinel structure is an endothermic process by more than 0.8 eV. \(\text{H}_2 \text{S} \) formation is in thermodynamic equilibrium with two contiguous HS, but the process is kinetically prevented between 0.25 and 1 ML \((\varepsilon_\text{AS} \sim 2 \text{ eV}) \). The \(\text{H}_2 \) evolution reaction takes place via associative desorption from distinctive sites, and both the barrier and the reaction energies decrease with increasing H-coverage: the reaction becomes thermodynamically favourable at coverage higher than 0.35 ML. We have also related the \(\theta_1 \) with the electrode potential via the work function and found that at bias of 0.4 V vs. NHE the \(\text{H}_2 \) evolution becomes thermodynamically favourable but kinetically controlled. At potentials lower than \(-0.45 \text{ V}\), the activation energy becomes negligible and the Tafel process becomes very fast and exothermic.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We acknowledge the Engineering & Physical Sciences Research Council (grants EP/K035355/1 and EP/K035355/2) for funding. This work made use of the ARCHER facilities, the UK’s national high-performance computing service, which is provided by UoE HPCs at the University of Edinburgh, Cray Inc. and NAG Ltd, funded by the Office of Science and Technology through EPSRC’s High-End Computing Programme and provided via our membership of the HPC Materials Chemistry Consortium (EPSRC EP/L000202). The authors also acknowledge the use of the UCL Legion High-Performance Computing Facility and the Advanced Research Computing@Cardiff (ARC) at Cardiff University, and associated support services, in the completion of this work. All data created during this research are openly available from the University of Cardiff Research Portal at http://doi.org/10.17035/d.2018.0053780764.

References

16 S. N. A. Zakaria, N. Hollingsworth, H. U. Islam, A. Roffey, D. Santos-Carballal, A. Roldan, W. Bras, G. Sankar, G. Hogarth,

49. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys and A. P. Sutton, Electron-energy-loss spectra and the